• Nie Znaleziono Wyników

Crosstalk between BCR/ABL and RNAi

N/A
N/A
Protected

Academic year: 2022

Share "Crosstalk between BCR/ABL and RNAi"

Copied!
7
0
0

Pełen tekst

(1)

Review/Praca poglądowa

Crosstalk between BCR/ABL and RNAi

Interakcje pomiędzy BCR/ABL a RNAi

Sylwester Głowacki *, Ewelina Trela, Janusz Błasiak

DepartmentofMolecularGenetics,FacultyofBiologyandEnvironmentalProtection,UniversityofLodz,head:drhab.

KatarzynaWoźniak,Łódź,Poland

Introduction

Chronicmyeloidleukemia(CML)isprobablyoneofthemost extensively studied human malignancies. It is associated withaconsistentchromosomalabnormality– thePhiladel- phia(Ph)chromosome[1].ThePhchromosomeresultsfrom areciprocaltranslocationt(9;22)(q34;q11)whichinvolvesthe

ABL proto-oncogeneon chromosome9 and BCR(for break- pointclusterregion)onchromosome22[2].Thistransloca- tion creates the BCR/ABL fusion gene which encodes the BCR/ABL protein,atyrosine kinaseprotein thatis believed to be the principal cause of the CML pathogenesis [1, 3].

Molecular signaling in CML affected by BCR/ABL is highly complex and activates multiple signal transduction path- ways (see [1,2] for more details). The activity of BCR/ABL article info

Articlehistory:

Received:12.11.2012 Accepted:27.06.2013 Availableonline:11.07.2013

Keywords:

 Leukemia

 Epigenetics

 BCR/ABL

 RNAi

 siRNA

 miRNA

Słowakluczowe:

 białaczka

 epigenetyka

 BCR/ABL

 RNAi

 siRNA

 miRNA

abstract

Chronicmyeloidleukemia(CML)isamalignantdiseaseofprogenitormyeloidcellscau- sedbychromosomaltranslocationthatresultsintheformingofdiminutivePhiladephia chromosome that harbors BCR/ABL fusion oncogene. The product of this oncogene, a tyrosine kinase, altersseveral important regulatory pathways related to cell growth anddifferentiationthusleadingtocancertransformation.MajorformofCMLtherapyis basedontyrosinekinaseinhibitors,firstofallimatinib(IM).Somepatientsdevelopresis- tancetoIMinthecourseoftreatment.Intheprocessofleukemogenesistheactivityof miRNAs–oneofgroupsofRNAsinvolvedinRNAinterference(RNAi)–isaltered.Signa- turesof altered miRNAsactivitymay serveas a prognosticfactor inthe development andtherapyofseveraldiseases.Moreover,othergroupofRNAsinvolvedinRNAi–siRNA – might be valuable addition to array of specific therapeutics targeted the BCR/ABL kinase.

©2013PolskieTowarzystwoHematologówiTransfuzjologów,InstytutHematologiii Transfuzjologii.PublishedbyElsevierUrban&PartnerSp.zo.o.Allrightsreserved.

*Correspondingauthorat:KatedraGenetykiMolekularnej,WydziałBiologiiiOchronyŚrodowiska,ul.Pomorska141/143,90-263Łódź, Poland.

E-mailaddress:sglowa@biol.uni.lodz.pl(S.Głowacki).

ContentslistsavailableatSciVerseScienceDirect

Acta Haematologica Polonica

journalhomepage:www.elsevier.com/locate/achaem

0001-5814/$seefrontmatter©2013PolskieTowarzystwoHematologówiTransfuzjologów,InstytutHematologiiiTransfuzjologii.PublishedbyElsevierUrban&PartnerSp.zo.o.Allrightsreserved.

http://dx.doi.org/10.1016/j.achaem.2013.07.001

(2)

leadstoderegulated cellularproliferation,decreasedadher- ence of leukemia cells to the bone marrow, and reduced apoptosis what results in the malignant expansion of pluripotentstemcellsinbonemarrow[3].CMLissubdivided into three phases: chronic phase (CP), which is the initial phase and disease, is usually diagnosed at this stage.

Subsequently,itadvancestoanacceleratedphase(AP).The last CML phase is called blast crisis (BC) [1]. Since CML is caused by BCR/ABL it was possible to design an effective targeted molecular therapy which selectively inhibits the aberrant BCR/ABL protein [4]. Imatinib mesylate (imatinib, IM,STI-571,Glivec®,NovartisPharma)isaBCR/ABLtyrosine kinase inhibitorthat is used for the treatment of CML. IM blockstheATP-bindingsiteandstabilizestheinactiveform of BCR/ABL thus blocking downstream signal transduction pathwaysaffectedbythisprotein[4].

