• Nie Znaleziono Wyników

PIXE analysis of Kupferschiefer samples

N/A
N/A
Protected

Academic year: 2022

Share "PIXE analysis of Kupferschiefer samples"

Copied!
13
0
0

Pełen tekst

(1)

Geological Quarterly, Vol. 38, No.4, 1994, p. 687-700

Henryk KUCHA, Wojciech PRZYBYt.QWIcz. J6zefKAJFOSZ. Stnnislaw SZYMCZYK

PIXE analysis of Kupferschiefer sampJes*

PIXE multielement analyses of Kupfcrschiefer srunpJcs have been perl"olTTlCd. Thick tru"geI PIXE (ITPIXE) detcetioll limits (MDu) for different matrices are rcpotled. 1lM: best MDls were fOLind in ligh/matrices, i.c. in organic carbon (kerogen-thucholite) and black shalc. The poorest results were obtained in sulphides. The adventagc of using PIXE versus other methods relics on: (1) f:lSt ::md non destructive dctcnnination of all clements st:uting from Z = 18 in the studied ease; (2) relatively low detection limits, in the onIcr of ppm.

INTRODUCTION

A growing need for precious melals has directed the attention of economic geology and geochemistry students towards black shales in general, and the Kupferschiefer in panicular.

Their enrichment in precious metals is well known, but it is not completely and precisely documenled.

The average concentration of pay metals in black copper-bearing shale in Poland is

(ppm): Hg 1-20, Ag 50-1000, Au 0.01-0. 1 and PI 0.01-0.2. However, locally, in places

where black shale rests directly on the red sandstone the enrichment in noble metals due to

autooxidation and desulphurization of organic matter is observed (H. Kucha. 198 1, 1982,

1983). In such places the precious metal content may reach (W. Salamon, 1979): Hg

200-1 500 ppm, Ag 2- 11 00 ppm, sometimes up to 5780 ppm, Au 5-200ppm, exceptionally

3000ppm,Bi 100-2000 ppm, Pt t o-370ppm, Pd 1 0- 1 20 ppm,somelimes upto 1 000 ppm ,

0.006-1.75 wI. % of Co, 0.060-0.400 WI. %ofNi and 0.026-0.480 wI. % of Mo. The above

listed metals form either own minerals or are present as refractory admixtures in common

minerals

(H.

Kucha, 1975. 1981. 1982. 1983). Routine microprobe analyses provide good

resultsconceming thechemical composition of minerals and mai n trace elements. However,

the detection limits of this method for sulphides are not beller than a few hundred ppm,

wh ich is much higher than tbeconcentration ranges of refractory precious metal admixtures

(2)

68.

H. Kuch:l,

w .

Pnybylowicx. 1. Kajfon. S. SZ)'lTICzyk

in the studied s ulphides and arsenides. Therefore, a successful s tudy of refractory noble metals requi res analytical techniques with a better detection limit than that of elec

tron

mi croprobe. There are several new analytical methods good detection limits in th e order of single ppm: the proton microprobe (micro-PIXE), the synchrotron miniprobe (SXRF). the ion microprobe(SIMS) and accelerator m ass spectrometry (AMS). 11 has been demonstra ted tha t a combination of two methods. the electron microprobe and micro-PIXE, provides very good results concerning Conlents of main and trace elements in

sulphide

minerals (H, Blank, K. Traxel, 1984; L. J. Cabri et al., 1 984a, b; 1. L. Campbell et al., 1981; G. Remand el 01 .•

1 987; L. J. Cabri, 1988). The use of micro-PIXE instead of microprobe im proves the MDL of EPMA by a factor of about 3 in the case of Ga, Ge, Hg and by factor of about IOta 30 for Se, Ag, Cd and In (G. Re ma nd et al., 1987). It seems that us ing synchrotron X· ray fluorescence (SXR.F) it is possible to lower the MDLdown to 0.8-3 ppm in the case of gold (J. R. Chen et

al.,

1987). This method, however, does nOI eli minate some important inconveniences common to all methods based on X-ray fluorescence detection by semicon·

duclor detectors. suc h as peak overlaps of different elements. This is not the case when the

ion

microprobe SIMS is used. The use of io n implantation

10

produce standards closely matching the composition of analysed samples allows us to achieve detection limits no t available with other methods,

e.g.

it allows us to analyse the concentration of gold in sulphides

s

tarting from 0.5 ppm of Au (S. L Chryssou lis et al., 1 987). Even more promisi ng results have been obtained with accelerator mass

spectroscopy

(AMS). This method e liminates molecular interf erences that

strongly affect SrM

S analyses, but the method is sti ll at the experimental stage (I

. C. Ruck

lidge et ai.,

1982;

J. C. Rucldidge, L. R. Kilius,

1 986).

