• Nie Znaleziono Wyników

is sym- metric α-stable (S.α.S) if its characteristic function is of the form

N/A
N/A
Protected

Academic year: 2021

Share "is sym- metric α-stable (S.α.S) if its characteristic function is of the form"

Copied!
27
0
0

Pełen tekst

(1)

R. S A B R E (Dijon)

SPECTRAL DENSITY ESTIMATION FOR STATIONARY STABLE RANDOM FIELDS

Abstract. We consider a stationary symmetric stable bidimensional pro- cess with discrete time, having the spectral representation (1.1). We consider a general case where the spectral measure is assumed to be the sum of an absolutely continuous measure, a discrete measure of finite order and a finite number of absolutely continuous measures on several lines. We estimate the density of the absolutely continuous measure and the density on the lines.

1. Introduction. A complex random variable X = X

1

+ iX

2

is sym- metric α-stable (S.α.S) if its characteristic function is of the form

exp n

− R

S2

|t

1

x

1

+ t

2

x

2

|

α

X1,X2

(x

1

, x

2

) o

,

where t = t

1

+ it

2

and Γ

X1,X2

is a symmetric measure on the unit sphere S

2

of R

2

.

A stochastic process {X

t

, t ∈ T } is (S.α.S) if all linear combinations, a

1

X

t1

+ . . . + a

n

X

tn

, are (S.α.S). When X = X

1

+ iX

2

and Y = Y

1

+ iY

2

are jointly (S.α.S) and 1 < α ≤ 2, the covariation of X with Y is defined in [3] by

[X, Y ]

α

= R

S4

(x

1

+ ix

2

)(y

1

+ iy

2

)

hα−1i

X1,X2,Y1,Y2

(x

1

, x

2

, y

1

, y

2

), where by convention, for b > 0 and Z a complex number, Z

hbi

= |Z|

b−1

Z

, Z

being the complex conjugate of Z. The quantity kXk

α

= [X, X]

1/αα

is a norm [11] on the linear space of (S.α.S) random variables. If (ξ

t

)

t∈R

is a complex (S.α.S) process with independent increments, then the measure µ

1991 Mathematics Subject Classification: 62G07, 60G35.

Key words and phrases: periodogram, Jackson kernel, double kernel method, (S.α.S) process.

[107]

(2)

defined by µ(]s, t]) = kξ

t

− ξ

s

k

αα

is a Lebesgue–Stieltjes measure [3], called the spectral measure of ξ. When µ is absolutely continuous, its density is called the spectral density of ξ.

For stationary complex symmetric α-stable (S.α.S) processes having the spectral representation

X(t) =

R

−∞

e

itλ

dξ(λ),

where ξ is a (S.α.S) process with independent isotropic increments, the spectral density function φ is estimated in [11].

Let us consider a bidimensional (random field), complex (S.α.S) process in discrete time, having the spectral representation

(1.1) X(n, m) =

π

R

−π π

R

−π

e

i(λ1n+λ2m)

dξ(λ

1

, λ

2

),

where ξ is a (S.α.S) process with independent isotropic increments; that means ξ is an additive complex function defined on the Borel subsets of [−π, π]

2

such that:

• for any integer k and any Borel sets B

1

, . . . , B

k

, (ξ(B

1

), . . . , ξ(B

k

)) is (S.α.S);

• for any integer k and any disjoint Borel sets B

1

, . . . , B

k

, ξ(B

1

), . . . . . . , ξ(B

k

) are complex (S.α.S) independent random variables;

• for all Borel sets B, the distribution of the random variable e

ξ(B) is independent of θ.

For more details about the spectral representation see [8] and [1].

We define the spectral measure by [ξ(B), ξ(B)]

α

= R

B

dµ(λ

1

, λ

2

) for any Borel subset B of [−π, π]

2

, where [X, Y ]

α

denotes the covariation of X with Y [3] when X and Y are jointly (S.α.S).

To our knowledge the case we deal with is more general than those considered in [11], [6]: we suppose that the spectral measure of the process is the sum of an absolutely continuous measure, a discrete measure of finite order and a finite number of absolutely continuous measures on several lines:

dµ(λ

1

, λ

2

) = φ(λ

1

, λ

2

)dλ

1

2

+

q

X

j=1

a

0j

δ

(w1j,w2j)

(1.2)

+

q0

X

i=1

φ

i

(u

1

u2=aiu1+bi

,

(3)

where φ and φ

i

for i = 1, . . . , q

0

are nonnegative continuous functions, a

0j

∈ R

+

, a

i

, b

i

∈ R and w

1j

, w

2j

∈ [−π, π], j = 1, . . . , q, i = 1, . . . , q

0

.

