• Nie Znaleziono Wyników

Stages of evolution of the glacial landsystem in Central Poland after Warta Glaciation (Late Saalian).

N/A
N/A
Protected

Academic year: 2021

Share "Stages of evolution of the glacial landsystem in Central Poland after Warta Glaciation (Late Saalian)."

Copied!
1
0
0

Pełen tekst

(1)

3

VIST

ULIA

N-W

EICH

SEL

LGM

WARTANIA

N

ODR

ANIA

N

Zbigniew Rdzany

Department of Physical Geography, Faculty of Geographical Science of Łódź University; zbigniew.rdzany@uni.lodz.pl

Stages of evolution of the glacial landsystem

in Central Poland after Warta Glaciation (Late Saalian)

Fig. 2. Environmental evidence of evolution of the Warthanian landscape in Central Poland. Transition from glacial landscape to poligenetic landscape of Holocene

1 - kames, esker and other glacifluvial forms, 2 - marginal ridges and hills with glaciotectonic deformations, 3 - paraglacial slides, debris flow and other movemenst of sediments by gravity, 4 - deformations of inverse density gradient in paraglacial environment, 5 - glaciolimnic sediments, 6 - limnic sediments, 7 - deformations of inverse density gradient in periglacial environment (involutions), 8 - syngenetic ice-wedge pseudomorphs, 9 - sand wedges,10 - gravelly-stonny pavements, 11 - tendency to erosion in river valleys, 12 - tendency to aggradation in river valleys, 13 - gullies

Fig. 3. Borowa Góra. Kame hill and sandur plain

20 40 60 120 80 100 140 160 ka BP I MIS 6 5a 3 1 2 4 5b 5c 5d 5e HOLO- CEN V STUL AN (WE CHSEL AN) EARL Y M DDLE LA TE JULY TEMP. 0 5 10 15 20 SAALIAN /W AR TAN AN EEMIAN II III IV PERIGLACIAL

GLACIAL PARAGLACIAL TEMPERATE

E N V I R O N M E N T A L E V I D E N C E STRATI GRAPHY V VI VII VIII IX TEMPERATE ENERGY CONDITIONS min max 1 2 3 4 5 G L A C IA L F O R M S 6 7 8 9 P E R IG L A C IA L S T R U C T U R E S 10 11 12 13 14 15

The last glaciation of Central Poland took place in Late Saalian (Warta Stage, Illinoian Stage, MIS 6). The glacial relief which was shaped at that time, was reshaped in the next stages of Pleistocene (from MIS 5e to MIS 1) in changing climate conditions – from temperate to arctic. The significance of individual factors and morphogenetic environments has been a subject of debate since the early 1950s, when the concept of periglacial morphogenesis, represented mainly by Jan Dylik, was formed. According to his views, the glacial relief of Central Poland was substantially transformed by periglacial processes in the last cold stage of Pleistocene (from MIS 4 to MIS 2) and in major part became denudational relief.

However, it has been found out that there are instances of glacial landsystems (spaces of areal deglaciation in particular) whose initial relief remained almost unchanged. Presently, researchers distinguish between several types of relief with different stages of morphogenetic transformation – from well-preserved glacial landscapes (particularly kame fields and areas of poorly diversified morainic plateau) to largely transformed, denudational-erosive areas (such as Łódź Heights). Despite the spatial diversification of morphogenetic environments in Central Poland, one may enumerate the following stages of relief transformation after Warta Glaciation (MIS 6):

Termination of Warta Glaciation/Start of Eemian (MIS6/5e): local significance of paraglacial processes (slope and fluvial

processes in extraglacial areas); minor local significance of periglacial processes (sporadic permafrost, few syngenetic wedges in outwash sediments)

Eemian: fluvial erosion, organic accumulation in closed depressions

Vistulian (Weichselian; MIS4-2): intensified aeolian processes in Late Plenivistulian and Late Vistulian; local significance of slope

processes (slope wash, solifluction)

Holocene (MIS 1): geomorphologic effects of anthropopression: slope wash (Fig. 3), locally reactivated aeolian processes, riverbed

evolution

4

5

6

7

8

9

10

11

Fig. 11. Łaszczyn, Rawa Upland Plain. Deformation in the structure of the esker

Fig. 5. Łochów. Glaciolacustrine sands in kame hillock hillock

Fig. 12. Parowy Janinowskie near Łódź as an example of Neoholocene form of gully erosion

Fig. 4. Siedlątków, Łask Upland Plain. Glacitectonic deformations from the late phase of the Warta Glaciation

Fig. 6. Rylsk, Turek Upland Plain. Gravels ans sands in esker

Fig. 9. Siedlądków, Łask Upland Plain.

