• Nie Znaleziono Wyników

Subdifferential inclusions and quasi-static hemivariational inequalities for frictional viscoelastic contact problems

N/A
N/A
Protected

Academic year: 2022

Share "Subdifferential inclusions and quasi-static hemivariational inequalities for frictional viscoelastic contact problems"

Copied!
31
0
0

Pełen tekst

(1)

Brought to you by | Uniwersytet Jagiellonski Authenticated Download Date | 10/29/18 8:24 AM eralizedgradientofClarke–Rockafellar,cf.[1].ThelatterwasintroducedforaclassoflocallyLipschitzfunctionsand

❆❜ai:�❛❝i:✿ We survey recent results on the mathematical modeling of nonconvex and nonsmooth contact problems arising in mechanics and engineering. The approach to such problems is based on the notions of an operator subdiffe- rential inclusion and a hemivariational inequality, and focuses on three aspects. First we report on results on the existence and uniqueness of solutions to subdifferential inclusions. Then we discuss two classes of quasi-static hemivariational ineqaulities, and finally, we present ideas leading to inequality problems with multivalued and nonmonotone boundary conditions encountered in mechanics.

▼❙❈✿ 34G20, 35A15, 35J85, 35K90, 35K85, 35L85, 35K55, 49J40, 49K40, 74Axx

❑❡②✇♦�❞a✿ Hemivariational inequality • Subdifferential • Quasi-static • Multifunction • Nonconvex • Viscoelasticity

© Versita Sp. z o.o.

✶✾✺✸

Cent. Eur. J. Math. • 10(6) • 2012 • 1953-1968 DOI: 10.2478/s11533-012- 0123-6

❈❡♥ ❛❧❊✉ ♦♣❡❛♥❏♦✉ ♥❛❧♦❢▼❛ ❤❡♠❛ ✐❝

Subdifferential inclusions and quasi-static hemivariational inequalities for frictional viscoelastic contact problems

StanisławMigórski1∗

❘❡✈✐❡✇ ❆ ✐❝❧❡

1 Institute of Computer Science, Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6,30-348 Kraków, Poland

❘❡❝❡✐✈❡❞✶ ▼❛ ❝❤✷✵✶✷❀ ❛❝❝❡♣ ❡❞ ✷✼ ❏✉♥❡ ✷✵✶✷

1. Introduction

TonheNpoanpleinreiasraAsnhaolrytesinsed(SvNerAs2io0n11o)fhtheeldoriingiTnoarlupńa,rPtsoloafnadn,iSnevpitteedmtbaelrk7p–

re9s,e2n0t1e1d.bTyhtehegaouatlhiosrtaotrtehveieSwixtahndSyrmeppoorstiuomn thheemirveasruilattsioonfarleicneenqtuastluitdieie

ss,aonndpthroebirleampspliincavotilovinnsg. operator subdifferential inclusions in Banach spaces, quasi-static

Tgehneenraoltiizoantioonfhoefmthivearviaartiiaotniaonlainleinqeuqauliatylitwy.asThinetrhoedmuicveadriabtyioPn.aDl.iPnaenqaugailoitt yopfoourmlouslaitniotnheexepalroliyts1t9h8e0sn,octifo.n[17o,f1th8e],gaesna-

E-mail:stanislaw.migorski@ii.uj.edu.pl

(2)

s defined by

θ0(

x;v)=limsupθ(y+λv)−θ(y):

directionalderivativeθ(x;v)existsandsatisfiesθ(x;v)=θ(x;v)forallv∈X.

Le np

s e o ef

Finally,wegiveapplicationstoquasi-staticviscoelasticfrictionalcontactproblems.

(b)Tisu.s.c.xo∈neveryfinitedimensionalsubspaceofXintoX∗endowedwiththeweaktopology;and spaceY.Als

R

o,wedenoteby2Xt

hecollectionofallsubsetsofX.ForU⊂X,wealsowritekUkX=sup{kukX:u∈U}.

GivenaBanachspaceX,wedenoteitsnormbyk∗·kX.ThedualspaceisdenotedbyX∗andh·;·iX×X,denotedalsob , teu

igbe a . h - o Xnow i t a

ituaacscestsaibtilcealsovtotheineawlcoemqeurailnittehsi.sfieeld.avetriedtokeepthepresentationT con

ofthpapr so ecn o inclusionsina framework ofevolution

energyfunctionals.Thusthetheoryofhemivariationalinequalitiesprovidesmathematicalresultswhichariseandarea cal

va ti e rb olv mnt u alu io .I

inxitshteeineertialtermktendstoonzero.Wweeprotvethaetthselimiottfucnbcteihoanviisoaosfoalusteioqnueofaparaboliche mivariationalinequality.

nolnvcaonvetxnonsmocoothfuncntdioinnsanndtthceiprClarkmesInubdiffesreecnotniadlsclopsseraftiinngcluosnotnheunk nownfunction.Firstweprovethe

inebqdualiteyninwhoicuhtheunoknndownnis.Wtheeveloceityhafiteld.sTcohnetnacwtepraopplleymolueraressultinordert oprovetheuniqueweak

Tnhemgoaellionfgthisdpaaperisstoofgivoentaascutrpvheeynonmmeodeclainngboeffcoountacitnpro,b7lem,s2w0]i.thnon smoothpotentialsandonanalysisof

anrgoebstamclbe.Topmrovideaniceaxampdleelwsewhconsideercaribviscouealsaissttiactpcropbrolecmesineswohficchth efrictionalcontactismodeledwith

casethehemivariationalinequalitiescanbeformulatedasthesubstationarypointproblemsforthecorrespondingnon-d en , nsmooh

o ne gyfc T o lain fec icpro mash vai l

thniisqresuelstsinthelt.studyofoaofclassaosfdhistnory-

gdempeenntdseonthpesmeuivdaoriaotnioontoanleinoepqeuraaltities.Suchkindofproblemsarisesina

Subdifferential inclusions and quasi-static hemivariational inequalities for frictional viscoelastic contact problems

allowstogivevariationalformulationsofseveralmechanicalphenomenainvolvingthenonconvexandnondifferentiablepplibet o riaonaltheoryofengineringpolemsinv ingnonooonemltiv edrelatnsnthestationary ionieffeqruoadlittiiaebsleaallnoowntnoaglyivteispaonsdictnivencaonnsvweexresotorunnasoulnvetdioonraplsa.rntdiahl

elyf[5urnmsuo,l8vtedopsrooblmemsh,acnf.[9a–l12,1b5le,16s].Moeremiinforramtaiotnioanq i-s hemiariaton

in i Wh assimpleaspossibleandthismakes

turhipeleueonftsepnatrceessu.TehTehfieresptricslaasissfibnllvoowlevse.soWincalruosuiosindsewrittwhnoachlaisstsoe rsym-dfespuebnddiffeenrtetnetriamolrfsorawndhifichxewdepporinotv.idTehaennewxeisstepnecceiaalinzdela

nu erofathemat lmo ichds eq i s

ontactbetweenadeformablebodyandsuiffertial bndary c itios provt thi

b d to ahistory-dependenthemivariationalso biliyofthe rrespo gcoatroble. the

a o is,weconsidertime-dependentpossiblye nc of a wea soluti. Then s

udy th aympti r nceofsolutionswhenasmallparameter

2. Preliminaries

In this section we recall some definitions we shall use in this paper, see e.g. Zeidler [21] and Denkowski et al. [2,3].