Using Jackson polynomial kernels and the double kernel method, we estimate the function φ(λ

1

, λ

2

) for every (λ

1

, λ

2

) in ]−π, π[

2

. Under appro- priate conditions on the function φ, we obtain rates of convergence. Let us also indicate that our methods allow us to estimate the positive num- bers a

0j

(j = 1, . . . , q) and the functions φ

i

(i = 1, . . . , q

0

). For brevity, we consider here only the estimation of φ; for details, see [13].

2. The periodogram and its statistical properties. Given N M observations of the process X : (X(n, m))

0≤n≤N −1

0≤m≤M −1

, where N and M satisfy:

• N − 1 = 2k(n − 1) with n ∈ N, k ∈ N ∪ {1/2}; if k = 1/2 then n = 2n

1

− 1, n

1

∈ N.

• M − 1 = 2k(m − 1) with m ∈ N, k ∈ N ∪ {1/2}; if k = 1/2 then m = 2m

1

− 1, m

1

∈ N.

We consider the function H

(N )

(λ) =

k(n−1)

X

m0=−k(n−1)

h

k

(m

0

/n) cos(λm

0

),

where h

k

is defined in [7] such that H

(N )

(λ) = 1

q

k,n

 sin

2

sin

λ2



2k

with q

k,n

= 1 2π

π

R

−π

 sin

2

sin

λ2



2k

dλ.

The Jackson polynomial kernel is |H

N

(λ)|

α

= |A

N

H

(N )

(λ)|

α

, where A

N

= B

−1/αα,N

with B

α,N

= R

π

−π

|H

(N )

(λ)|

α

dλ. We define H

M

(λ) in the same way.

The following lemma, proved in [6], will be frequently used in the sequel.

Lemma 2.1 [6]. Let B

α,N0

=

π

R

−π

sin

2

sin

λ2

2kα

dλ and J

N,α

=

π

R

−π

|u|

γ

|H

N

(λ)|

α

dλ,

where γ ∈ ]0, 2]. Then

B

α,N0

 

 

≥ 2π  2 π



2kα

n

2kα−1

if 0 < α < 2,

≤ 4πkα

2kα − 1 n

2kα−1

if 1

2k < α < 2,

(4)

and

J

N,α

 

 

π

γ+2kα

2

2kα

(γ − 2kα + 1) · 1

n

2kα−1

if 1

2k < α < γ + 1 2k , 2kαπ

γ+2kα

2

2kα

(γ + 1)(2kα − γ − 1) · 1

n

γ

if γ + 1

2k < α < 2.

The proof of the following lemma is the same as in the one-dimensional case in [3].

Lemma 2.2. If ξ is a (S.α.S ) process with independent and isotropic increments, then

E exp 

i Re h R

π

−π π

R

−π

f (u

1

, u

2

) dξ(u

1

, u

2

) i

= exp



−C

α

π

R

−π

|f (u

1

, u

2

)|

α

dµ(u

1

, u

2

)



for every f ∈ L

α

(µ), where C

α

= (2πα)

−1

R

π

−π

|cos θ|

α

dθ.

Now we denote by A the set of points where there are no atoms:

A =



1

, λ

2

) ∈ ]−π, π[

2

: λ

1

6= w

1j

, λ

2

6= w

2j

and λ

2

− b

i

− a

i

λ

1

2π 6∈ Z for 1 ≤ i ≤ q

0

and 1 ≤ j ≤ q

 . In the sequel we choose large k such that kα > 1 and we consider the following periodogram:

d

N,M

1

, λ

2

) = A

N

A

M

Re



k(n−1)

X

n0=−k(n−1)

k(m−1)

X

m0=−k(m−1)

h

k

 n

0

n

 h

k

 m

0

m



×e

−i(λ1n02m0)

X(n

0

+ k(n − 1), m

0

+ k(m − 1))

 . Following the study realized in the one-dimensional case by Masry and Cam- banis in [11], one can show easily that, for (λ

1

, λ

2

) ∈ A,

(2.1) lim

N →∞

E{exp[ird

N,M

1

, λ

2

)]} = exp[−C

α

|r|

α

φ(λ

1

, λ

2

)].

We modify this periodogram taking the power p, with 0 < p < α/2, and multiplying by a normalization constant:

I b

N,M

1

, λ

2

) = C

p,α

|d

N,M

1

, λ

2

)|

p

.