RNA interference (RNAi) is a process, in which small non-coding RNAs(ncRNAs) incorporatedinto multi-protein RNA-inducedsilencingcomplex(RISC) repressgeneactivity inasequence-specificmannerat transcriptional,post-tran- scriptionalortranslationallevel [5,6].Theprocessof RNA- mediatedgenesilencinghasanessentialrole incell devel- opment, differentiation, proliferation, apoptosis, maintain- ingofchromatinstructure,virusresistanceandoncogenesis [7]. Thereare threetypes of smallncRNAsincluding micro RNA (miRNA), small interfering RNA (siRNA) and Piwi- interactingRNA(piRNA)[8].Inourreviewwewillfocuson siRNA and miRNAs as best understood groups of small ncRNAs,and theirroleinprocessesofleukemogenesisand interaction with signaling and regulatory pathways, in whichBCR/ABLkinaseisactive.

Biogenesis of miRNA and siRNA

MicroRNAsaresmall,approximately22 ntlong,RNAsthat are derived from endogenous hairpin-shaped transcripts through the action of the Drosha and Dicer proteins, and subsequentlyboundbyAgo-familyproteinsformingmature RISC complexes [9] (Fig. 1). Some of miRNA genes are located in introns of pre-mRNAs [10]. Other miRNA genes are clustered in the genome with an arrangement and expression pattern indicating polycistronic primary tran- scripts[11].TheprimarytranscriptsofmiRNA(pri-miRNAs) are usuallygenerated by RNA polymerase II[12]. They are processedinthenucleusbyMicroprocessorcomplex,which containsDroshaandDGCR8,alsoknownasPasha,proteins [9, 13]. The pre-miRNAsare transported tothe cytoplasm, wheretheyundergofurtherprocessingbytheDicerprotein, which cleaves dsRNA and releases a22-nucleotide mature double-stranded miRNAs.Onestrandof the miRNAduplex is subsequently loaded onto the Ago protein, and then incorporated into fully functional RISC complex, while the otherone,calledpassengerRNA,beingdegraded[9,14,15].

SmallinterferingRNAsareslightlyshorter thanmiRNAs andare around21ntlong.OriginallysiRNAswerebelieved to be exclusively derived from the exogenous RNA [6].

However, endogenous siRNA (endo-siRNA) were recently discovered in Drosophila melanogaster, mouse oocytes and somestem cells(reviewedin[9]).SimilarlytomiRNAsthey

formRISCcomplexeswithAgo-familyproteins[16],butthey differ in their biogenesis. Their origin stems from long double-strandedRNAsareprocessedwithDicerbutwithout Drosha activity (Fig. 2) [9]. Exogenous siRNAs may come from processedviral RNA[17], whileendo-siRNAoriginates from precursors created through transcription of sense- antisense pairs of transposons, or from long, self-paired, double-strandedfragmentofmRNAs[18].

RNA interference mediated by mi- and siRNAs

Thecoreactivityofmi-andsiRNAsissimilar:theyallowfor specificmodulationofgeneexpressionthroughguidingthe activity of RISC complexes. The complex contains Ago, which isbelievedtobeacoreelementof itwithits ability tobindtosingle-strandedRNA(ssRNA)anddsRNA [19,20].

After recognition of complementarity between targeted mRNAandmi-orsiRNAtemplate,RNaseactivityofRISCis induced,leadingtodegradationofmRNA[21].

The miRNAs can direct the RISC to downregulate gene expression by mRNA cleavage or translational repression.

Thepathway of silencingisdetermined bythe kindof the target: theRISCwillspecifycleavage ofthe targetmRNAif themRNAhassufficientcomplementaritytothemRNAorit will repress productive translation if the mRNA does not Fig.1–BiogenesisofmiRNA.miRNAsarederivedfrom endogenousprecursorsprocessedbythemicroprocessor complex,exportedtocytoplasm,processedbyDICERand loadedontoAGOproteinformingmatureRISCcomplexes

(3)

have sufficient complementarity to be cleaved. [19].

Recently, it was also shown that miRNAs could induce transcriptional silencing in human cells, directing Ago1, Polycombgroup(PcG)andhistonemethyltransferaseenhan- cer of zeste homolog1 (EZH2) recruitment to specific DNA sequences,alteringhistonemethylationstatus[22].Overthe several past years it was shown that miRNAs are able to repress the expression of important cancer-related genes andexpressionofmiRNAgenescontributetothepathogen- esisofhumanmalignances[23].