toypohl·o;g·yi.i TshehnodtaatiloitnyLp(aXir;nY)statnwdesenforXthendspXaceTofelinseyamrbbooluwndXedisopuesread tofrsrftrhoemsapaBcaenachesdpaceedXwtothaiBsawneachkLietθ:X→

bealocallyLipschitzfunction.Thegeneralizeddirectionalderivativeofθatx∈Xinthedirectionv∈X

y→x;λ↓0 λ

The generalized gradient ofθatxis the subset ofXgiven by

∂θ(x)={ζ∈X0(x;v)≥ hζ; vi; v∈X}:

AlocallyLipschitzfunc0tionθiscalledregular(in0thesense0ofClarke,cf.[1])atx∈Xifforallv∈ Xtheone-

sided(a)tfTor:eXve→ry2X∗.AX,ToxeirsataornoTneimspatyid,ctoonbvexpasenuddwomeaoknlytocnompiaicttssaettisifi neXs∗th;efollowingconditions:

(c) ifx→x inX,x∈Txa n d limsuphx;

x−xi≤ thenforeachz∈Xthereexistsx(

z)∈Txsuchthat hx(

n

z);x−

w

zi

ea

kl

l

y

iminfhxn

n

;xn− zi

n

.

nn 0,

(3)

✶✾✺✹

(4)

X

X

iscontinuous [0;.T :X→Xis

pseudomonotoneifforeachsequence{x}⊆Xsuchthatitconvergesweakly

to

on

1]

a x h x

n

hx;xi≥c(kxk)kxkf o r every(x;x)∈Graph(T).

issurjective.

introduce the following spaces:

intoZ

ev

,b

l

y

u

kγkthenormofthetraceinL(

Z

be

;dL2(

Γ;Rs)and

byγ

m

:L2( Γ;Rs)

no

Zthead

t

j

h

ointoperatortoγ.Wealso γ0v=

0

γv

=

forallv∈V.Itiswellknownfro

it

m

y,

thetheoryofSobol

e

evspaces,cf.t[a2,3,21],th

e

a

e

t(V;H;V)

and(Z;H;Z) i:V→Z

lo

thee mbedding,byγ :Z→L2(

Γ

1

;

,

R

H

s)a ndγ0:H1( Ω;Rs)

→H1/2(Γ;

Rs)

⊂ L2(Γ;

Rs)

t h e t raceo perators,we

inclusion of subdifferential form.

⊆ ⊆ arealsocontinuous,where =L(0; T;Z)and =L(0; T;V).

Wenote that in (1) the notationu(t) stands for (u )(t),i.e. u(t)=(u)(t) for allu∈ and a.e.t∈(0; T).The

S. Migórski

L

d

e

o

t

mo

L

n

:oD

to

(

n

L

e

)⊂

wit

X

hr

esp

X

ec

∗tb

t

e

oD

a(l

L

in

)

e

(

a

sh

rod

r

e

tl

n

y

se

L

l

-

y

ps

d

e

e

u

fi

d

n

o

e

m

d

on

m

o

a

t

x

o

i

n

m

e

a

)

l

if

m

a

o

n

n

d

ot

o

o

n

n

l

e

y

o

if

p

(

e

a

r

)

at

a

o

n

r.

d(

Abn

)h

o

o

p

l

e

d

ra

a

t

n

o

d

rT iss a i d t o b e p s e u -

(d) i

a

f

n

{

d

xn

li

}

m

su

D

ph

(L

xn

)

∗ ;

i

x

s

n

s

i

u

ch

hx

th

a

;x

tix

,

n

th

en

x

x

w

e

ak

T

ly

x

i

a

n

n

X

d

,

hx

x

n∗

;xn

D

i

(

L),hL

x

x

n

;x

i.

Lx we ak ly inX,xn

T xn,xn

xweaklyinX

An

operatorTissaidtobecoerci

veifthereexistsafunctionc:R+

Rw i t h c(r)→∞a s r→∞s u c h thatAsingle- valuedoperatorT:X→Xis

saidtobehemicontinuous,ifforallu;v;w∈Xthefunctionalt→hT(u+tv);wi

Fin

x

a

0

ll

y,

X

we

an

r

dlimsuphT

fo

x

l

n

lo

;

w

xn

in

g

x0

s

i

ur

jec

0

t

,

iv

w

it

e

y

h

re

v

s

e

ul

h

t

T

,xc

0

f.

;

[20,

T

x

h

i

e

ore

li

m

mi

1

n

.

f

3.7

T

3

x

]

n

,;fo

n

r

−xiforallx

o

pe

X

ra

.

torswhicharepseu- domonotoneweictahllretshpeectto

D(L).

Proposition2.1.

multivalued

o

If

p

X

era

i

t

s

or

a

a

r

n

e

d

fle

T

xi

:

v

X

e,

stri

2

c

X

t ly ∗

\

{

co

n

}

v

i

e

s

x

b

B

ou

a

n

n

d

a

e

ch

d,sc

p

o

a

e

c

r

e

ci

,

ve

L:

a

D

nd

(L

p

)

s

eud

X

om

ono

X

t

on

i

e

s

w

a

it

l

h

in

r

e

e

a

s

r

pe

d

c

e

t

n

t

s

o

el

D

y

(

d

L

e

),

fi

t

n

h

e

e

d

nmth

a

e

xi

o

m

p

a

e

l

ra

m

to

o

r

n

L

ot

+

on

T

e

3. History-dependent subdifferentialinclusions

LVetbeΩa⊂cRdsebdesaunbsoppaecneboofuHn1d(eΩd;Rsusb),sset≥ofRdw=ithL2a(ΩL;iRpssc)haintzdcZon=tinHuoδu(Ωs;bRosu)nwdaitr hya∂ΩfixaedndδΓ∈⊆(1∂/Ω2;,1d).=De1n;o2t;i3n.gLbeyt

getγv γ(iv)forallv∈V.Forsimplic inwhatfollows,womitthenotionofth

mbeddingiandwewriteform o tion triples of spaces andtheem dingV⊂Zis co pact.Wede teb y ce eembeddingconstantofV

V=L2(0

;T;V); Z=L2(0

;T;Z) and Hb=L2(0

;T;H);

V

wher

Z

e0<

H

bT<

Z∗

+∞

V

.∗SincetheembeddingsV⊆Z

Z∗

⊆H2⊆Z

Vare

V∗

contin

2

uous,it

isknownthatthe embeddingsLetA:(0;T)×V→V,

S:V→V,

J:(0;T)×L2(Γ;

Rs)

→Randf:(0;T)→Vbe

given.Weconsiderthefollowing

Problem 3.1.