Based on our experience of a nalysis of multi element geo

logical samples by

PIXE (W.

Przybylowicz et ai., 1986) we decided to analyse the Kupferschiefer sam ples on the PIXE

assembly in Cracow without hav

ing access to the proton microbeam. Hence we regard the obtained results as

complementary

to those obtained with the use of

lep

and atomic absorption and also with EPMA. Another aim of the study was to establish the detection

limits it is possible to

obtain for the samples and to lest the experimental conditio ns (like the thickness of the absorbing A I fi lters needed to minimize pile-up of the matrix K X-ray signals) that should be applied in future analyses with the proton microprobe.

EXPERIMENTAL

The PIXE analyses were carried out in the Laboratory of App

lied Nuclear Spectroscopy,

Institute of Nuclear Physics in Cracow. Polished sections of

samples previously measured

with EPMA were used. For n more detailed description of the target chamber

see

S.

Szymczyk

el

al. (198 1 ). Small cyclotron C-48 was used as thesourceof protons. The proton

energy was ca. 2.6 M eV and the beam intensity was up to 5 J.lA.. The beam diameter on the

target was about 3 mm . The X-rays emitted by the target were detected by an ORTEC Si

(Li) semiconductor detector, 5.4 mm thi ck, of30 mm

2

effecti ve area and with a resolution

of ca. 200 eV (8t5.9 ke Y MnKa-l. The targe t-detectordistance was aprox. 25 mm. CAMAC

e

lectronics and a CIA~

70 mul tichannel analyz.er (witb an IBM personal computer faron-line

processin g of the resu

lts)

were used. The beam intensity was monitored by counting the

(3)

PIXE

analysis or

Kupferschierer samples

689

protons scattered from the alum

inium foil placed across the beam

path. with a ring-shaped sil icon s urface--barrier detector. The meas urements were normalized to an equal number of scattered protons. Final processing of the spectra in V Ol ving the leas t-squares fitting of individua

l peak areas to Gaussian

fu nctions was carried out on an IBM-XT/AT personal computer. To determine the peak areas in the spectrum and to calculate the concentrati on of the elements a package of s pecially developed programs was used O . Kajfosz, 1987).

The background of PIXE spectra was estimated by nonpol ynomial approximation (J.

Kajfosz, W. M. Kwi atek, 1987).

To prevent backscattered protons from entering the detector and to minimize pile-up from low e nergy X-rays, alum

inum absorbers

were placed between the target and th e detector. I

I

mg/cm 2 and sometimes 22 mg/cm2 thick aluminum foils (ca. 80 a nd

160 11m

respectively) were needed to attenuate matrix K X-my signals (mainly Fe and Cu in the higher energy region). With these absorbers the e lements with atomic numbers higher than 26 can be determined in one run. The detector was shielded with 2.75 mglcm

2

(ca. 10 J.l.m) thick AI-foil when searching for elements in the K to Fe range (1 9 <Z < 26).

The concentratio n of the elements was ca lculated usi ng two multi ele ment s tandards made by the Internatio nal Atom

ic Ene

rgy Agency SOIL-5 CR. Dybczynski

el at., 1978) and

SOIL-7

(L. Pszonicki

et ai.. 1984). To check the validity of quantitative results two other multielement standards were analyzed: limestone KH and greisen GnA. made by Zentralcs Geolog

isches lnstitut,

Be rlin, formerl y GDRlt has been shown before (e.g. R. D. W

illis

et at.,

1

977; S. A. E. Johansson, T. B. Johansson, 1976) that thick targets can be successfully used in quantitative trace element analysis. A high hom ogeneity of the target is req uired, otherwise the analyses of small parts of the target may be unrep resentative for the whol e sample. In quantitative analysi

s of

powdered targets the comparative method is comm only used. I! is based on simu ltan eous excitation of standard and sample.

It

shou

ld

be stressed that it is a

lways highly recommended to use standards of

chemical compositio n as elose as possible to the ana

lysed targets, e.g. synthetic having

Ihe same matrix (the composition of the main elements, ] . L. Campbell et at., 1987). In this study polished sections were used.

The proton beam was always positioned on larger, homogenous areas. Under these condi- tions geological samples can be successfully measured with powdered standards as shown by a study of geological samples ( P. J

. Clark

et 01., 1975).