SmallinterferingRNAscanrepressgeneactivitythrough transcriptional gene silencing in human cells [5]. This mechanism needs an mRNA transcribed with 50 extended untranslated region overlapping with gene promoter, and probably involves some modification in methylation status [24, 25]. For example, after exposure to the siRNA, the targeted promoter exhibits higher levels of the silencing histonemethylmarksH3lysine-9di-methylation(H3K9me2) and histone H3 lysine-27 tri-methylation (H3K27me3) [26].

However, the role that DNA methylation plays in this

transcriptional silencing remains uncertain, as siRNA mediated transcriptionalgenesilencingwasobservedinthe absence of increased DNA methylation at the targeted promoter,buttheseobservationswerenotconfirmedinother studies[27,28].Inaddition,thequestionhowexactlysiRNAs recognize and modulate transcriptional gene silencing through histone methylationremains unanswered[24]. Pre- sumably,transcriptionalgenesilencinginvolvesDNAmethyl- transferase3a(DNMT3a),Ago1aswellasAgo2,HDAC-1and EZH2and/orG9a[24,26,29–31].DespitetheroleofsiRNAin transcriptionalgenesilencing,theywerealsoreportedtoact ingeneactivationinhumancells[29,32].

Interaction between miRNAs and BCR/ABL

There is growing evidence that miRNAs may play an important role in BCR/ABL-dependent malignancies (see Table I and Fig. 3). For example, miR-203 controls the expressionoftheABL1geneaswellasthefusiononcogene Fig.2–BiogenesisofsiRNA.siRNAscanbederivedbothfromendogenousprecursorsencodedinthegenomeaswellasfrom exogenousdouble-strandedRNAs.ProcessingofendogenousprecursorsoccurswithoutDroshaactivity.Afterbeing exportedintocytoplasmdoublestrandedmiRNAprecursorsareprocessedbyDICERcomplexandloadedontoAGOprotein

(4)

BCR/ABL.Itwasdemonstratedthatincreasedlevels ofmiR- 203 expression resulted in a decreased expression of BCR/

ABL[33].Moreover,aninhibitionofBCR/ABLexpressionwith miR-203sensitized BCR/ABL-positivecells toIMaction [34].

Anotherstudysuggeststhepresence ofareciprocalregula- toryloopbetweenBCR/ABLandmiR-451inducingtheinhibi- tionof miR-451bytheBCR/ABLactivity.Because miR-451is BCR/ABL negative regulator, this results in the increased expression of BCR/ABL.Moreover, this process may leadto synergy in the activity of miRNA and BCR/ABL tyrosine inhibitorIM[35].Otherinteractionsmayincludesynergyin oncogenic activity between some miRNAs and BCR/ABL kinase itself. One such case is miR-125b that was found over-expressed up to 90 times in acute myeloid leukemia cells with chromosomal translocation t(2;11)(p21;q23), and could accelerate leukemia development even when co- expressedwithBCR/ABL[36].

Recent findings show that specific miRNAs may play a fundamental role in the activation of oncogenic signal transductionpathwaysinCMLcells.Adecreasedexpression of miR-326 was reportedto lead tounrestricted activity of Smotransducer, akey player intheHedgehog pathway,in CMLcells[37].Similarly,miR-138actsinminicircuitrywith BCR/ABL and GATA1, an important factor in regulation of erythroidandmegakaryocyticdevelopment.Overexpression ofmiR-138decreasesBCR/ABLactivity.Conversely,IMtreat- ment increases miR-138 activity, which in turn activates GATA1[38].

As shown above miRNAs can directly modulate the expressionofBCR/ABL.However,thetyrosinekinaseactiv- ity of BCR/ABL was also shown to contribute to the expressionofdistinct miRNAs.Although changesinactiv- ityofmanymiRNAs areobservedinCMLcells,notallare BCR/ABL-dependent.It was shownthat hsa-miR-10a, hsa- miR-150, andhsa-miR-151 were down-regulated, whereas hsa-miR-96 was up-regulated in CML CD34+ cells. Among

these miRNAs,only activity ofhsa-miR-150 andhsa-miR- 151 was related to BCR/ABL kinase function, which was assessed by inactivation of BCR/ABL by IM [39]. It was reported that miR-17-92 cluster was expressed in a BCR/

ABL-dependent manner, and expression of pri-miR-17-92 wasalsomediatedbymyelocytomatosisoncogene(c-MYC).