Findu∈V such that

A(t;u(t))+Su(t)+γ ∂J

(t;γu(t))3f(t) for a.e.t∈(0; T): (1)

S S S S V

symbol∂Jdenotes the Clarke subdifferential of a locally Lipschitz functionJ(t;·). We adopt the following definition.

(5)

✶✾✺✺

A functionu∈V is called asolution to Problem3.1if and only if there existsζ∈Zsuch that for a.e.t∈(0; T),

A(t;u(t))+Su(t)+ζ(t)=f(t) and ζ(t)∈γ∂J(t;γu(t)):

Definition3.2.

(6)

Lemma3.3.

(III.a)J(·;u)ismeasurableon(0;T)forallu∈L2(Γ;

Rs)

(i)(III.a)–(III.d)andm1>max{c1;m2}ce2k γk2,

(III.b)J(t;·) is locally Lipschitz onL(Γ; )fora.e.t∈(0;T);

(III.c)k∂J(t;u)kL(Γ; )≤c0+c1kukL(Γ; )for allu∈L(Γ; ),a.e.t∈(0;T)withc0;c1≥0;

todependonthecurrentvalueofthesolutionu(t).

(III.e)J0

2

(t;u;−u)≤d0

(1+kukL2(Γ;Rs)forallu∈L2(Γ;Rs),a.e.t∈(0;T)withd0≥0.

whereC∈L∞0;T;(V;V∗).Clearly,inthecaseoftheoperators(2)and(3)thecurrentvaluev(t)atthemomentt

t∈(0;T)dependonthehistoryofthesolutionuptothemomentt.Thisfeaturemakesthedifferencewithrespectto

form(2)or(3)ashistory-dependent.Weextendthisdefinitiontoalltheoperators: which satisfy conditionI I

Subdifferential inclusions and quasi-static hemivariational inequalities for frictional viscoelastic contact problems

In order to state a result on the solvability of Problem3.1, we need the following hypotheses.

I.

A

(I

:

.a

(0

);A

T

(

)

·

×

;v

V

)i

sm

V

eas

i

u

s

ra

su

b

c

le

h

o

th

n

a

(

t

0;T)forallv∈V;

(I.b)A

m

(

1

t

k

;

v

·

1

)

is

v2

h

k

e

V2

m

f

i

o

c

r

on

a

t

ll

in

v

u

1

o

;

u

v2

s∈an

V

dwst

i

r

t

o

h

n

m

gl

1

y

>

m

0

o

;

notonefora.e.t∈( 0;T),i.e.,hA(t;

v1)−A(t;v2);v1−v2iV×V

(

(

I

I

.

.

d

c)

)

k

A

A

(t

(

;

t

0

;)v)

=

kV∗f

or

a

a

0

.

(

e

t

.

)+

t∈

a1

(

k

0

v

;

k

T

V

).

forallv∈V,a.e.t∈(0;T)witha0∈L2(0

;T),a0≥0anda1>0;

II. S : V→Vis 0 such tha

t kSu1(t)−Su2(t)kV≤LS

Z0t

ku1(s)−u2(s)kVds

for allu1; u2∈V, a.e.t∈(0; T) withLS>0.

III. J: (0;T)×L2(Γ;

Rs)

→Ris such that

2 Rs

2Rs 2Rs 2 Rs

(III.d)(

m

z1

z

0

2;

;

u1−u2)L2(Γ;Rs)≥−m2ku1− u2k2L2(Γ;Rs)forallzi∈∂J(t;ui),ui;zi∈L2(Γ;Rs),i=1;2,a.e.t∈(0;T),

We remark thatconditionIIis satisfied for the operator S : V→Vgiven by

Sv(t)=Rt;Z

0t

v(s)ds+v0! for allv∈ V; a.e.t∈(0;T);

(2)

o

w

p

h

e

e

r

r

a

e

to

R

r

:

fo

(

r

0;

a

T

.e

)

.

×

t

V

(0;

V

T)

∗ais

nd

su

v

c

0

h

th

V

a

.

tIR

t

(

is

·;

a

v

l

)

so

is

s

m

at

e

i

a

sfi

su

e

r

d

ab

fo

l

r

eto

h

n

e

(

V

0

o

;

l

T

te

)

rr

f

a

or

o

a

p

l

e

l

ra

vt

o

r

V

S:

,VR(

t;·

V

)∗is

gi

a

ve

L

n

ip

b

s

y

chitzcontinuous

Sv(t)=Z

0t

C(t−s)v(s)ds for allv∈ V; a.e.t∈(0;T); (3)

( L S

dependso nt heh istoryo ft hev alueso fv att hem oments0≤s≤tand,therefoSre,VwerVefert ot heo peratorso ft heainncdlu,sfioorn sth.isThreeamsoanin,wfeeatsuareyothfastucthheinsculubsdiioffnesrecnotniaslisitnscilnustihoensfaocfttthheatfothrmey(1c o)natraeinhoispteorrayt-odrespwenhdicehn,tastuabndyiffemroemnteinatl

thetime-dependentsubdifferentialinclusionsstudiedinliteratureinwhich,usually,theoperatorsinvolvedareassumed

In order to prove the existence and uniqueness for Problem3.1, we first state a result on the unique solvability of asubdifferentialinclusioninwhichthetimevariableplaystheroleofaparameter.

Assume thatIholds and f∈V. If one of the following hypotheses:

(ii)IIIandm1>m2ce2k γk2

(7)

✶✾✺✻

(8)

protp;ert=iesoftheoperatorB. hypothesi establish following mhoinsotoolnleo∗peratorispseudomonotone,cf.[21,Proposition27.6].Next,wetdefinetheoperatorBd:,(h0;T)×oV→uo2Z∗by v(∈

t;0

V

)

,=a.e.t∈(0;T).Moreover,sincetheoperatorA(t;·)satisfies(I.b)–

1

(I.c),itispseudomono

V

to

n

×

e

V

fora.

1

e.tV∈(0;T).

a.e.t∈(0; T). From (I.a) and (IV.a), it is clear that F(·; v) is a measurable multifunction for allv∈V. Exploiting fundamentalsurjectivityresult,cf.e.g.[3,Theorem6.3.70],itfollowsthatF(t;·)issurjective.Thisimpliesthatfora.e.

Theorem3.4.

sou=uη∗,whichcompletestheproof.

η(t)=Su(t) for a.e.t∈(0; T). It follows thatuis a solution to the problem (6) and, by the uniqueness ofsolutions Sincef∈V,fromtheestimate(5),weconcludethatu∈Vand(4)hold,whichcompletestheproofofthelemma.

Weshow by using theBanachcontraction principle that the operator Λ has auniquefixed pointη. Thenuη S. Migórski

is satisfied, thentheproblem

A(t;u(t))+γ∂J

(t;γu(t))3f(t) for a.e.t∈(0;T)

(4) has a unique solution u∈V.