RESULTS

Bl.ACK SHALaS

Te

n samples of noble metal-

and thucholite-bearings

hale were analyzed. In the a

nalyzed

shal es the proton bea m was focused on the areas free of microscopically visible thucholite

and opaque minerals. A typical PIXE spectrum is shown in Figure 1. The shales are

c haracteri zed by a hi gh U. Pb, Mo, As, Cu, Ni, Co, Fe, T

i and V content (Tab. 1,2), present

in the clay organic matrix. Up to 0.3 wI. % ofCu can be present in the clay-organic matrix

(H. Kueha, 1985), but higher values (Tab.

I) are referred to s

mall covellite specs. As, Co

a nd minor Ni are presumably dispersed as submicroscopic d i·arsenides and sulphoar-

sen ides. V and part of the Ni arc present as porphyrines (H. Kueha. 1985). No iron sulphides

(4)

690

"

o c c

~ o

c

,

o u

H. Kucha, W. Pnybylowia., J. KajfOR, S. Szymc"tyk

Au Lex.

, e"

Zn In

10;1% Ko Kb

U L~

2 1

,

EMISSION SP€C:lRA,

Ag KO(.

pr 12 J 1

AgKP

12

PdKj3

12

Kb z,:" .L--'~~~lJ.

II

"

BACKGRtlUND

100 200 300 400 SOO

Ene rgy! ke V I

Channel number

Fig. I. A typical PIXE spectrum of a nmtrb of noble metals bc:uing shllle; ,1M: matrix i~ free of Ihllcholite 3Ild sulphide gr.Iins; sample 60

Typowe PIXE $pekl1llm dla lupku %3wiernj~go nlClaleszlachclnc; matryca uwolniona oil thucholitu i siaralt6w;

pr6bb60

were observed and therefore Fe is assumed to be present in Inc clay-organic matrix in illite as well as Fe.organic compounds. The Ti content is unusually hi gh and can be only partly ex plained by detrita1 Ti0 2 polymorphs observed in the sample s.

It

suggests that part of the Ti may be present in Ihe structure of clay minerals.

Despi te high Pb va lues (Tab. I), no lead min erals were observed. The studied shales contain an increased concentrati on of Au and Pd (Tab. I). Detectable amounts of Pt were also found in places. Analyzed s hales also show significant amou nts o fZr. Y. Rb, Se and Br. By EPMA other rllf'e.earth ele me nts were also found.

PIXE analys is (Fig. I. Tab. I) s uggests that an increased concentration of Au and PGMs in the bottom

part

of black shale i s related to an increased U content. This relationship marked by r radiation has been proposed as a tracer for increased concentrations of noble metals in the Kupferschiefer (H. Kuchn, 1982).

PIXE allows us to analyse black shale starting from ppm level (Tab. 3,4) for most

elemen ts.

(5)

Deposits F,

2200·

Black shales 32900"

14900""

3940 Thucholitcs

"700 10400

Carbonate 5600

3450 Sulphide + carbonate 12.6[%]

35300 3300 Thucholicc + carbonate

4800 4200

Sulphide

27300

2660

Sandstone + sulphide

21800

9700

Phosphate 11.0[%J

Concentrations of minor and trace clements (ppm) in Kupferschiefer samples;

for different matrices Ihe minimum, maximum and mean volues are reported

Co Nl

a.

A,

"

Y Z. Nb Mo Pd

380 90

2000 50

6.3 36 90 <12

38

<20

2000 1400 51300 4900

30

340 240 <50

1080 70

1000

600 19400

1400 16

90

170

- 340 20

- <14 650

11

<5

27

- - - -

600

900

97000 580

47

540

190

- 170 160

- -

18300

300

22

140 40 - - -

- - 270 6 - 38 <6 -

15.4

-

730

120

2400

1

200 - 70 - -

33

-

9100

1

600

17500 12800

<20 320 dO

<130

3900 -

3600 630 10800

51

00 -

160

- - 1000 -

- 8 300 50 - 19 <14 <. 39 -

<400

430 54000 600 9.3 40 90 50 100 30

-

220 22900

"0 -

29

38 17 67 -

22700

8300 32000 63000

80

<50 - 300

66000

-

190 20 1'00

130 ....

- - <28 - - -

2440

250 2800

3300 - 40 83 60 94 90

880

90 2140 1300 - -

30

- 45 -

- -

1

6600 <55 2040 600 64 -

50 70

• - minimum value,

*. _

ntallimum value,.** - mean value, .... - estimated value due to the large cITorof measurement

Ta b I e. I

Ag

Ao Ph U

90 <40

80 ....