Inaddition,miR-17-92miRNAswereoverexpressedinCML cellsinCP, but notinBC[40]. Anotherstudyshowed that miR-31, miR-155, miR-564 and, miR-328 despite possessing distinct targets, were downregulated and this effect was dependentonBCR/ABLtyrosinekinaseactivity[41,42].More- over, thedownregulationof miR-328wasalso dependenton BCR/ABL in dose-dependent manner [41]. BCR/ABL was reported to upregulate some miRNAs and in consequence inhibitnegativegrowthregulatorsandpromotingcellgrowth.

AsanexampleofthesemaybemiR-130aand-130b.Expres- sionofmiR-130aandmiR-130bwasobservedtobeBCR/ABL- dependent, but the exact mechanism by which BCR/ABL affects the expression of these miRNAs remains unknown.

However,apparentlyafterstimulationoftheactivityofthese miRNAs by BCR/ABL inhibition of CCN3 negative growth regulatoroccurspromotingcellproliferation.[43].

Micro RNAs and therapy of BCR/ABL dependent leukemias

TheuseofIMrevolutionizedtreatmentofCML[4].Despitethe clinicalsuccessobtainedwithIM,resistancetothisdrugisan emergingproblem[3]. SinceabnormalexpressionofmiRNAs wasdescribedinleukemias,miRNAsmaymodulateresponse to IM treatment in CML patients. It was reported that lentivirus-mediated over-expressionof polycistronicmiRNAs of miR-17-92 cluster enhanced response to IM [40]. It was also shown that miR-150 and miR-146a were upregulated, whilemiR-142-3pandmiR-199b-5pweredownregulatedafter TableI–MicroRNAs(miRNAs)expressedincellsharboringBCR/ABLkinase

miRNA Feature Reference

miR-7 DownregulatedinIM-respondingCMLpatients [44]

miR-10a DownregulationinCML,notBCR/ABL-dependent.TargetofthismiRNA isagrowthfactor

[36]

polycistronicmiR17-92cluster DownregulatedbyIMactionandsiRNAtargetedatBCR/ABL. [37]

miR-23a/26a/29a/29c DownregulatedinIM-respondingCMLpatients [44]

miR-30a InhibitedbyIM,actsasinhibitorofautophagy [45]

miR-30b/30c DownregulatedinIM-respondingCMLpatients [44]

miR-31 BCR/ABL-dependentdownregulationinCMLcells [39]

miR-96 BCR/ABL-dependentdownregulationinCMLcells [36]

miR-100/126# DownregulatedinIM-respondingCMLpatients [44]

miR-130a/b DownregulatedafterBCR/ABLknockdown,negativelyregulatesanti- growthfactorCCN3

[40]

miR-134/141 DownregulatedinIM-respondingCMLpatients [44]

miR-138 DecreasesactivityofBCR/ABL,sensitizestoIMaction [38]

miR-150 BCR/ABL-dependentdownregulationinCMLcells [36,41,42]

miR-151 BCR/ABL-dependentdownregulationinCMLcells [36]

miR-155 BCR/ABL-dependentdownregulationinCMLcells [39]

miR-183/191/196b/199a DownregulatedinIM-respondingCMLpatients [44]

miR-203 Lostthroughdeletioninsomehematopoeticmalignancies.ThismiRNA downregulatesABL1,includinginfusionwithBCR.

[33]

miR-224/326/422b/520a DownregulatedinIM-respondingCMLpatients [44]

miR-564 BCR/ABL-dependentdownregulationinCMLcells [39]

(5)

14 daysof IMtherapy [46]. Moreover,this study alsofound thataberrantexpressionlevelofthesemiRNAswasreturning towardnormallevels asseenin healthydonors,suggesting thatmiRNAs,byregulatingdistinctgenes,maybeinvolvedin BCR/ABL-driven leukemogenesis [46]. Another study, which was aimed at identifying miRNAs and their related targets associated with CML pathogenesis, revealed that miR-150, miR-20a,miR-17, miR-19a,miR-103, miR-144, miR-155, miR- 181a, miR-221 and miR-222 were deregulated in CML [47].

However,stating iftheyfunctionindependenceorindepen- denceofBCR/ABLneedsfurtherinvestigation[47].MicroRNAs mayalsoplayaroleinthedevelopmentofIM-resistance. It was shown that IM inhibits expression of miR-30a, which functions asinhibitorof autophagythrough downregulation ofBeclin1andATG5expression.Autophagy,inturn,isoneof waysof avoiding cell deathinduced byIM treatment.Thus this miRNA may serve as a basis for mechanism of IM- resistance. It was shown that decreased levels of miR-30a correlatedwithincreasedlevelsofABL1andBCR/ABLexpres- sion[48].