Proof.0Wfeorprao.evi.detm∈ai(n0;sTte)p,sitoffotlhloewpsrotohfawtiAth(to;u·t)diestaciolse.rcFivirestw,istihncmeth>e o0p,eir.aet.orhAA((tt;;v·));visistrong≥lymmoknvokt2onfeoraanldlT

fowsfromthefactsthateverystronglymonotoneoperatorismonooneandeverybounde emicntinusandB(v )

γ∂J(t;γv)forallv∈V,a.e.t∈(0;T).Undereitherthe s (i) or (ii),wecan the

(

(

I

I

V

V

.

.

b

a

)

)B

kB

(

;

t

v

;

)

v)

i

k

s

Z

m

∗e

as

b

u

0

r

(

a

1

b

+

le

k

fo

v

r

kV

a

)

ll

fo

v

r

al

V

lv

;

∈V,a.e.t∈(0;T)withb0>0;

(

(

I

I

V

V

.

.

d

c)

)

f

h

o

B

r

(t

a

;

ll

v)

v

;v

iV

V

∗ ×V

an

d−a.e

b

.

1k

t

v

kV2

(0

;T

b

)

2

,

k

B

vk

(t

V

;v

)bis

3

n

fo

o

r

ne

a

m

ll

p

v

ty

,c

V

on

,

v

a

e

.

x

e

,

.

w

t

e

ak

(

l

0

y

;T

co

)

m

w

p

i

a

th

ct

b

s

1

u

;

b

b

s

2

e

;

t

b3

of

Z

0

;

;

(IV.e)t

v

h

n

e

gr

v

ap

in

hZofaB

n

(

d

t;

ζ

·)

n(

i

t

s

),

c

ζ

lo

(t

s

)

e

di

Z

n

∗ ,

Z

ζ

×

n(

(

t

w

)→

−Z

ζ

(t

)

)

to

w

p

e

o

a

l

k

o

l

g

y

y

in

fo

Z

r∗a

,

.e

th

.et

n

ζ(t

(0

)

;

T B),(i

t

.

;

e

v

.)

.

ifζn(t)∈B(t;vn)with vn;v∈V,

Subsequently,we define themultivaluedmap F : (0; T)×V→2V∗ F(t;v)=A(t; v)+B(t;v) for allv∈Vandby [3,Proposition6.3.66],weshowthatF(t;·)ispseudomonotoneandcoercivefora.e.t∈(0;T).Therefore,applyingthet∈(0;T)thereexistsasolutionu(

t)∈Voftheproblem(4).Furthermore,owingtothecoercivityofF(t;·),wededuce

thefollowingestimate:

ku(t)kV≤c(1+kf(t)kV) fora.e.t∈(0;T)

2

wi

2

thc>0: (5) Uprsoibnlgemthe(4s)tir∗sonugnimquone.otAolnsioc,itwyeofarAe(ta;b·l)e,

(tIoII.pdr)oavnedththaetthhyepsoothluetsiiosnmo1f>themp2rcoebklγekm,

(w4)eipsraovmeenaoswurtahbaltetfhuencstoioluntioonn(t0o;tTh)e.The existence and uniqueness result for

Problem3.1reads as follows.

AssumeI,IIand f∈V. If either(i)or(ii)of the hypothesis of Lemma3.3holds, then Problem3.1has a unique solution.

Proof. Weuseafixedpointargument.Letη∈V∗.Wedenotebyuη∈Vthesolutionofthefollowingproblem:

A(t;uη(t))+γ∂J(t;γuη(t))3 f(t)−η(t) for a.e.t∈(0; T):

(6)ByLemma3.3weknowthatuη∈Vexistsandisunique.Next,weconsidertheoperatorΛ:V

Vdefinedby

Λη(t)=Suη(t) for allη∈V; a.e.t∈(0; T):

V

(9)

uisniaquseonluetsisonoftothPerofibxeledmpo3i.1n,twofhiΛc.hNcoanmcelulyd,esletthue∈exiVstebneceapsoalruttioofnth teotPhreoobrleemm.3T.1heanudnidqeufienneestshepaerltefmoellnotwηs∈froVm∗tbhyeto(6),weobtainu=uη.Thisimplies

Λη=Suη=Su=ηandbytheuniquenessofthefixedpointofΛwehaveη=η∗,

(10)

Hb=L2(0

;T;H),Z=Lq(0;T;Z),V=Lq(0;T;V)

with1/p+1/q=1andW={w∈V:w0

V},wherethetime withthenormkwk =kwk+kw0k

.Wehave ⊂b ⊂withcontinuousembeddings.Itiswell functionson[0;T]withvaluesinH),i.e.everyelementofW,afterapossiblemodificationonasetofmeasurezero,has

Z

V,whereH;ZandVdenotedualspacestoH;ZandV,respec

tively,allembeddingsarecontinuou

sandV

i p

l b e yo n ad n nZndZ wl.

u(0)=u0;

inequality.

continuously,theinitialconditionu(0)hasameaninginV.

✶✾✺✼

Subdifferential inclusions and quasi-static hemivariational inequalities for frictional viscoelastic contact problems

4. Quasistatic hemivariationalinequalities

LetVandZbereflexive,separable Banach spaces, and letHbe a Hilbert space. Suppose thatV⊂Z⊂H≈H

Gsivceonmaafictxeydenmumebdedred0<inTZ.<W∞edaenndot2e≤byph<·;∞·i,twhedinutarloitducefVtheafodllVow,in gnsptahceesp:aiVri=gLbpe(t0w;eTe;V),Za=Lp(0a;sT;eZl),derivativeisundersWtoodintVhesenseVofvector-

valWueddVistribZutionHs.ThZelattVerisaseparable,reflexiveBanachspaceknown,cf.e.g.

[3,Proposition8.4.14],thatthespaceWisembeddedcontinuouslyinC(0;T;H)(thespaceofcontinuous

auniquecontinuousrepresentativeinC(0;T;H).Moreover,sinceVisembeddedcompactlyinZ,thensoisWinZ, cCfo.n[3s,idTehretohr

eemfo8ll.o4w.1i3n]g.

evolutionary inclusion of the form:

(

A(t)u0(t)+Bu(t)+M∂J(t;Mu(t))3f(t) fora.e.t∈(0;T);

u(0)=u0:

(7)

Weremarkthat,bythedefinitionoftheClarkesubdifferential,problem(7)isequivalenttothefollowinginequality:(A

(t)u0(t)+Bu(t)

−f(t);v)+

J0(

t;Mu(t);Mv)≥0 forallv∈V; a.e.t∈(0;T);

whereJ0standsforthegeneralizeddirectionalderivativeofJ(t;·).Forthisreasonproblem(7)iscalledahemivariational

Definition 4.1.

Afunctionu∈L(0;T;V)iscalledasolutionto(7)ifandonlyifu0

Vandthereexistsη∈Zsuch that

A(t)u0(

t)+

Bu(t)+η(t)=f(t) fora.e.t∈(0;T);

η

u

(

(

t

0

)

)

=

M

u0:

∂J(t;Mu(t)) fora.e.t∈(0;T);

Wenotethatifuisasolutionto(7),thenu∈L(0;T;V)⊂V,i.e.u∈W1;p(0;T;V).SinceW1;p(0;T;V)⊂C(0;T;V)Inadditiontoournotation,le

tXbeaBanachspace.Weassumethefollowinghypotheses.