-

2500 700 6700 3000

560 140 1300

800

- -

<130

100

100 800

6400

38000

- - 1400

19600

- - 65 -

270 -

15000

-

14500

-

89200

-

4500 -

41200

-

- - -

81

<13

90 6200

26

- - 2900

1500 -

2600

-

550 -

11900

-

9140

- 26000 -

3800 - 17300 -

70 - 8400 -

(6)

."

H. Kucha. W. Przybylowicz, J, K:Jjfosz. S. Szymczyk

Table 2 Coo«;ntralions ormiDOJ' and trace elements (ppm) In Kupferschierer samples;

ror different matrices tbe minimum, maximum aDd mean "alues IItC reported

Deposits

M,

V TI B, Rb

S,

BI

z.,

,..,

2450

""" dO

33

'" -

60

Black shales 660"

5700 29300

7{)

250

80

- 540

49()*'" 4000

13800

24

iSO

'" - 240

1

90

1

20

< 120

- - - - -

Thucholi!es 6150 460

'900

J8

250

113

330

1

'00

3400 ISO

1

'00

\0 50 7{) 140

550 OUbonafC "'0 <

120

<220 '.3

1

0

73

- 290

" .. " . . ,. , 120 < 1 8 - - < 18

Sulphide +carbonatc

, " .. ..

n. a

" . .

.

.., ... .90 240 25 -

5/ 29 <320

-

1

20 30

1790

<90 ISO 9.3 -

50

-

20

Thucholite + carbon~te

'200 .20

1

'00 25 21

1

0<1 <SO

300

3700 160

"" I ' -

80

-

100

Sulphide

n. n.

" .

, ..

500

-

1

30 < 1000 230

- - - - '" - - 370

Sandstone +sulphidc 400 <280

1600

90 J8

" - 6300

- - - SO

3S

I' - 3500

Phosphate

, .. , . . ... - -

S40

- -

n. II. - nOI analyzed; explanations as in Tab. I

THUCHOLITE

Cd

- 23

7

-

2' -

-

-

220

80

- - - - -

250 80 -

Thucholile is polymerized and partly gr.aphitized organic matter rich in U. Th and other

metals. It is composed of two components:

I - an isotropic, highly reflectant component made up pamllel domains of nonnal graphite and of graphite with Van der Waal s thickness of the ring;

n - isotropic. low reflectantcomponent which is not crystalline as indica ted by electron

diffraction study (H . Kucha, 1982). -

EPMA study suggests that the isotropic. amorphous component has a higher concentra- tion of mctals than the anisotropic one. The size of the two thucholite components is about 100-300 11m, therefore PIXE with beam diameter of 3 mm could not resolve the two components and the reported concentrations of elements should be regarded as average values (Tab. 1, 2). The size of thuchol ite grains is 3-8 mm in diameter. Fifteen thucholite grai ns were studied.

Th ucholite is rich in U, Cu, Pb and Fe (Tab. I, 2). Microscope study indicates the presence of V02 and traces of Cu-Bi sulphides. No Fe, Pb o r Ti minerals were found.

According to EPMA study a significant a mount of U is also present in the matrix of the

(7)

Table 3 DedectioD limits ror minor and trace elemeuts (ppm) In KuprerschieJer samples; minimum and maximum values are rc!)Orted

Deposits F, Co Ni Co A> So Y Zr

Nb M,

Pd

A. A,

Ph U

Black shales

",

28

12 '

.5 4 4

, ,

II 14 20 14 20 60 90

3300"

1300

350 160

115

30 75 60 50

.. 45 65

70 420

200

Thucholites 45

-

1

4

10

10

5

7.5

15

-

8

12

II 30 30

50

1100 500

160

80 28

14

34 36

-

30 37 35

-

130

210

auborun,

54 - -

6 4

- 5 6 -

6

- - - 15 -

Sulphide +

"

47

21 14 60 - 50 - - 24 -

60

- 140 -

carbonate

270

460 160 85 270

20

240 30 130 150

- 300 - 880 -

Thu.cholite + 38

40

7

5

3

-

4.5

,

8 8

- - 13

II

35

carbonate 1

200

400 120 63

15 6

I' 26 23 50 28 12 30

110

1

40

Sulphide

'60 230 170 100

60 55 50 60 70 80

-

130

- - -

3900

1200

450 220 - 70 130 -

210 250

- ... -

1100

-

SandstollC+

45

36

18

12 45

-

38

15 - 18 -

J6

- 50 -

sulphide 50 90 30 18 66

-

44 30 37 48 70 90

-

200

-

Phosphate 115

- -

28 55 23

56

47

- .. 60

70

- 80 -

Eksplanations as in Tab. 1

(8)

69'