Since growing numbers of patients are suffering from resistance to IMit is necessarytofind markers which will enable identification of patients who may develop such resistance. One kind of such markers might be specific signatures of altered miRNA activity. It was revealed that a group of 19 miRNAs may function as predictors for IM resistance in newly diagnosed CML patients [44]. Among them18weredownregulatedandonlyonewasupregulated [44]. Another study showed that miR-451 was downregu- lated inIM-resistantpatientascompared toIM-responding patients suggesting that miR-451 expression levels are correlated with response to IM therapy [49]. Nevertheless, furtherstudiesarerequiredtoconfirmandvalidatetherole ofmiRNAsasnovelmarkersinpredictingIMresistance.

Inrecentyearsanewareaofpotentialdrugdevelopment emerged, that aims synthetic siRNAs targeted at specific oncogenesasameansofsuppressingtheiractivity.Several attempts wereperformed for evaluation of validity of that methodfortreatmentofBCR/ABL-inducedleukemias.Itwas demonstratedthatdeliveryofdouble-strandedRNAtargeted at BCR/ABLoncogeneresultedinRNAithatcausedBCR/ABL inhibitionanddeathofleukemiccells[50].ActivityofRNAi- based inhibitors appears to be even more specific than classical tyrosine inhibitors. snRNA designed for targeting specificvariantsof BCR/ABL– formedbyb3a2 breakpoint– inducedcelldeathonlyincellscarryingthisspecificvariant of that gene [51]. Successes in inducing cell death in leukemic cells with siRNA targeted at BCR/ABL led to evaluation of combined treatments with classical tyrosine inhibitorsandsiRNAs.DeliveryofIMtoK-562cellscarrying BCR/ABL together with siRNA targeted at this oncogene resulted in 3-fold decrease in IM EC50[52]. Synergism was alsoobservedbetweenactionofsiRNAstargetedatBCR/ABL and otheroncogenes [53]. Synthetic siRNAswerealsoused for overcomingIMresistanceinpatientwithCMLrecurring after IMtherapy.TheseresultssuggestthatsiRNAsmaybe feasible inCML therapy [54]. Similarresults wereobtained invitroforleukemiccellsderivedfrompatientwithrelapsed acutemyeloidleukemia,whoexhibitedPh+chromosomede novoduringclinicaltreatment.DeliveryofsiRNAresultedin cell-deathinductionincellsresistanttoIM[55].Moreover,it was demonstrated that siRNAs could overcome IM-resis- tance basedboth onBCR/ABLoverexpressionand its point mutations[56].

Future perspectives

Current findings indicate that many intertwined pathways involving BCR/ABL kinase activity and miRNA epigenetic modulationofgeneexpressionarepresentinleukemiccells.

Those mutual influences may be positive or negative in nature.Becauserecentadvancesinunderstandingtheroleof smallnon-codingRNAsprovideaplentyofnewlyidentified miRNAsandsiRNAsthisareaofresearchmay createanew opportunitiesforstudyingofmechanismsofcancertransfor- mation. Moreover, this may lead to development of new therapies, or to reinforcement of treatment potential of currentlyuseddrugs.However,therearesomeobstacles.The sole task of annotating snRNAs involved in modulating Fig.3–InteractionbetweenBCR/ABLandmiRNAs.miRNAs

mayinhibitactivityofBCR/ABLormaybeinhibitedbythis kinase.Thismayleadtosynergisticinteractionsbetween somemiRNAsandkinaseinhibitorssuchasimatinib(IM).

Moreover,asitisinthecaseofmiR-451negative interactionsbetweenBCR/ABLandmiRNAsmayform reciprocalinteractionsresultinginmutualdownregulation.

BCR/ABLmayalsoactwithsynergyonothermiRNAs,asin thecaseofpromotingcellgrowthwithmiR-130,anegative regulatorofCCN3,whichfunctionsasacellgrowth inhibitor

(6)

cellular metabolism is prone to error and many wrongly annotatedsnRNAswithoutanyreal functionalmeaningare present in databases [9]. This may make finding of new interactionsbetweenBCR/ABLandsnRNAscomplicated.

Nevertheless, there is no doubt that epigenetics in general,andsnRNAs specifically, willbeoneofmajorarea of interests in coming years. In case of many leukemias, especially CML, genetic components of cancertransforma- tion are relatively well understood. Yet still many differ- ences indisease development aswell as therapy response are observedbetweendifferentpatients.Itisapparentthat mechanisms of epigenetic nature are one of major factor responsible for that differences. Thus unraveling the com- plex web of mutual interactions between genetic and epigeneticfactorsinvolvedindeterminingthewayinwhich normalcellsundergocancertransformationisessentialfor futuredevelopmentofdiagnosingandtreatingofleukemias.