H(A)A∈L(0;T;L(V;V))isan

p

operatorsuchthatA(t)iscoercive,i.e.thereisaconstantα>0suchthatfora.e.

H(B)

t∈(0

L

;T),hA

(t)v;vi≥αkvkVforallv∈V. symmetric.

H(J)

B∈

;

(V ; V) is

R

monotone (nonnegative) and

(11)

(ii)J(t;·)islocallyLipschitzonXfora.e.t∈(0;T);

✶✾✺✽

J:(0T )×X→ isafunctionsuchthat

H(M)

(i)J(·; x) is measurable on (0; T) for allx∈X;

(iii)k

L

∂J(t;x)kX≤c(1+kxk2X/q)forallx∈X,a.e.t∈(0;T)withc>0.

M∈(Z; X).

(12)

Lemma4.4.

respectively.

S. Migórski

H0 f∈V,u0∈V,u1∈H.

H1

I

k

f

M

p

k

=

L(Z

2

;X

,)t

.

henα> 2cT ce2k

Mkmax{1;kMk},wherece>0isanembedding constantofVintoZandkMk=Thefollo

wingisthemainexistenceresultontheevolutioninclusion(7).

Under hypothesesH(A),H(B),H(J),H(M), f∈V, u0∈V andH1, the inclusion(7)admits at least one solution.

TwheecpornosoidfeorfTanheeovroelmuti4o.2nissebcoanseddoordnetrhiencslou- sciaolnleodfvtahneisfohrinmgaccelerationmethodwhichwedescribebelow.Tothisend,

( εu00(

t)+A(t)u0(

√t)+0Bu(t)+M∂J(t;Mu(t))3 f(t) fora.e.t∈(0;T);

(8) u(0) =u0; εu(0)=u1;

whereε>0. Forεfixed, we write for simplicityufor the solutionuεof (8).

Afunctionu∈Viscalledasolutionto(8)ifandonlyifu0

Wandthereexistsη∈Zsuchthat

εu00(t)+A

(t)u0(t)+Bu(t)+η(t)=f(t) fora.e.t∈(0;T);

η

u

(

(

t

0

)

)

=

M

u0;

∂J(t;M

√u

ε

(

u

t

0

)

(

)

0)=u1:

fora.e.t∈(0;T);

SCi(m0;ilTar;lVy,)aasnbdefWore,⊂weCn(0o;teT;thHa)taifrueicsoantsinouluotuios,ntthoe(8i)n,itthiaelncuon∈diWtio1n;

ps(0u;

(T0;)Va)n.dSiun0c(0e)thheaveembaedmdeianngisngWi1n;p(V0;Ta;nVd)H⊂,First,wecommentontheexistenceresultfor(8).Thei

mportantstepistoderivethefollowinguniformestimate.

t

L

h

e

e

t

re

εe>

xi

0

sts

be

a

fi

c

x

o

e

n

d

s

.

ta

A

n

s

t

s

C

um

>

e0hy

in

p

d

o

e

th

p

e

e

s

n

e

d

s

en

H

t

(A

of

),

ε

H

s

(

u

B

c

)

h

,H

th

(

a

J

t

),H(M)an

dH0,andletubeasolutionto(8).Ifp>2,thenkukC(0;T;V)+ku0k

V+ εku0k

L(0;T;H)

+εku00k

V≤C{1+ku0k2V /q+

ku1k2H /q+

kfk2V /q

:

Moreover, this estimate still holds for p=2providedH1is satisfied.

Theorem4.2.

Definition4.3.

(13)

✶✾✺✾

From [13, Theorem 8], we obtain the following result.

s

If

o

h

lu

y

t

p

io

o

n

th

.

esesH(A),H(B),H(J),H(M),H0andH1hold,thenforeveryfixedε>0theproblem(8)admitsatleastone

The following is the existence result for the operator inclusion (7).

Theorem4.5.

(14)

Problem5.1.

interestingtoextendtheresultofTheorem4.6toaclassofproblemswithnonlinearoperatorsA(t)andB.

dynamicequation00sofmotion,representingmomentumconservation,thatgoverntheevolutionofthestateofthebody,aro ui

j r ,σi deni u ou )

appliedforces.Inmanycasesweareinterestedinsituationsinwhichthesystemconfigurationandtheexternalforcesadtaio volv

y isc thea rt s t rat a e ligb

sothattheinertial(thesecondordertimederivative)termscanbeneglected.Insuchaway,weobtainthequasistaticapro

an(equlb on fr e of n iv ,h is i ge oerto

unviquelnessofsoluatiodnstollebothindynuamsiicsataltacndmqueasisotfaticnhemivahreiantionalinequallliyty,wisleftopk ent.atItweouludesbteanlso

In this approximation, at each time instant the system is in equilibrium, and the external forces are balanced

bytheinern stsses. o s h m t clra uastic oble s irce

rap h hth

ofquasistaticcontactmodelscanbeseenfromseveralmonographsandmanypapersdedicatedtosuchphenomena,cf.DvauanLions a

o 6Sl tl[19 r rencst in we s te

is slow and the accelerations are negligible, mathematically it means that the system changes character, s

frombeingof herolicty an l i a c pe.oo

dgequasat ivari in ati e

been studied in the literature only recentlyand a recent existence result for such problemsisprovided inMigórskianO

al[13].W ntiot i b s odeedb iationalieq i swits ly nte

d

V.j:Γ×(0;T)× is suchthat

✶✾✻✵

Subdifferential inclusions and quasi-static hemivariational inequalities for frictional viscoelastic contact problems

Theorem 4.6.

T

Le

h

t

eo

th

re

e

m

h

4

y

.

p

5

o

.tT

he

h

s

e

e

n

s

th

H

e

(

r

A

e

),

e

H

xis

(B

ts

),

u

H

fu

(J

l

)

fi

,

ll

H

in

(

g

M

u

),

H0

L

an

(0

d

;T

H

;

1

V

h

)

o

,lu

d

0

.

F

W

or

,es

v

u

e

c

r

h

y

t

ε

ha

fi

t

x

t

e

h

d

e

,

f

l

o

e

l

t

lo

u

w

ε

in

b

g

e

c

a

on

s

v

o

e

l

r

u

g

t

e

io

n

n

ce

t

s

o

h

(

o

8

l

)

d

g

:iven

by

√uε→uweakly*inL(0;T;V); u0ε→u0weakly inV;

εu0ε→0weakly*inL(0;T;H);

εu0ε0

0weaklyinV;asε→0.Moreover,thelimitfunctionuisasolutiontotheproblem(7).