H. Kl,lcha, W. Pnybylowicz, J. Kajfosz, S. Szyrnczyk

Table 4 Dede<:tion limits for minor and trace elements (ppm) In Kupferschiefer samples;

minimum and maximum v.lues are reported

Deposits Me V 11 B<

R b

s< BI Zn

Black shales

SS'

130 190

, , -

10

120" 320 380 40 40 47

-

310

Thucholites 40 70 120

,

25

"

50 10

188 230 36(1 I' 40

I '

90 170

Cllrbonalc 50 120 220 3.5

, , -

5.7

Sulphide

+

ClIfbonnle e .• e .• e .• 20

I ' I ' - I '

e .• e .• e .• 120 80 25 320 44

ThuchoJilc

+

carbonate 30 90 160 3

, , -

5

50 140 260 20 40 17 50 106

Sulphide e .• e .• e .• 170

-

36

-

113

, . . , .. , ..

200

-

100 1000 188

Sandstone + sulphide

- - - I '

I' 12

- I '

60 280 180 27 21

- - I.

Phosphate

, .. , .. .., - -

40

- -

n .•. - not analyzed; CJ;planations as in Tab. 1

Cd

15

l'

-

21

-

70

34Q

- - - -

-

88

-

isotropic, amorpbous thucholite component (H. Kueha, 1982). No Th was detected in the studied thucholite. An increased concentration of Au and Pd is of particular interests (Tab.

I, Fig. 2). Occasionally (in ppm) 130 Pt, 110 Ir, 14-70 Rh and 60 Ru were detected.

The average V and Mo concenlration in th ucholite

is

significan tly lower than in the shale (Tab. 1,2). An increased content ory and Zrcorrelates with U (Tab. 1.2).

Comparing concentration of metals in the clay organi c malrix of the shale. which may be considered as a source of metals for tllucholite. with the concentratio n of metaJs in tllucholite an enrichment in U, Au , PGMs, Y and Bi observed (Tab. 1 , 2). In a similar way a depletion in Zr, As,

V

and Ti is found in thucholite versus black shale matri x. Thi s

type

of pattern may speak in favour of autoox idation of o rganic matter catalyzed by PGMs, Au and 'Y radiation oru as a mechanism of concentration of U, PGM s and Au in thucholite

(H.

Kuchn, 1982).

MDLs in thucholite are generally better th an in black shale matrix (Tab. 3, 4).

The Witwatersrand thucholitestudied for comparison shows generally : more Fe, mainly

due to dispersed pyrite, less Cu ( 1 000--2300 ppm), less As (120-180 ppm), more Y

(500--590 ppm), a similar Zr, Pb and U content. POMs in Witw atersrand thuc holite are

below 15 ppm. Witwatersrand thucholite contains 700-1400 ppm Th whi le Kupfersc hie f e r

thucholite has a Th content below detection limit.

(9)

PIXE analysis of KllpfCf3Chiefer samples 695

___ HU5510tl SPECTRA

U L ULp

,<>,

I "1 2 UL,

• I I

c

,

c

,"

c

UL)

~ u Pd K(X. Pd K

I'

12 12

"

II ~~

KDt AgK/,

~ ~,

, ,

5

, ;, Fe Cu Zn

1 2

2

Mn KG Kb Ka: Ka Z~

, , , , ,

II "

c

"

Pb 5, Br Pb Rb

"

"

Lo Ko liD Lb Ito 5.

, ,

0 Ko Ko

c

,.

"

U

,,' " "

B4Cllc.ROUND

", , • " " " " " , , " ,

100 200 300 400

Energy (keV) Chonnel number

Fig. 2. A typical PIXE spectrum of a m~trix oflhucholite free of sulphide grains; S3mple 4SC Typowe PIXEspektrumdla thuthoUtu uwolnioncgo od siaretk6w; pr6bka 4SC

CARBONATES

500

Carbonates frequently contain small but abundant sulphide grains. Carbonates also replace thueholite with resultant exolution of native gold , PbSe, Cu-Bi sulphides and Pd-arse nides (H. Kueha, 1981, 1982). For the above reasons the metal concentration was measured in the clean carbonate matrix. Only Mn , Fe and minor Zn. Cu, Pb and Sr were found to be present (Tab. I, 2).

SULPHIDES IN CARBONATE MATRIX

The composition of six carbonate samples containing sulphide mineralization depends

o n the major mineral: pyrite. Ag-bearing c halcopyrite, galena a nd native sil ver. As, Ni and

Co are bound to pyrite. Mo concentration is hi gh and related to eastaingite. Br content is

high but no Br-bearing mincral was detected by optical or EPMA methods. Because a

mixture of carbonate and sulphides forms a heavier matrix than organic or clay-organie

matrix MDLs are in the order of several tens of ppm (fab. 3, 4).