(5)

The normalization constant C

p,α

is given by C

p,α

= D

p

F

p,α

C

αp/α

, where

D

p

=

R

−∞

1 − cos u

|u|

1+p

du and F

p,α

=

R

−∞

1 − e

−|u|α

|u|

1+p

du, 0 < p < α 2 . We show that

E b I

N,M

1

, λ

2

) = [ψ

N,M

1

, λ

2

)]

p/α

, (2.2)

Var[ b I

N,M

1

, λ

2

)] = V

α,p

N,M

1

, λ

2

)]

2p/α

, (2.3)

where V

α,p

= C

p,α2

C

2p,α−1

− 1 and

ψ

N,M

1

, λ

2

) = I

N,M

1

, λ

2

) + J

N,M

1

, λ

2

) + K

N,M

1

, λ

2

) with

I

N,M

1

, λ

2

) =

π

R

−π π

R

−π

|H

N

1

− u

1

)|

α

|H

M

2

− u

2

)|

α

φ(u

1

, u

2

) du

1

du

2

,

J

N,M

1

, λ

2

) =

q

X

j=1

a

0j

|H

N

1

− w

1j

)|

α

|H

M

2

− w

2j

)|

α

,

K

N,M

1

, λ

2

) =

q0

X

i=1 π

R

−π

|H

N

1

− v

1

)|

α

|H

M

2

− a

i

v

1

− b

i

)|

α

φ

i

(v

1

) dv

1

. As in [11] one can show that for (λ

1

, λ

2

) ∈ A, the function ψ

N,M

1

, λ

2

) converges to φ(λ

1

, λ

2

). Therefore b I

N,M

1

, λ

2

) is an asymptotically unbiased estimator of [φ(λ

1

, λ

2

)]

p/α

but it is not consistent because the variance is proportional to [φ(λ

1

, λ

2

)]

2p/α

.

3. The smoothed periodogram. In this section, using two spectral windows, we smooth the periodogram b I

N,M

and we obtain consistent esti- mators of [φ(λ

1

, λ

2

)]

p/α

at the points (λ

1

, λ

2

) where there are no atoms. Let W be a nonnegative, even, continuous function vanishing for |λ| > 1, with R

1

−1

W (λ) dλ = 1. The spectral windows W

N

, W

M

are defined by W

N

(λ) = M

N

W (M

N

λ) and W

M

(λ) = L

M

W (L

M

λ) where M

N

and L

M

satisfy

N →∞

lim M

N

= ∞, lim

N →∞

M

N

N = 0,

M →∞

lim L

M

= ∞, lim

M →∞

L

M

M = 0.

(6)

We consider the following estimator:

f

N,M

1

, λ

2

) =

π

R

−π π

R

−π

W

N

1

− u

1

)W

M

2

− u

2

) b I

N,M

(u

1

, u

2

) du

1

du

2

. As in [6], for giving the best rate of convergence of this estimator we intro- duce on φ two hypotheses (h

1

) and (h

2

) called regularity hypotheses:

(h

1

) φ(λ

1

− u

1

, λ

2

− u

2

) = φ(λ

1

, λ

2

) + R

1

1

, λ

2

, u

1

, u

2

)

with |R

1

1

, λ

2

, u

1

, u

2

)| ≤ C

1

k(u

1

, u

2

)k

γ

, where 0 < γ ≤ 1, (h

2

) φ(λ

1

− u

1

, λ

2

− u

2

) = φ(λ

1

, λ

2

) + ∂φ

∂x (λ

1

, λ

2

)u

1

+ ∂φ

∂y (λ

1

, λ

2

)u

2

+ R

2

1

, λ

2

, u

1

, u

2

)

with |R

2

1

, λ

2

, u

1

, u

2

)| ≤ C

2

k(u

1

, u

2

)k

γ

, where 1 ≤ γ < 2, C

1

and C

2

being nonnegative constants.

Theorem 3.1. Let λ

1

, λ

2

∈ A. Then:

(i) f

N,M

1

, λ

2

) is an asymptotically unbiased estimator of the quantity [φ(λ

1

, λ

2

)]

p/α

.

(ii) Choosing k so large that γ + 1 < 2kα, we have E[f

N,M

1

, λ

2

)] − [φ(λ

1

, λ

2

)]

p/α

=

 

 

 O

 1

M

Nγ

+ 1 (L

M

)

γ



if φ satisfies (h

1

), O

 1 M

N

+ 1 L

M



if φ satisfies (h

2

).