Authors' contributions/Wkład autorów

Accordingtoorder.

Conflict of interest/Konflikt interesu

Nonedeclared.

Financial support/Finansowanie

Nonedeclared.

Ethics/Etyka

Thework described inthis article has been carriedout in accordance with The Code of Ethics of the World Medical Association(Declaration of Helsinki)for experimentsinvol- ving humans; EU Directive 2010/63/EU for animal experi- ments;UniformRequirementsformanuscriptssubmittedto Biomedicaljournals.

references/pi smiennictwo

[1] MeloJV,BarnesDJ.Chronicmyeloidleukaemiaasamodel ofdiseaseevolutioninhumancancer.NatRevCancer 2007;7:441–453.

[2] DeiningerMW,GoldmanJM,MeloJV.Themolecularbiology ofchronicmyeloidleukemia.Blood2000;96:3343–3356.

[3] GoldmanJM,MeloJV.Chronicmyeloidleukemia–advances inbiologyandnewapproachestotreatment.NEnglJMed 2003;349:1451–1464.

[4] HenkesM,vanderKuipH,AulitzkyWE.Therapeutic optionsforchronicmyeloidleukemia:focusonimatinib (Glivec,Gleevectrademark).TherClinRiskManage 2008;4:163–187.

[5] MorrisKV.RNA-mediatedtranscriptionalgenesilencingin humancells.CurrTopMicrobiolImmunol2008;320:211–224.

[6] JeangK-T.RNAiintheregulationofmammalianviral infections.BMCBiol2012;10:58.

[7] KusendaB,MrazM,MayerJ,PospisilovaS.MicroRNA biogenesis,functionalityandcancerrelevance.BiomedPap MedFacUnivPalackyOlomoucCzechRepub2006;150:

205–215.

[8] MoazedD.SmallRNAsintranscriptionalgenesilencingand genomedefence.Nature2009;457:413–420.

[9] KimVN,HanJ,SiomiMC.BiogenesisofsmallRNAsin animals.NatRevMolCellBiol2009;10:126–139.

[10] IorioMV,CroceCM.microRNAinvolvementinhuman cancer.Carcinogenesis2012;33:1126–1133.

[11] LeeY,JeonK,LeeJ-T,KimS,KimVN.MicroRNA maturation:stepwiseprocessingandsubcellular localization.EMBOJ2002;21:4663–4670.

[12] LeeY,KimM,HanJ,YeomK-H,etal.MicroRNAgenesare transcribedbyRNApolymeraseII.EMBOJ2004;23:4051–

4060.

[13] DenliAM,TopsBBJ,PlasterkRHA,KettingRF,HannonGJ.

ProcessingofprimarymicroRNAsbytheMicroprocessor complex.Nature2004;432:231–235.

[14] KettingRF,FischerSE,BernsteinE,SijenT,HannonGJ, PlasterkRH.DicerfunctionsinRNAinterferenceandin synthesisofsmallRNAinvolvedindevelopmentaltiming inC.elegans.GenesDev2001;15:2654–2659.

[15] GregoryRI,ShiekhattarR.MicroRNAbiogenesisandcancer.

CancerRes2005;65:3509–3512.

[16] KawamuraY,SaitoK,KinT,etal.Drosophilaendogenous smallRNAsbindtoArgonaute2insomaticcells.Nature 2008;453:793–797.

[17] WangX-H,AliyariR,LiW-X,etal.RNAinterferencedirects innateimmunityagainstvirusesinadultDrosophila.

Science2006;312:452–454.

[18] GhildiyalM,SeitzH,HorwichMD,etal.EndogenoussiRNAs derivedfromtransposonsandmRNAsinDrosophila somaticcells.Science2008;320:1077–1081.

[19] BartelDP.MicroRNAs:genomics,biogenesis,mechanism, andfunction.Cell2004;116:281–297.

[20] HallTMT.Structureandfunctionofargonauteproteins.

Structure2005;13:1403–1408.

[21] ScherrM,EderM.GenesilencingbysmallregulatoryRNAs inmammaliancells.CellCycle2007;6:444–449.

[22] KimDH,SaetromP,SnøveO,RossiJJ.MicroRNA-directed transcriptionalgenesilencinginmammaliancells.Proc NatlAcadSciUSA2008;105:16230–16235.