(10)

696

c c c

~

o

c o c u

H. Kuehn, W. Przybyfowia.. I. Kajfosz, S. Stymczyk

EMISSION SPECTRA

MoKot 12

II

MoKP

1 2

AgKQ/.

BACKGROUND

AgKfi 1 2

6 8 10 11 I" 16 18 10

"0f--'~---'--,.,,--'~---'-~,--''-_-+-_'-:'-~;;'''

___

~

__ _

o

100 200 300 400 500

Energy ( keV) - Channel number

Fig. 3. A typical PIXE spe<:trum orsutphides CQmposed of caslaingite:ll1d Ag-bearing ch:LIcopyrite; sample 110 Typowc PIXE spekuum dta sian:z.k~w 2.lotonych z ca.staingitu i s~bron~nego chalkopirytu; ptObka 110

THUCHOLITE·CARBONATE

Thucholite replaced by carbonates is of particular interest, because during this process

native Au and PGM minerals are produced (H. Kucha, L982). To study the redistribution

of elements during thucholile oxidation (repl acement by calcite) nine thucholites replaced by calcite were studied. U. Pb. Ti and Fe show distinct depletion in thi s process (fab. I).

Cu concentration increases which may indicate an ex ternal source of thi s metal (oxidized solutions from Rote Faule'?).

Pd and Au do not c hange in co ncentration compared to original thucholite. Th ese two metals are enclosed as native gold, native Pd and Pd-arsenides intothe matrix ofreplacive carbo nate. PI was always below the detection limit in a nalyzed thucholite-carbonate mbttures produced by replacement (ox idation) of lhe fonner by the latter.

Results obtai ned by PIXE are consis tent with results obtained bef ore by EPMA

(H.

Kucha, 1982). MDLs found in thucholite-carbonate are generally similar to those found in thuc hoLite itself(fab. 3, 4).

SULPHIDES

An example of sulphide (Fig. 3) is represented by castaingite rich in As (fab. 1,2). It

also contains a high amount of Co, Ni, Ag and Pb. A high Br content may be referred to

(11)

FIXE analysis of

Kuprers<:hiefer

wmples 697

KCI inclusions present in this castaingite. Re conlent is hi gh - 1300 ppm. Also several 10 a hundred ppm of W are present. PIXE also indicates 80 ppm of Se which was nol detected by EPMA .

SULPHIDES IN SANDSTONE

Six samples of sandstone mineralized with galena, chalcopyrite, sphalerite and silver amalgams were studied (Tab. 1,2). Major clements conform with the above listed minerals.

90 ppm Ni and 40 ppm Mo, not detected by EPMA are indicated (Tab. 1 , 2). The average Hg content is 320 ppm.

MOLs for these type of samples are listed in Table 3 and 4.

PHOSPHATE

Fe-Ca phosphate was studied by PIXE for REE and PGM traces because EPMA study revealed inclusions of clausthalite. nali ve gold and mooihoekite. PIXE indicates 70 ppm Pd, 600 ppm Y. 700 ppm Ce (Tab. 1,2). L.t is also present.

CONCLUSIONS

A PIXE test perfonned on Kupferschiefer samples revealed several elements not expected in thi s type of matrix. II indicated Ti, Zr and REE in uranium - rich organic maue r. Also a significant amount of Br was found in organic matter. The presence of Au and PGMs re lated to thucholite has been confirmed.

MDLs of PIXE depend on the matrix. In light matrix they are in the order of ppm, in heavy matrix in the order of tens of ppm. MDLs also depend on the clemen! composition of the target. In the case of peak coincidences or proximity of a major disturbing peak the MDL may even be in the order of 200-300 ppm. However, in the studied samples under the applied analytical conditions the MDLs depended first of all on emission efficiency, being best fo r elements of Z

=

22 to 47 , where Ka lines of high efficiency can be used.

Instylul

Geologii

i Surowc6w Minemlnych Instylut Fuyki i Tcchniki J:tdrowej

Ak~demii G6miczo·Hulniczej Krakow, al. MickicwiC-al 30 Inslytut fizyl:i Jqdrowej Krakow, ul. Rnllzikowskicgo 152 Received: 29.07.1994

(12)

698 H. Kucha, W. Pnybylowicz, J. KajfO$z, S. S~ymczyk

REFERENCES

BLANK H .. TRAXEL K. (]984) - Prolon induced X-roy emission in micro-regions applied in mineralogy.