P r o o f. Using (2.2), we have E[f

N,M

1

, λ

2

)] =

MN1+π)

R

MN1−π)

LM2+π)

R

LM2−π)

W (u)W (v)

× [ψ

N,M

1

− u/M

N

, λ

2

− v/L

M

)]

p/α

du dv.

Since W is vanishing for |λ| > 1 and p/α < 1, for N and M large enough we obtain

|E[f

N,M

1

, λ

2

)] − [φ(λ

1

, λ

2

)]

p/α

|

1

R

−1 1

R

−1

W (u)W (v)

× |ψ

N,M

1

− u/M

N

, λ

2

− v/L

M

) − φ(λ

1

, λ

2

)|

p/α

du dv.

(7)

Using the facts that H

N

and H

M

are 2π-periodic, |H

N

|

α

and |H

M

|

α

are two kernels, and φ is uniformly continuous on [−π, π]

2

, we find that

(3.1) lim

N →∞

M →∞

I

N,M

1

− u/M

N

, λ

2

− v/L

M

) − φ(λ

1

, λ

2

) = 0.

On the other hand,

J

N,M

1

− u/M

N

, λ

2

− v/L

M

)

q

X

j=1

a

0j

B

α,N0

B

α,M0

× 1

sin 

1

2

1

− u/M

N

− w

1j

) 

2kα

sin 

1

2

2

− v/L

M

− w

2j

) 

2kα

. Since λ

1

6= w

1j

and λ

2

6= w

2j

for j ∈ {1, . . . , q}, using Lemma 2.1 we obtain (3.2) J

N,M

1

− u/M

N

, λ

2

− v/L

M

) = O

 1

n

2kα−1

m

2kα−1

 .

Considering all possible cases, and partitioning the integrals, we show easily (see [13]) that

(3.3) K

N,M

1

− u/M

N

, λ

2

− v/L

M

)

= O

 1

m

2kα−1

+ 1

n

2kα−1

+ 1

n

2kα−1

m

2kα−1

 . Using the inequality

|x

r

− y

r

| ≤ r

2 (x

r−1

+ y

r−1

)|x − y|, x, y ∈ R

+∗

, r ∈ [0, 1] ∪ [2, ∞[, and the equalities (3.2), (3.3) we can show that

N,M

1

− u/M

N

, λ

2

− v/L

M

)]

p/α−1

+ [φ(λ

1

, λ

2

)]

p/α−1

is bounded by a constant, for N and M large enough. We get

|E[f

N,M

1

, λ

2

)] − [φ(λ

1

, λ

2

)]

p/α

| ≤ const

1

R

−1 1

R

−1

W (u)W (v)

×|ψ

N,M

1

− u/M

N

, λ

2

− v/L

M

) − φ(λ

1

, λ

2

)| du dv.

1) If φ satisfies the hypothesis (h

1

) then we have

N,M

1

− u/M

N

, λ

2

− v/L

M

) − φ(λ

1

, λ

2

)|

≤ C

1

λ1−u/MN

R

λ1−u/MN−π

λ2−v/LM

R

λ2−v/LM−π

|H

N

(t)H

M

(t

0

)|

α

× (|u/M

N

+ t| + |v/L

M

+ t

0

|)

γ

dt dt

0

+ J

N,M

1

− u/M

N

, λ

2

− v/L

M

) + K

N,M

1

− u/M

N

, λ

2

− v/L

M

).

(8)

Using twice the inequality

(3.4) |x + y|

r

≤  |x|

r

+ |y|

r

if 0 < r ≤ 1, 2

r

(|x|

r

+ |y|

r

) if r ≥ 1, we show that

1

const |E[f

N,M

1

2

)][φ(λ

1

, λ

2

)]

p/α

|

≤ C

1

M

Nγ

1

R

−1

W (u)|u|

γ

du

+ C

1 1

R

−1

W (u)

λ1−u/MN

R

λ1−u/MN−π

|H

N

(t)|

α

|t|

γ

dt du

+ C

1

L

γM

1

R

−1

W (v)|v|

γ

dv

+ C

1 1

R

−1

W (v)

λ2−v/LM

R

λ2−v/LM−π

|H

M

(t

0

)|

α

|t

0

|

γ

dt

0

dv

+

1

R

−1 1

R

−1

W (u)W (v)

× [J

N,M

1

− u/M

N

, λ

2

− v/L

M

) + K

N,M

1

− u/M

N

, λ

2

− v/L

M

)] du dv.