Thestudyofinclusionsoftype(7)ismotivatedbyseveralcontactproblemsofsolidmechanics.Itiswellknownthatthee f the form−σi ;j=fi,whe euis a displacement s the stress tensor andfis the s ty (per nit v l me of n r ct ns e e slowl in time n u h a way tha t ccele a ion in the sys em are her small nd n g i le, p xim tio i i rium equati s) o th

equations motio ,−Dσ=fw ere Div the d ver nce p

ar.talreRigroumateaiat etmentofq isatprmsent.Theidgrowtoft ee ory

u t d [4], Han nd Sof nea [ ], hil or ea. ]ande f e e here. When as ume

thath procesay p b peto el ipt c or a parb ol i t y T urknowle

isti c hem ational equ

lieshavsLeipdsecrahcithzimoppoerrtaatnotrsenwmeercehaconnnshigdaetrgqeudqaisnais[t6a,t1c9ip].roWoledemalslso mpcooinlttaoctuytptvhaartomtheenare.suFnlitnaoufaTlihteeoerermemh4a.r6trcoahnngbtehmaopqpolicoanbioleantoof

5. History-dependent hemivariationalinequality

IansstohcisiasteedctiwointhwPeropbrolevimde3.a1.reWseultadoonpetxtihsetennocteatainodnoufniSqeucetnioenss3o.f

Tahesoplruotbiolenmtounadcelrascsonosfidheermaitvioanriarteiaodnsalaisnefoqluloawlisti.esFindu∈V such that hA(t;u(t));viV×V+hSu(t);viV×V+Z

Γ

j0(

t;γu(t);γv)dΓ≥ hf(t);viV×V

(9)forallv∈Vanda.e.t∈(0;T).

Ihnyptohtehesstiusd.yofthehemivariationalinequality(9),inadditiontothepreviousassumptions,weneedthefollowing Rs R

(V.a)j(·;·; ξ) is measurable on Γ×(0; T) for allξ∈Rsandj(·;·;0)∈L1(Γ×(0; T));

(V.b)j(x;t;·)islocallyLipschitzonRsf o r

a.e.(x;t)∈Γ×(0;T);

(V.b)j(x;t;·)islocallyLipschitzonRsf o r

a.e.(x;t)∈Γ×(0;T);

(15)

T

(V.c)k∂j(x;t;ξ)k ≤c0+c1kξk fora.e.(x;t)∈Γ×(0;T),allξ∈ withc0;c1≥0;

(V.e)j0(

2

x;t;ξ;−ξ)≤d0(1+kξkRs)fora.e.(x;t)∈Γ×(0;T),allξ∈Rswith d0≥0.

e

withanobstacleonΓC,theso-calledfoundation.Thecontactisfrictionalandismodeledwithsubdifferentialiboundary conditions.

oftheform(9)inwhichtheunknowniseitherthevelocityorthedisplacementfield.InbothcasestheabstractresultsofS i 4n o

p i v h o

Inthissectionweillustratetheuseoftheseresultsinthestudyoftwocontactproblems.T phscl i g o te r o cprole s slo isel

whitehsuyrfaicae∂sΩettwnhichfishpafirtsittiocnnedtainttothbreemdiisjaoinftomlewass.urAabvlecpoaratsstΓicb;oΓdyao

ncdcuΓpiessuachdothmaatinm(Γo)fIR,.dW=e2a;r3e,D N C D>

thneΓaNccaenledravtoiounmoefftohrecessyosftedmeisityf0actinaΩnd.,Wtheeraesforem,eththeptrohcesfsorcesandtract ionschange,tshloewlyintimiesothatnegligible isquasistatic.Moreover body is ncontact

u·v=uivi; kvkd=(v·v) for allu=(ui); v=(vi)∈

;

✶✾✻✶

S. Migórski

Rs Rs Rs

(V.d)m(ζ1

ζ

0

2

;

)·(ξ1−ξ2 )≥−m21−ξ2k2Rsforall ζii∈Rsi∈∂j(x;t;ξi),i=1;2,a.e .(x;t)∈Γ×(0;T)with

Nexoistetenthcaetainndthuenicqounednietsiosnre(Vsu.dlt)ftohrethdeothdeemniovatersiatthioenainlnienreqpuraodliutyct(9in).Rsh.eFdreo tmailTshoenorietsmp3ro.4o,fwceandbedeufcoeuntdheinfo[l1l4o]w.ing

Theorem 5.2.

AssumethatIandIIholdandf

√∈V.Ifoneofthefollowinghypotheses:

(

(

ii

i

)

)V(V.

a

a

n

)–

d

(V

m

.d

1

)

>

an

m

d

2

m

c2

1

>

k2

max{3c1;m2}ce2k γk2,

is satisfied, then Problem5.1has a solution u∈V. If, in addition, the regularity condition:

eitherj(x;t;·)o r −j(x;t;·)is regular onRsf o r a . e .

(x;t)∈Γ×(0;T) holds, then the solution of Problem5.1is unique.

6. Quasi-static frictional contactproblems

Alargenumberofquasistaticcontactproblemswithelasticorviscoelasticmaterialsleadstoahemivariationalinequalityectons3,a d5wrkandcanbeusedtor ovidetheunqueweaksolabilityoftecrrespondingcontactproblems.

d

oiTnt>ere0s.teTdheinbltohdeyeivsoclulatimopnepdrooncnsesΓsDoafntdhesomtehcehadnisicpalalcsseutmateentoffiaethltdeevbaondiyshi enstthheerbeo.uSnudrefdacientterarvcatiloonfstoimfdee[n0s;0Tty],fwNhearcet

tWheeduissepltahceemnoetnattivoenctνor=,th(νei)stfroerssthteenosuotrw,aarnddutnhietlnionremarailzeadt∂stΩra.inWteendseonro,trees bpyecutiv=el(yu.i)W,σedr=ec(aσlilj)t,haantdthεe(uc)om=p(oεnije(nut)s)

osyfmthmeetlriniceaterinzseodrssotrnaiRndteonr,soerquεi(vua)leanrtely,gtivheenspbayceε ijo(fus)y=mm(ueti;rjic+muajt;ir)i/c2e.sWofeorddeenrodte.TbyS

thes p a cinenoefrsperocodnudctsoradnedr

thecorrespondingnormsonRdandSdaregivenby he canonical

R 1/2 Rd

o:τ=σijτij; kτkSd= (τ:τ)1/2 forall σ=(σij); τ=(τij)∈Sd;

rWesitphecthtievseelyp.reliminaries,theclassicalformulationofthequasistaticcontactproblemweconsiderinthissectionisth e

following.

following.