[23] CroceCM.CausesandconsequencesofmicroRNA dysregulationincancer.NatRevGenet2009;10:704–714.

[24] HanJ,KimD,MorrisKV.Promoter-associatedRNAis requiredforRNA-directedtranscriptionalgenesilencingin humancells.ProcNatlAcadSciUSA2007;104:12422–12427.

[25] HawkinsPG,SantosoS,AdamsC,AnestV,MorrisKV.

PromotertargetedsmallRNAsinducelong-term

transcriptionalgenesilencinginhumancells.NucleicAcids Res2009;37:2984–2995.

[26] WeinbergMS,VilleneuveLM,EhsaniA,etal.Theantisense strandofsmallinterferingRNAsdirectshistone

methylationandtranscriptionalgenesilencinginhuman cells.RNA2006;12:256–262.

[27] BayneEH,AllshireRC.RNA-directedtranscriptionalgene silencinginmammals.TrendsGenet2005;21:367–370.

[28] MorrisKV.siRNA-mediatedtranscriptionalgenesilencing:

thepotentialmechanismandapossibleroleinthehistone code.CellMolLifeSci2005;62:3057–3066.

[29] HawkinsPG,MorrisKV.RNAandtranscriptional modulationofgeneexpression.CellCycle2008;7:602–607.

[30] JanowskiBA,HuffmanKE,SchwartzJC,etal.Involvement ofAGO1andAGO2inmammaliantranscriptionalsilencing.

NatStructMolBiol2006;13:787–792.

(7)

[31] KimDH,VilleneuveLM,MorrisKV,RossiJJ.Argonaute-1 directssiRNA-mediatedtranscriptionalgenesilencingin humancells.NatStructMolBiol2006;13:793–797.

[32] MorrisKV,SantosoS,TurnerA-M,PastoriC,HawkinsPG.

Bidirectionaltranscriptiondirectsbothtranscriptionalgene activationandsuppressioninhumancells.PLoSGenet 2008;4:e1000258.

[33] BuenoMJ,PérezdeCastroI,GómezdeCedrónM,etal.

GeneticandepigeneticsilencingofmicroRNA-203 enhancesABL1andBCR-ABL1oncogeneexpression.Cancer Cell2008;13:496–506.

[34] LiY,YuanY,TaoK,etal.InhibitionofBCR/ABLprotein expressionbymiR-203sensitizesforimatinibmesylate.

PLoSONE2013;8:e61858.

[35] LopotováT,ŽáčkováM,KlamováH,MoravcováJ.

MicroRNA-451inchronicmyeloidleukemia:miR-451-BCR- ABLregulatoryloop?LeukRes2011;35:974–977.

[36] BousquetM,HarrisMH,ZhouB,LodishHF.MicroRNAmiR- 125bcausesleukemia.ProcNatlAcadSciUSA

2010;107:21558–21563.

[37] BabashahS,SadeghizadehM,HajifathaliA,etal.Targeting ofthesignaltransducerSmolinksmicroRNA-326tothe oncogenicHedgehogpathwayinCD34(+)CMLstem/

progenitorcells.IntJCancer2013;133:579–589.

[38] XuC,FuH,GaoL,etal.BCR-ABL/GATA1/miR-138mini circuitrycontributestotheleukemogenesisofchronic myeloidleukemia.Oncogene2012.http://dx.doi.org/

10.1038/onc.2012.557.

[39] AgirreX,Jiménez-VelascoA,SanJosé-EnerizE,etal.

Down-regulationofhsa-miR-10ainchronicmyeloid leukemiaCD34+cellsincreasesUSF2-mediatedcellgrowth.

MolCancerRes2008;6:1830–1840.

[40] VenturiniL,BattmerK,CastoldiM,etal.Expressionofthe miR-17-92polycistroninchronicmyeloidleukemia(CML) CD34+cells.Blood2007;109:4399–4405.

[41] EiringAM,HarbJG,NevianiP,etal.miR-328functionsasan RNAdecoytomodulatehnRNPE2regulationofmRNA translationinleukemicblasts.Cell2010;140:652–665.

[42] RokahOH,GranotG,OvcharenkoA,etal.Downregulation ofmiR-31,miR-155,andmiR-564inchronicmyeloid leukemiacells.PLoSONE2012;7:e35501.

[43] SureshS,McCallumL,LuW,LazarN,PerbalB,IrvineAE.

MicroRNAs130a/bareregulatedbyBCR-ABLand downregulateexpressionofCCN3inCML.JCellCommun Signal2011Aug;5:183–191.