On the other hand, since H

N

is an even function, we have

λ1−u/MN

R

λ1−u/MN−π

|H

N

(t)|

α

|t|

γ

dt

π

R

−π

|H

N

(t)|

α

|t|

γ

dt + (2π)

γ

1|+|u/MN|+π

R

π

|H

N

(t)|

α

|t|

γ

dt.

Using Lemma 2.1, for N large enough we have (3.5)

1|+|u/MN|+π

R

π

|H

N

(t)|

α

|t|

γ

dt = O(T

N

1

)), where

T

N

1

) =

 

  1

n

2kα−1

if λ

1

6= 0, 1

M

N

n

2kα−1

if λ

1

= 0.

(9)

We gather the results (3.2), (3.3) and (3.5) to obtain

|E[f

N,M

1

, λ

2

)] − [φ(λ

1

2

)]

p/α

|

= O



T

N

1

) + T

M

2

) + 1

M

Nγ

+ 1 L

γM

+ 1

n

γ

+ 1 m

γ

+ 1

n

2kα−1

+ 1

m

2kα−1

+ 1

n

2kα−1

m

2kα−1

 . Since 0 < γ ≤ 1 and γ + 1 < 2kα, it is clear that

|E[f

N,M

1

, λ

2

)] − [φ(λ

1

, λ

2

)]

p/α

| = O

 1

M

Nγ

+ 1 L

γM

 .

2) If φ satisfies the hypothesis (h

2

), using the facts that H

N

, H

M

are 2π-periodic kernels, and (3.5), (3.4) we get

1

const |E[f

N,M

1

, λ

2

)] − [φ(λ

1

, λ

2

)]

p/α

|

∂φ

∂x (λ

1

, λ

2

)

1

R

−1

|u/M

N

|W (u) du

+

∂φ

∂y (λ

1

, λ

2

)

T

M

2

)

+

∂φ

∂x (λ

1

, λ

2

)

T

N

1

) +

∂φ

∂y (λ

1

, λ

2

)

1

R

−1

|v/L

M

|W (v) dv

+ 2

γ

C

2

M

Nγ

1

R

−1

|u|

γ

W (u) du + 2

γ

C

2

L

γM

1

R

−1

|v|

γ

W (v) dv

+ 2

γ

C

2

λ1−u/MN

R

λ1−u/MN−π

|H

N

(t)|

α

|t|

γ

dt

+ 2

γ

C

2

λ2−v/LM

R

λ2−v/LM−π

|H

M

(t

0

)|

α

|t

0

|

γ

dt

0

+

1

R

−1 1

R

−1

W (u)W (v)

× [J

N,M

1

− u/M

N

, λ

2

− v/L

M

)

+ K

N,M

1

− u/M

N

, λ

2

− v/L

M

)] du dv.

(10)

We use again the results (3.2), (3.3) and (3.5) to obtain

|E[f

N,M

1

, λ

2

)] − [φ(λ

1

, λ

2

)]

p/α

|

= O

 1 M

N

+ 1 L

M

+ 1 L

γM

+ 1

M

Nγ

+ T

N

1

) + T

M

2

) + 1

n

γ

+ 1

m

γ

+ 1

n

2kα−1

+ 1

m

2kα−1

+ 1

n

2kα−1

m

2kα−1

 . Since 1 < γ ≤ 2, we have 1/k < (γ + 1)/(2k) < α. Thus, we obtain

|E[f

N,M

1

, λ

2

)] − [φ(λ

1

, λ

2

)]

p/α

| = O

 1 M

N

+ 1 L

M

 . Now we show the following lemma which will be used in the sequel.

Lemma 3.2. Let (λ

1,1

, λ

2,1

) and (λ

1,2

, λ

2,2

) belong to A. Write Q

N,M

1,1

, λ

1,2

, λ

2,1

, λ

2,2

)

=

π

R

−π π

R

−π

|H

N

1,1

− v

1

)H

M

2,1

− v

2

)

× H

N

1,2

− v

1

)H

M

2,2

− v

2

)|

α/2

dµ(v

1

, v

2

).

Then

Q

N,M

1,1

, λ

1,2

, λ

2,1

, λ

2,2

)

≤ O

 1

n

2kα−1

+ 1

m

2kα−1

+ 1

n

2kα−1

m

2kα−1



+  sup(φ) π

2

 π 2



4kα

1 (nm)

2kα−1



<(δ, λ

1,2

, λ

1,1

)<(δ

0

, λ

2,2

, λ

2,1

), where the function < is defined by

<(x, y, z) = π

sin

x2



2kα

+ 2x

inf 

sin

|y−z|+x2



, sin

|y−z|4



 , with two real numbers δ, δ

0

satisfying

0 < δ < inf[π − λ

1,2

; π + λ

1,1

; |λ

2,1

− λ

1,1

|/2], 0 < δ

0

< inf[π − λ

2,2

; π + λ

2,1

; |λ

2,2

− λ

2,1

|/2].