(16)

more details andmechanicalinterpretation.T A B

perators A and B with respect to the time variable allows to model situations when the properties of the material

od i

evo

no

N

tatio

0

n

;

vaa

n

ndv

C

f

=

ort h

C

e

×

n

(

o

0

rm

T

a

)

la

F

n

o

d

r

tan

l

g

v

entia

H

l

dwe

o

s

fv

ll

on∂

o

te

g

b

iven

v

b

t

y

he

vt

r

=

ace

v·fν

v

an

o

d

n

v

Γa

=

nd

vw−vν.We

rall at

ν τ

components ν τ ν

istheequilibriumequation,whereDivrepresentsthedivergenceoperator,i.e.Divσ=(σij;j).Conditions(10c)and(10d)a et r o

o y n and

νandτforσandu0indicatenormalandtangentialcomponentsoftensorsandvectors.Thesymbol∂jdenotestheClarkesbdi tlof

i heata o psofici l e u re

functionu0denotestheinitialdisplacementfield.

boundaryconditionsoftheform(10e),(10f)withthefunctionsjνandjτsatisfyingassumptionsVIIIandIXbelowcanbefundi 25].

e, e tuelv mark emp i clet v t o

withnonmonotonenormaldampedresponse,associatedtoanonmonotonefrictionlaw,toTresca’sfrictionlawortoapwer- awftion rr

ls l re l thecr d qu i be

(VI.a)A(·;·;ε)ismeasurableonQforallε∈Sd;

(VII.a)B(·;·;ε)ismeasurableonQforallε∈Sd; (VI.e)A(x;t;0)=0fora.e.(x;t)∈Q.

(VI.b) (x;t;·)iscontinuouson fora.e.(x;t)∈Q;

(VI.c)( (x;t;ε1)−(x;t;ε2)):(ε1− ε2)≥mkε1−ε2kdfor allε12 , a.e.(x; t)∈Qwithm>0;

Subdifferential inclusions and quasi-static hemivariational inequalities for frictional viscoelastic contact problems

Problem 6.1.

Find the displacement fieldu: Ω×[0; T]→Rdand the stress fieldσ: Ω×[0; T]→Sdsuch that, for allt∈(0; T),

σ(t)=A(t;ε(u0(

t)))+B(t;ε(u(t))) inΩ; (10a)

Divσ(t)+f

u

0((

t

t)

)

=

=

0

0

io n n

Γ

;

D;

((1100bc))

−σν(t)∈

σ(t

)

j

ν

ν(t

=

;u

f

0

N

(t

(t

))

) o

o

n

n Γ

Γ

N

;

;

(

(

1

1

0

0

d

e

)

)

C

−στ(t)∈∂j

u

τ(

(

t

0

;

)

u0(t

u

)) o

in

nΩΓ; ((1100gf))

=

τ

0 :

C

WepresentashortdescriptionoftheequationsandconditionsinProblem6.1andwereferthereaderto[6,15,19]for

thheeveiqscuoastiitoyno(1p0eara)troerpraensdenetslatshtiecivtiyscoopeelarasttiocr,corenssptietcuttiivveelyla.wTihne wehxipchlicitadnedpendaernecegivoefnthneonvliisnceoasritoypearnadtoersla,sctailclietdyepend on the temperature, which plays the role of a parameter, .e. its lutionin time is prescribed.Equality(10b)re the displacem n and t acti n b undar co ditions, respectively, (10g) is the initial condition in which the

Conditions(10e)and(10f)representthefrictionalcontactconditionsinwhichjνandjτaregivenfunctions.Thesubscripts uffereniajw th respect totlsv riable.

C ncrete exam le f rtona mod ls which lead tos bdiffe ntial o n [1,1H re we r stric o rs es to re that these xa les n ud he iscous contac and the cntact

IΓnot×he(lsTtu)dyricodfΣth.eOcuonΓtaecstupt;robbel.eomw(a10aal)v–

a(1id0∈gf)orw1e(Ωu;sRoer)setsapnodnatridingndoetnaatisoinstaQytic=frΩcti×on(0a;lTco)o,ntΣaDct=proΓDl×m(s0.;Te) u,sΣeNth=e

σec=σthνthσeνn.ormaxlt,awndetianntrgoednutciaeltchoemsppoanceenstsVoftheHstressfieldbσyoVnt=he{vbo=un(dva)rya Hre1(dΩe;fiRnedd):bvyσν0=(aσ.eν.)·νΓand}

an

τ

dH=−L2(Ω

ν

;Sd

N

).

e

and ,

defined i = onD

We assume that the viscosity operator A and the elasticity operator B satisfy VI. A:Q×Sd→Sdis suchthat

A Sd

A A A 2

S Sd A

(VI.d)kA(x; t;ε)kSd≤a0(x; t)+a1kεkSdfor allε∈Sd, a.e. (x; t)∈Qwitha0∈L2(Q),a0≥0 anda1>0;

VII. B:Q×Sd→Sdis suchthat

ν

(17)

✶✾✻✷

(VII.b)kB(x; t;ε1)−B(x; t;ε2)kSd≤LB1−ε2kSdfor allε12∈Sd, a.e. (x; t)∈QwithLB>0;

(VII.c)B(·;·;0)∈L2( Q;Sd).

(VII.c)B(·;·;0)∈L2( Q;Sd).

(18)

IX.jτC× Rd is suchthat VIII.jνC× is suchthat

(IX.b)jτ(x;t;·)islocallyLipschitzonRdf o r

a.e.(x;t)∈ΣC; (VIII.b)jν(x;t;·)islocallyLipschitzonRfora.e.(x;t)∈ΣC;

(VIII.d)(ζ1−ζ2)(r1−r2)≥−mν|r1−r2|2f o r a l l

ζi∈∂jν(x;t;ri),ri∈R,i=1;2, a.e.(x;t)∈ΣCwithmν≥ 0;

(IX.e)jτ0(x;t;ξ;−ξ)≤dτ(1+kξkRd)forallξ∈Rd,a.e.(x;t)∈ΣCw i t h dτ≥0.

(IX.c)k∂jτ(x;t;ξ)k ≤c+ ckξk for allξ∈ ,a.e.(x;t)∈ΣCwithc;c≥ 0;

whichimplythat Z Z

0 0 0

0

✶✾✻✸

S. Migórski

The contact potentialsjνandjτsatisfy the following hypotheses.

(VIII.a)jν(·;·; r) is measurable on ΣCfor allr∈Randjν(·;·;0)∈L1C);(VIII.c)|∂jν(x;

t; r)| ≤c+c|r|for allr∈R, a.e. (x; t)∈ΣCwithc; c≥0;(VIII.e)jν0( x;t;r;

−r)≤dν(1+|r|)forallr∈R,a.e.(x;t)∈ΣCwithdν≥0.