Paraglacial slope and lacustrine sediments and structures

Fig. 10. Łaszczyn, Rawa Upland Plain. Kettle hole (closed depression) in paraglacial sediments near esker

Fig. 8. Rzymsko, Rawa Upland Plain. Sand wedge (Late Vistulian)

Fig. 1. Location of the sites (numbers of photos) on the background of the relief and the glacial limits in Poland

References

Dylik J., 1952, The concept of the periglacial cycle in Middle Poland. Bull. Soc. Sci. Lettr. Łódź, 3, 5.

Klajnert Z., 1978. Zanik lodowca warciańskiego na Wysoczyźnie Skierniewickiej i jej północnym przedpolu (Disappearance of the Wartanian ice sheet from the Skierniewicki area and its northern foreland). Acta Geogr. Lodz., 38, p. 1-149.

Rdzany Z., 1997, Kształtowanie rzeźby terenu między górną Rawką a Pilicą w czasie zaniku lądolodu warciańskiego. Acta Geographica Lodziensia, 73, pp. 146.

Rdzany Z., 2009. Rekonstrukcja przebiegu zlodowacenia warty w regionie łódzkim [Reconstruction of the course of the Warta Glaciation in the Łódź Region]. Wydawnictwo Uniwersytetu Łódzkiego, Łódź, pp. 310.

Roman M., Dzieduszyńska D., Petera-Zganiacz J., 2014, Łódź region and its northern vicinity under Vistulian Glaciation conditions. Questiones Geographicae, 33 (3), pp. 155-163. Turkowska K., 2006, Geomorfologia regionu łódzkiego. Wydawnictwo Uniwersytetu Łódzkiego, Łódź, pp. 238.

20 40 60 120 80 100 140 160 ka BP I MIS 6 5a 3 1 2 4 5b 5c 5d 5e HOLO- CEN V STUL AN (WE CHSEL AN) EARL Y M DDLE LA TE JULY TEMP. 0 5 10 15 20 SAALIAN /W AR TAN AN EEMIAN II III IV PERIGLACIAL

GLACIAL PARAGLACIAL TEMPERATE

E N V I R O N M E N T A L E V I D E N C E STRATI GRAPHY V VI VII VIII IX TEMPERATE ENERGY CONDITIONS min max 1 2 3 4 5 PARAGLACIAL FORMS AND STRUCTURES G L A C IA L F O R M S 6 7 8 9 P E R IG L A C IA L S T R U C T U R E S 10 11 12 13 14 15 G L A C I A L F E AT U R E S P E R I G L A C I A L F E AT U R E S

Fig. 7. Tymianka, Łódź Heights. Syngenetic pseudomorphs (Late Warta)

PA R A G L A C I A L F E AT U R E S

Fig.9a. Siedlądków, Łask Upland Plain. Debris flow sediment on the side part of the erosional channel

T E M P E R AT E F E AT U R E S

12

GEOMORFOLÓGIA A ENVIRONMENTÁLNE VÝZVY

8. vedecká konferencia Asociácie slovenských geomorfológov pri SAV

6-8.10.2014, Snina

Cytaty

Powiązane dokumenty

The re la tion ship be tween the chem i cal com - po si tion and li thol ogy of Late Gla cial and Ho lo cene biogenic de pos its of the ¯abieniec mire (Cen tral Po land).. Geo

– a quan ti ta tive pre dic tion of heave cor re spond ing to these cat e go ries, com puted for given site and de sign con di tions (Ta ble 2). In pro fes sional lit er

The anal y sis of the afore men tioned re sults with re spect to soil in dex prop er ties (Ta ble 2) leads to the con clu sion that while eval u a tion of the soils con tain

The study ar eas are ag ri cul tural re gions. The con tents of heavy met als de ter mined by the anal y ses do not ex ceed the re - gion’s av er age val ues pre sented in the geo

'The onset of lacustrine conditiOlD8 js marked , by grey silt layer (8 cm. thick) wdth spots of brown sandy silts (Fig. The number of these spots decreases upwards,

Glacial Lake Peipsi during the Piirissaar stade The simulation reflects the higher magnitude gradient of shoreline tilting (Raukas and Rähni, 1969; Fig.. Glacial Lake Peipsi during

It is possible that the age of these last four samples is too high due to differences of petrographic composition resulted from an occurrence of strange source

Konieczne są dalsze badania nad technologią CAR-T, ponieważ może ona okazać się kluczem do opracowania efektywnej metody leczenia nowotworów