P r o o f. First using the expression of dµ in (1.1) and the inequality x

α/2

y

α/2

12

(x

α

+ y

α

), we obtain

Q

N,M

1

, λ

2

, x

1

, x

2

) ≤ B +

12

J

N,M

1,1

, λ

2,1

)

12

J

N,M

1,2

, λ

2,2

)

+

12

K

N,M

1,1

, λ

2,1

) +

12

K

N,M

1,2

, λ

2,2

),

(11)

where

B =

π

R

−π π

R

−π

|H

N

1,1

− v

1

)H

M

2,1

− v

2

)

× H

N

1,2

− v

1

)H

M

2,2

− v

2

)|

α/2

φ(v

1

, v

2

) dv

1

dv

2

. Since φ is bounded on [−π, π]

2

, we have

B ≤ sup(φ)

 R

π

−π

|H

N

1,1

− v

1

)H

N

1,2

− v

1

)|

α/2

dv

1



×  R

π

−π

|H

M

2,2

− v

2

)H

M

2,1

− v

2

)|

α/2

dv

2

 .

We split the first integral into five integrals: over a neighbourhood of λ

1,1

, a neighbourhood of λ

1,2

and the remainders:

π

R

−π

|H

N

1,1

− v

1

)H

N

1,2

− v

1

)|

α/2

dv

1

= 1

B

α,N0



λ1,1−δ

R

−π

+

λ1,1

R

λ1,1−δ

+

λ1,2−δ

R

λ1,1

+

λ1,2

R

λ1,2−δ

+

π

R

λ1,2



sin 

n

2

1,1

− w) 

sin

λ1,12−w

· sin 

n

2

1,2

− w)  sin

λ1,22−w

dw.

The first, third and last integrals are respectively bounded by 1

B

α,N0

· λ

1,1

− δ + π

sin

δ2



2kα

, 1

B

α,N0

· λ

1,2

− λ

1,1

− 2δ sin

δ2



2kα

and

1

B

α,N0

· π − λ

1,2

− δ sin

δ2



2kα

. Using the inequality sin(nx) ≤ n sin x, we obtain

1 B

α,N0

λ1,1

R

λ1,1−δ

sin 

n

2

1,1

− w)  sin

λ1,12−w

sin 

n

2

1,2

− w)  sin

λ1,22−w

dw

≤ 1

B

α,N0

· 2δn

inf 

sin

1,2−λ21,1|+δ



, sin

1,2−λ4 1,1|



 .

Similarly, the remaining integral is bounded by the same quantity. Thus

(12)

using Lemma 2.1, we have

π

R

−π

|H

N

1,1

− v

1

)H

N

1,2

− v

1

)|

α/2

dv

1

= 1 2π

 π 2



2kα

1 n

2kα−1

×

 2π

sin

δ2



2kα

+ 4δn

inf 

sin

λ1,2−λ21,1



, sin

λ1,2−λ4 1,1





 . Just as before, we have

π

R

−π

|H

M

2,1

− v

2

)H

M

2,2

− v

2

)|

α/2

dv

2

≤ 1 π

 π 2



2kα

1

m

2kα−1

<(δ

0

, λ

2,2

, λ

2,1

).

Equalities (3.2) and (3.3) give the result of this lemma.

Theorem 3.3. Let (λ

1

, λ

2

) ∈ A be such that φ(λ

1

, λ

2

) 6= 0. Then:

(i) Var[f

N,M

1

, λ

2

)] converges to zero.

(ii) If φ satisfies (h

1

) or (h

2

), and M

N

= n

c

and L

M

= m

c0

, where c and c

0

are two real numbers satisfying

inf  2k

2

α

2

+ 1

2

k

2

, kα + 2 3(kα + 1)



< c, c

0

< 1 2 , then

Var[f

N,M

1

, λ

2

)] = O

 1

n

2(1−2c)

+ 1 m

2(1−2c0)

 .