[44] SanJosé-EnerizE,Román-GómezJ,Jiménez-VelascoA, etal.MicroRNAexpressionprofilinginImatinib-resistant

ChronicMyeloidLeukemiapatientswithoutclinically significantABL1-mutations.MolCancer2009;8:69.

[45] YuY,YangL,ZhaoM,etal.TargetingmicroRNA-30a- mediatedautophagyenhancesimatinibactivityagainst humanchronicmyeloidleukemiacells.Leukemia 2012;26:1752–1760.

[46] FlamantS,RitchieW,GuilhotJ,etal.Micro-RNAresponse toimatinibmesylateinpatientswithchronicmyeloid leukemia.Haematologica2010;95:1325–1333.

[47] MachováPolákováK,LopotováT,KlamováH,etal.

ExpressionpatternsofmicroRNAsassociatedwithCML phasesandtheirdiseaserelatedtargets.MolCancer 2011;10:41.

[48] LiuY,SongY,MaW,ZhengW,YinH.DecreasedmicroRNA- 30alevelsareassociatedwithenhancedABL1andBCR- ABL1expressioninchronicmyeloidleukemia.LeukRes 2013;37:349–356.

[49] SchollV,HassanR,ZalcbergIR.miRNA-451:aputative predictormarkerofImatinibtherapyresponseinchronic myeloidleukemia.LeukRes2012;36:119–121.

[50] WildaM,FuchsU,WössmannW,BorkhardtA.Killingof leukemiccellswithaBCR/ABLfusiongenebyRNA interference(RNAi).Oncogene2002;21:5716–5724.

[51] WitheyJME,MarleySB,KaedaJ,HarveyAJ,CromptonMR, GordonMY.Targetingprimaryhumanleukaemiacellswith RNAinterference:Bcr-Abltargetinginhibitsmyeloid progenitorself-renewalinchronicmyeloidleukaemiacells.

BrJHaematol2005;129:377–380.

[52] BakerBE,KestlerDP,IchikiAT.EffectsofsiRNAsin combinationwithGleeveconK-562cellproliferationand Bcr-Ablexpression.JBiomedSci2006;13:499–507.

[53] ElmaagacliAH,KoldehoffM,PecenyR,etal.WT1andBCR- ABLspecificsmallinterferingRNAhaveadditiveeffectsin theinductionofapoptosisinleukemiccells.Haematologica 2005;90:326–334.

[54] KoldehoffM,SteckelNK,BeelenDW,ElmaagacliAH.

TherapeuticapplicationofsmallinterferingRNAdirected againstbcr-abltranscriptstoapatientwithimatinib- resistantchronicmyeloidleukaemia.ClinExpMed2007;

7:47–55.

[55] KoldehoffM,SteckelNK,BeelenDW,ElmaagacliAH.

SyntheticsmallinterferingRNAsreducebcr-ablgene expressioninleukaemiccellsofdenovoPhiladelphia(+) acutemyeloidleukaemia.ClinExpMed2006;6:45–47.

[56] WohlboldL,vanderKuipH,MiethingC,etal.Inhibitionof bcr-ablgeneexpressionbysmallinterferingRNAsensitizes forimatinibmesylate(STI571).Blood2003;102:2236–2239.

Cytaty

Powiązane dokumenty

Regulacja ekspresji komórkowo czy też tkankowo specyficznych genów odbywa się w czasie procesu tran- skrypcji i translacji (Ryc.. Interferencja RNA to jeden ze sposobów

ncRNAs involved in the cardiac fibrosis pathways; ncRNAs regulate cardiac fibrosis processes by targeting the key molecules that mediate transcription of extracellular matrix

Panels A–D indicate the expression levels of Upperhand, TCONS_00023843, NR_028044.1 and TCONS_00029157 in the control group and coronary artery disease group, *p < 0.05; Panels

In addition, in order to detect the ability of H19 to influence OC cell migration and invasion in vitro, the expression levels of H19 were reduced by small interfering

The relationships of DE- mRNAs and relative differentially expressed enhancer-like lncRNAs and lincRNAs in the Wnt pathway and the PI3K- Akt pathway are shown in Figures 3 E

It is proven that the let-7 family has a significant role in cancer biology, but it is not explained whether disturbance of let-7 miRNA expression causes cancer transformation or

Discovery of the phenomenon of interference RNA has initiated research by using small interfering RNA (siRNA) for gene silencing in mammalian cells.. Natural occurrence

Stabilization of as CUT leads to H3K18 deacetylation by Hda1 at PHO84 promoter Regulation of gene expression via antisense RNA and epigenetic modification:. PHO84