(IX.a)jτ(·;·;ξ) is measurable on ΣCfor allξ∈Rdandjτ(·;·;0)∈L1C);

Rd Rd Rd

(IX.d)(ζ1−ζ2)·(ξ1−ξ2)≥−mτ1−ξ2kR2dforallζi∈∂jτ(x;t;ξi),ξi∈Rd,i=1;2,a.e.(x;t)∈ΣCwithmτ≥0;

The volume force and traction densities satisfy

f0∈ L2(

0;T;L2(Ω;

Rd); fN∈ L2( 0;T;L2

N;Rd) (11)

and, finally, the initial displacement issuchthat

u0 V: ∈

(12)w

W

h

e

ic

t

h

ur

s

n

o

n

lv

o

e

w

(

1to0ath

)–

e

(1

va

0g

ri

)

a

.

ti

L

o

e

n

t

a

v

lf

orm

V

u

.

la

T

t

h

i

e

o

n

n

,

o

u

f

s

P

in

r

g

ob

(

l

1

e

0

m

b)

6

,

.1

w

.

e

S

h

u

a

p

v

p

e

osethat(u;σ)isacoupleofsuffic ientlysmoothfunctions(σ(t);ε(v))H=(f0(t);v)L2(Ω;Rd)+ Z

∂Ω

σ(t)ν·vdΓ for a.e.t∈(0;T): (13) WetakeintoacZcounttheboundarZyconditions(10cZ)and(10d)toseethat

∂Ω

σ(t)ν·vdΓ=Γ

N

fN(t)·vdΓ+Γ

C

(σν(t)vντ(t)·vτd Γ for a.e.t∈(0;T): (14) On the other hand, from the definition of the Clarke subdifferential, (10e) and (10f), we have

−σν(t)vν≤jν0(

t;u0ν(t);vν); −στ(t)·vτ≤jτ0(

t;u0τ(t);vτ) onΣC;

ΓC

(σν(t)vν+ στ(t)·vτd Γ≥ − Γ

C

(jν(t;uν(t);vν)+jτ(t;uτ(t);vτ)d Γ

(15)fora.e.t∈(0;T).Considerthefunctionf:(0;T)→Vgivenby

hf(t);viV×V=(f0(t);v)L2(Ω;Rd)+(fN(t);v)L2N;Rd) (16)

for allv∈Vand a.e.t∈(0; T). We com

Z

bine (13)–(16) to obtain

C

(0 0 0 0

(σ(t);ε(v))H+

Γ

jν(t; uν(t);vν)+jτ(t;uτ(t);vτ)dΓ≥ hf(t);viV×V

R

(19)

H

!!

!

(u;σ)iscalledaweaksolutionofthefrictionalcontactproblem(10a)–(10g).Weconclude,underthehypothesesof

Wenowpasstothesecondproblemofthissection.Weconsiderthequasistaticviscoelasticcontactwithnonmonotonen a

lae ion. t fist ,e ume tatt o fo sa acetractionschange

slowlyintimesothattheaccelerationinthesystemisnegligible.Weshowthatthequasistaticmodelcanbeformulateda t

dp e e riati inulit frm and e a su fTo 3.4is applicablein

the displacement field, byσ:Q→

Subdifferential inclusions and quasi-static hemivariational inequalities for frictional viscoelastic contact problems

and, using the constitutive law (10a), it follows (A(t;ε(u0(

t)));ε(v)H+

(B(t;ε(u(t)));ε(v)H+

ZΓC

(jν0(

t;u0ν(t);vν)+jτ0(

t;u0τ(t);vτ)d

Γ≥ hf(t);viV×V (17)

ffoolrloawllsvth∈atVanda.e.t∈ (0;T).Letw=Zut0denotethevelocityfi el d. Then,b yusi ngthe initial con di ti on (10g),i t Therefore,(17)and(18)leadtotheu(t)=

0

w(s)ds+u0 forall t∈[0;T]:

)–(10g),intermsofvelocity.

(18)

Problem6.2.

following variational formulation of problem (10a

Find a velocity fieldw∈V such that

(A(t;ε(w(t)));ε(v)H+Bt;ε

Z0t

w(s)ds+u0 ;ε(v) +Z

ΓC

(jν0(

t;wν(t);vν)+jτ0(

t;wτ(t);vτ)d

Γ≥hf(t);viV×V

for allv∈Vand a.e.t∈(0; T).

oTbhteaihnetmhievafroilalotiwoninaglrineseuqlutaolintyPirnobPlermobl6e.2m.6 .2 isof th e form of t he inequality in Probl em5 . 1.FromTheorem5 .2,w e

As

(i

s

)

um

(

VeIItI.h

a

a

)–

t((

V

V

I

I

I

.

I

a.d),

),

V

(

I

I

I

X

,.(

a

1

)

1

)

(

IaXn.dd

)

(

a

1

n

2

d

)h

m

o

1

ld

>

.I

m

fao

x

n

{

e

√o

3

f(t

c

h

1

e

ν+

fol

c

l

1

o

τ

w

);

i

m

ng

ν;

h

m

y

τ

p

}

o

c

th

e2

e

k

s

γ

e

k

s

2

:

,

(ii)VIII,IXandm1>max{mν;mτ}ce2k γk2

ssatisfied,thenProblem6.2hasatleastone solution. If, in addition,

either jν(x; t;·); jτ(x;t;·)are regularor −jν(x;t;·);− jτ(x;t;·)areregularfora.e.(x;t)∈ΣC; (19)

then the solution of Problem6.2is unique.

Letwbeasolution of Problem6.2and denotebyuandσthe functionsdefinedby (18)and (10a). Then, thecoupleTheorem6.3,thatthefrictionalcontactproblem(10a)–(10g)hasatleastoneweaksolutionwiththefollowingregularity:

u∈W1;2(0

;T;V)and σ∈ L2(0

;T;H) withD i v σ∈L2(0

;T;V): If,inaddition,theregularitycondition(19)holds,thentheweaksolutionofProblem6.1isunique.orm l comp i nc

andfrcti As in he r problemw a ss h he vlumerce ndsurf

thsisacaimsee.Feoretnhdemntechhamniivcaalforomdnuallatioenqoafthyeopfrothceessowe(u7s)ethetnhotaatbidosntrincttrore ducletdoabohvee.reWmesetQ=Ω×(0;T).

Aεg(auin)=we(∂duen+ot∂eub)y/2ut:heQst→rRtensor.WeassumealinearviscoelasticSthewstirtehssthetecnosnosrtiatunt divebylaεw(uo)ft=he{Kεeijl(vui)n}–,

V

i

o

j

igttypej

i ij

ain Theorem6.3.

i

(20)

✶✾✻✹

σij

=aijkl εkl (u0)+bijkl εk l

(u)

model inQ;

Cytaty

Powiązane dokumenty

Differential hemivariational inequality, Rothe method, Clarke generalized gradient, Fractional Caputo derivative, Adhesion, Fractional Kelvin–Voigt constitutive

[22] in 2013 studied the existence and global bifurcation problems for periodic solutions to a class of differential variational inequalities in finite dimensional spaces by using

Its aim is to complete [13] with a new existence and uniqueness results in the study of a class of subdifferential inclusions and hemivariational inequalities, and to apply

Denkowski, Z., Mortola, S.: Asymptotic behaviour of optimal solutions to control problems for systems described by differential inclusions corresponding to partial

Abstract. In the paper we deliver a new existence and uniqueness result for a class of abstract nonlinear variational- hemivariational inequalities which are governed by two

Viscoelastic rod; Contact; Clarke subdifferential; Differential inclusion; Nonconvex potential; Weak

First-order nonlinear evolution inclusion problems with nonsmooth and nonconvex potentials This section is devoted to explore the existence and uniqueness for a generalized

This contact problem is expressed as a variational-hemivariational inequality for the displacement field, for which we apply our abstract results, including the convergence