P r o o f. When φ(λ

1

, λ

2

) = 0 we do not need to smooth b I

N,M

, since its variance tends to zero. We have

Var[f

N,M

1

, λ

2

)]

=

π

R

−π π

R

−π π

R

−π π

R

−π

W

N

1

− u

1

)W

M

2

− u

2

)W

N

1

− u

01

)W

M

2

− u

02

)

× Cov[b I

N,M

(u

1

, u

2

), b I

N,M

(u

01

, u

02

)] du

1

du

2

du

01

du

02

. Putting

x

1

= M

N

1

− u

1

), x

01

= M

N

1

− u

01

),

x

2

= L

M

2

− u

2

), x

02

= L

M

2

− u

02

).

and using the fact that W is vanishing for |λ| > 1, for N and M large enough

we have

(13)

Var[f

N,M

1

, λ

2

)]

=

1

R

−1 1

R

−1 1

R

−1 1

R

−1

W (x

1

)W (x

2

)W (x

01

)W (x

02

)

× Cov[b I

N,M

1

− x

1

/M

N

, λ

2

− x

2

/L

M

),

I b

N,M

1

− x

01

/M

N

, λ

2

− x

02

/L

M

)] dx

1

dx

2

dx

01

dx

02

. We define

L

1

= {(x

1

, x

01

) ∈ [−1, 1]

2

: |x

1

− x

01

| > σ

N

}, L

2

= {(x

2

, x

02

) ∈ [−1, 1]

2

: |x

2

− x

02

| > σ

0M

},

L

3

= {(x

1

, x

01

, x

2

, x

02

) ∈ [−1, 1]

4

: |x

1

− x

01

| ≤ σ

N

or |x

2

− x

02

| ≤ σ

M0

}, where σ

N

, σ

0M

are two nonnegative real sequences converging to 0. We split the last integral into the integral over L

3

and the integral over L

1

and L

2

:

Var[f

N,M

1

, λ

2

)] = R R R R

L3

+ R R

L1

R R

L2

=: J

1

+ J

2

.

Using (2.3) and the uniform (in x

1

, x

2

) convergence of ψ

N,M

1

− x

1

/M

N

, λ

2

− x

2

/L

M

) to φ(λ

1

, λ

2

), we obtain

J

1

≤ const h R R

|x2−x02|≤σ0M

W (x

2

)W (x

02

) dx

2

dx

02

+ R R

|x1−x01|≤σN

W (x

1

)W (x

01

) dx

1

dx

01

i .

Thus, J

1

≤ const[sup(W )]

2

N

+ σ

M0

]. Hence J

1

tends to zero.

It remains to show that J

2

tends to zero. First we define for simplicity λ

1,1

= λ

1

− x

1

/M

N

, λ

1,2

= λ

1

− x

01

/M

N

,

λ

2,1

= λ

2

− x

2

/L

M

, λ

2,2

= λ

2

− x

02

/L

M

, and

C(λ

1

, λ

2

)

= Cov[ b I

N,M

1

− x

1

/M

N

, λ

2

− x

2

/L

M

), b I

N,M

1

− x

01

/M

N

, λ

2

− x

02

/L

M

)].

We use the equality

|x|

p

= D

−1p

R

−∞

1 − cos(xu)

|u|

1+p

du = D

p−1

Re

R

−∞

1 − e

ixu

|u|

1+p

du, for all real x and p ∈ ]0, 2[. We have

(3.6) I b

N,M

1

, λ

2

) = 1 F

p,α

C

αp/α

Re

R

−∞

1 − e

iudN,M12)

|u|

1+p

du.

(14)

From (2.1) we obtain

(3.7) E b I

N,M

1

, λ

2

) = 1 F

p,α

C

αp/α

R

−∞

1 − exp{−C

α

|u|

α

ψ

N,M

1

, λ

2

)}

|u|

1+p

du.

By using (3.6) and (3.7) we show easily that

C(λ

1

, λ

2

) = F

p,α−2

C

α−2p/α

R

−∞

R

−∞

 E

h Y

2

k=1

cos(u

k

d

N,M

1,k

, λ

2,k

)) i

− exp n

−C

α 2

X

k=1

|u

k

|

α

ψ

N,M

1,k

, λ

2,k

)

o du

1

du

2

|u

1

u

2

|

1+p

. From the equality 2 cos x cos y = cos(x + y) + cos(x − y), we have

E h Y

2

k=1

u

k

d

N,M

1,k

, λ

2,k

) i

= 1 2 exp h

−C

α

R

2

X

k=1

u

k

H

N

1,k

− v

1

)H

M

2,k

− v

2

)