Scanning Electron Microscopy, 3, p. 1089-1096.

CABRI L. J. (1988)- Applicntionsof prolon and nuclearmicroprobcs in 0Rl deposit mineralogy and metallurgy.

Nuel. losu. Mcth. Phys. Res., B 30, p. 459-465.

CABRI L. J., BLANK H" EL GORESY A.,I..AFLAME1. H. G., NOBtLlNG R.,SIZGORIC M. B .. TRAXEL K.

(1984a) - Qu:mtilalive trncc~lemenl analyses of sulfides from Sudbury and Slillwlllerby prolan microprobe.

Can. Mi~f .• 22, p. 521-542.

CABRI L. J., HARRIS O. C., NOBILING R. (I984b) - Tmce silver :malyscs by proton microprobe in ore evaluation. In: ~cious metals: mining,extraction, and processing{eds. V. Kudryk elaL), Metall. Soc. AIME Prot., p. 93-100.

CAMPBELL J. L .. CABRI L. J" ROGERS P. S.

z.,

TRAXEL K., BENJAMIN T. M. (1987) -Calibration of micro·PIXE analysis of sulfide mincrn1s. Nuel. Instr. Meth. Phys. Res., 11 22, p. 437-441.

CHEN 1. R., CHAO E. C. T., MINKIN J. A., BACK 1. M .• BAGBY W. Co, RIVERS M. L., SUrrON S. R., GORDON B. M., HANSON A. L., JONES K. W. ([987)- Determin<ltiOll of the occurrence of gold in an unoxidized Carlin-type ore &IUl1ple using synchrotron I1Idiation. Nuel. Instr. Meth. Phys. Res., B 22, p.

394-400.

CHRYSSOULIS S. L., CABRI L. l, SALTER R. S. {1987)-Direct determination of invisible gold in refroctory sulphide orcs (cds. R. S. Salter, D. M. Wysloutil nnd G. W. MeDonnld).

Proc.

Intern. Symp. on Gold Metallurgy. Winnipeg (Canocln), August 23-26. p. 23S-244.

CLARK P. J., NEAL O. F., ALLEN R. O. (1975) - Quantitntive multielement :lI\alysis using high energy particle bombardment. Anal. Chern., 47, p. 650-658.

DYBCZYNSKI R., TUGSAVUL A., SUSCHNY O. (1978)- Rcporton the interwmparison run SOlL-5 for the detcrmination oftrueeelements in soil. Report IAEAlRU46.

JOHANSSON S. A. E., JOHANSSON T. B. (1976)- Analytical applic:uion of particle induced X-roy emission.

Nucl.lnstr. Meth., 84, p. 141-134.

KAJFOSZ J. (1987) - Progral!l$ for PIXE nnal.yscs - IBM PC/XT vCfSion. Inst. of Nuclear Physics, Crncow, internal report of the Lab. of App!. Nuclear Spectroscopy (in Polish).

KAJFOSZJ .. KWIATEK W. M. (1987)- Nonpo[ynominl approximation ofbaekground in X-ray spectra. Nucl.

Instr.

Mm.

Phys. Res., B 22, p. 7&-81.

KUCHA H. (1975) - fuliminary report on the occurrence of palladium minerals in the Zechstein rocks of the Fore Sudetic Monocline. Miner. Pol., 6, p. 87-92.

KUCHA H. (1981) - Precious metal alloys and orgnnic IOOlIer in the Zechstein copper deposits, Potnnd. TMPM Tschermaks Min. Pelr. Mitt., 28, p. 1-16.

KUCHA H. (1982) - Plntinum-group metals in the Zechstein copper deposits, Poland. Econ. Cleol., 77, p.

]578-]591.

KUCHA H. (1983)-Precious metnl bcaringshnle from Zechstein coppetdtposits, Lower Silesi:!, Poland. Trons.

Ins!. Mining Metal., B 92, p. 72-79.

KUCHA H. (1985) - R:ldspar, clay organic Md cnrbonate recCptoffl of heavy metals in Zechstein deposits (KupfcrschiereNype), Poland. Trans.lnst. Mining Metnl., B 94, p. 133-146.

PSZONICKI L., HANNA A. N., SUSCHNY O. (l984) - Report on intcn:ompruison IAEA/SOIL-7 of the detennination of trace elements in soil. Report IAEAlRUI12.

PRZYB ytQWICZ Wo, KAJFOSZ J., SZYMCZYK S. (1986) _ PIXE mu]tielement analysis of serpentinite rocks from Lower Silcsia (PoIMd). Miner. Pol., 17, p. 23-36, no. 2.