α

dµ(v

1

, v

2

) i

+ 1 2 exp h

−C

α

R

2

X

k=1

(−1)

k−1

u

k

H

N

1,k

− v

1

)

×H

M

2,k

− v

2

)

α

dµ(v

1

, v

2

) i . Substituting this expression in C(λ

1

, λ

2

) and changing the variable u

2

to

−u

2

in the second term, we obtain C(λ

1

, λ

2

) = F

p,α−2

C

α−2p/α

R

−∞

R

−∞

(e

−K

− e

−K0

) du

1

du

2

|u

1

u

2

|

1+p

, where

K = C

α π

R

−π π

R

−π

2

X

k=1

u

k

H

N

1,k

− v

1

)H

M

2,k

− v

2

)

α

dµ(v

1

, v

2

),

K

0

= C

α 2

X

k=1

|u

k

|

α

π

R

−π π

R

−π

|H

N

1,k

− v

1

)H

M

2,k

− v

2

)|

α

dµ(v

1

, v

2

)

= C

α 2

X

k=1

|u

k

|

α

ψ

N,M

1,k

, λ

2,k

).

(15)

Since K, K

0

> 0, we have

|e

−K

− e

−K0

| ≤ |K − K

0

|e

|K−K0|−K0

. Using the inequality

kx + y|

α

− |x|

α

− |y|

α

| ≤ 2|xy|

α/2

, x, y ∈ R and 1 ≤ α ≤ 2, we obtain

|K − K

0

| ≤ 2C

α

|u

1

u

2

|

α/2

Q

N,M

1,1

, λ

1,2

, λ

2,1

, λ

2,2

).

Therefore, C(λ

1

, λ

2

)

≤ F

p,α−2

C

α−2p/α

2C

α

Q

N,M

1,1

, λ

1,2

, λ

2,1

, λ

2,2

)

R

−∞

R

−∞

e

|K−K0|−K0

|u

1

u

2

|

1+p−α/2

du

1

du

2

. Now we have

(3.8) |K − K

0

| − K

0

≤ −C

α

2

X

k=1

|u

k

|

α

N,M

1,k

, λ

2,k

) − Q

N,M

1,1

, λ

1,2

, λ

2,1

, λ

2,2

)].

Let δ(N ), δ

0

(M ) be two real numbers depending respectively on N and M such that

0 < δ(N ) < inf[|λ

1,1

− λ

1,2

|/2; π − λ

1,2

; π + λ

1,1

], 0 < δ

0

(M ) < inf[|λ

2,1

− λ

2,2

|/2; π − λ

2,2

; π + λ

2,1

].

Moreover, we suppose that

(3.9) lim

N →∞

δ(N )M

N

σ

N

= 0, lim

M →∞

δ

0

(M )L

M

σ

M0

= 0.

Using Lemma 3.2 and the inequality

(3.10) sin(x/2) ≥ x/π, 0 ≤ x ≤ π, we obtain

π

R

−π

|H

N

1,1

− v)H

N

1,2

− v)|

α/2

dv

≤ 1 π

 π 2



2kα



π

2kα+1

n

2kα−1

δ(N )

2kα

+ 2δ(N )(2π)

n

kα−1

N

/M

N

)



.

We choose δ(N ) = n

−β

, δ

0

(M ) = m

−β0

with β > 0 and β

0

> 0. In order to

have

Cytaty

Powiązane dokumenty

If CH holds, then there is a compact 0-dimensional, hereditarily separable and hereditarily Lindel¨ of space X and a Radon proba- bility measure µ on X such that the measure algebra

A complete probability measure µ on a space X is said to be Radon if it is defined on the Borel subsets of X and has the property that the measure of each Borel set is the supremum

Tail behavior of stationary solutions of random difference equations: the case of regular matrices.. Stable limits for sums of dependent infinite variance

Haberman (1989) and Niemiro (1992) examined asymptotic behavior of LER estimators, assuming that the underlying loss function is convex.. (Here and throughout we slightly abuse

Since all the known nonlinear mappings preserving normality (or the Cauchy distribution) have discontinuities it is natural to conjecture that under continuity assumption the

The following three lemmata describe properties of sum labellings for strong hypercycles with n ≥ 2d + 1 vertices; they are needed to prove the main result of this section..

(For the case q = 1, this proof was also given in [11].) In fact, it shows that certain cases of Theorem (3.1) are equivalent to Doob’s results.. We end the section by deriving the

A theorem similar to Theorem A holds in the holomorphic case provided there is at most one critical point in the Julia set (see the forthcoming paper by the second author and S.. If C