REMOND G., CESBRON F., T'RAXEL K., CAMPBELL J. L., CABRI L. 1. (1987) _ Electron microprobe lIIIalysis and prolon induced X-ray spectrometry applied to trace element analysi§ in sulfides: problems lind prospects. Scan. Micros., J, p. 1017-1037, no. 3.

RUCKLIDOE l C., GORTON M. P., WILSON G. C., KILIUS L. R., LlTCHERLAND A. E., ELMORB D., GOVE H. E. (1982) - Measurement of PI and ]t at sub-ppb levels using tandem-accclerntor moss spectro- mctry.Can. Miner., 20, p. 111-119.

RUCKLIDGE I. Co, K]UUS L. R. (1986) - Devclopmellts in trace element analysis of IOOterinls at IsoTrace.

[CXOM-II, London 4-8 August'86, Canada, p. 21&-221.

SALAMON W. (1979) - Ag i Mo w cechsllyliskich osadach mOllokliny pnedsudcckiej. Pt. Minet. Komis. N:luk Miner. PAN, Krakow, 62, p. S8.

SZYMCZYK 5., KAJFOSZ J., HRYNKIEWICZ A.

z.,

CURZVDLO J. (]981) _ PIXE studies of pollutants in plants. Nucl.lnstr. Mcih., 181, p. 281-2&4.

(13)

PIXE analysis of Kupferschiefer samples 699

WILLIS R. 0 .. WALTER R. L., SHAW R. W. Jr., GUTKNECHTW. F. (1977)- ProIon-induced X-raycmission

nn(l]ysi~ ofthlek nnd thin targets. Nuc!. Instr. Mcth., 142. p. 67-77.

Hcnryk KUCHA, Wojcicch PRZYBYWWIcz. J6~cfKAJFOSZ. Stanislnw SZYMCZYK

BADANIA CECRSZTYNSKICH LUPKUW MIEDZIONOSNYCH METODI\. PIXE

Strcs~czenie

Opisano wyniki booM metod:\ PIXE pr6bek ~ ceehsztytlskich lupk6w miedzionoonych. Mi<:rwno 7.Ilrowno UlWntlOO(! pierwiastk6w,jak tet poziomy ieh wykrywaJn~i w propa.rotnch polcrownuych (thick I/lrg~t). Najlepsu:

wykrywaln~ci u1.ysknno w pr6bkach 0 lekkicj matrycy, Ij. w w(;glu ofganiclnym (kcrogen-thucbolit) om~ w illlSto-organiclllej matrycy lupku c7.llmego. Nnjnitsze poziomy wykrywalno~i zaobserwownno w si=bch metali eiQtkieh.

ZaJctQ, melody PIXE w stosunku do innyeh metod nnalitycznychjcsl:

_ szybkn i nienisu:ZQ.CI analiza wszyslkJch pierwiaslk6w POCZ.1wSzy od Z"" 18 w badnnych pl1!p:tmtach;

_ reliltywnie niskie poziomy wykrywalnoki w gr:mieach od kilku do kilkudziesiQciu ppm_

Cytaty

Powiązane dokumenty

Nie uważam za właściwe dystansowanie się, ewentualnie stawianie pod znakiem zapytania (np. przy pomocy cudzysłowów) twierdzeń polityków komunistycznych oraz

Wszystkie obecne tam panie i dziewczęta przysłuchiwały się temu i nawet wtrącały swoje trzy grosze, co mnie - nawiasem mówiąc - szalenie peszyło.. Kiedyś tłumacząc

4. From the mineralogical point of view the Voivodina loesses distinctly differ from the Polish loesses. Though the Polish loess has also features of regional authchthony but: a)

The rotation task was performed with greater accuracy for figures presented on a plain background compared to the complex background, and faster for figures drawn in a

Pierwsza z wymienionych – projektowa produktu, powinna być rozumiana, jako zdolność do zaspokojenia po- trzeb klienta, druga – jakość projektowa procesów realizacji,

Segment 1 to klientki w wieku 31-40 lat, wydające na biustonosz powyżej 50 zł, częściej wybierające sklepy specjalistyczne jako miejsce zakupu bielizny. Segment 2 to klientki

1 pkt 3 PrAut uprawniony, którego autorskie prawa majątkowe zostały naruszone, może żądać od osoby, która tego dokonała, naprawienia wyrządzonej szkody na zasadach

• dla budowy (modernizacji) dróg gminnych w ilości 1 000 km/ rok – zużycie kruszyw łamanych wyniesie 5 800 000 t/rok Zapotrzebowanie na kruszywa łamane dla inwestycji