• Nie Znaleziono Wyników

Model experiments upon turning performance of tanker families

N/A
N/A
Protected

Academic year: 2021

Share "Model experiments upon turning performance of tanker families"

Copied!
24
0
0

Pełen tekst

(1)

fiaritkitliff5ETTN'A. 3 4s2 27

(D/A

it.g(L

e t432-mFA

M

)c4.0

-

< 1.-cv,

6 fthIM0) 2 Mop L /13 9 AVnIrc.-"Dlo-C,

1 -

tc.

04tatc.

L/B:/ 9 .x0)51-1,c, ktitMiLopkt, nv;fra-6-0)

vittocttEoptwapaRtygtvcozo on

OD

9 Wtit,f1t,o)-e,

4)111c&.--DtoLX;i_--clIOLu-ciLeb-c.t6<LL k. OD inn tifti 11-4,1#- -cf8P1-6.

tl

, I=1 4. 5inap*M AROLIA, 1-Y210/40)1C-gli M

CiaclhtJ

Agytiftspc.1,30-cyfi

i-ul.'14,9) 4) OD

6.

a'fflfriloR.H it Table 1 PC, Table 2trc--j--;-4-it --c-6 . * klibtifit% /1\ JII 31,*

td*

Model Experiments upon Turning Performance of Tanker Families

by

Akihiro Ogawa and Sadao Ando

Turning tests were carried out on two families of 4.5 meters free-running tankermodels with

block coefficients 0.80 and 0.81. The 0.80 family is consisted of three constant draft models with length-breadth ratio of 6.0, 6.5, and 7.0, each stem of them being convertible to normalor bulbous.

The 0.81 model family contains three breadth-draft ratio models with length-breadth ratios of

5.5, 6.42 and 7.5, and each of them was tested with rudders of variousareas.

In some cases, the thrust increases in the turning were measured.

Thus, the results are expressed as four series of curves ; length-breadth ratio (with constant

breadth-draft ratio) series, length-breadth ratio (with constant length-draft ratio) series, rudder area ratio series and bulb area variation series, besides the curves of dimensionless angular velocities of turning, advances, transfers, tactical diameters and thrust increases against various

helm angles.

f-A.00DIEplo-D5)-k Fig. 1 IC,

nr,,,--tiltxtqz Fig. 2 7 i/C, rEdlik'ElFig. 8 s,111Cff.-1.,10 I'Afflfd'afV61,1',:oW=WcogMoDik

amo 24)I,

® 2 fri-c L/B [21 ,310:31b' fpt,Ulac., 4AMOJ'aid Cb =0. 80 Cn=0. 81 OD 2 MO) LIB ,J 9

JMt3; 0.80 øto

L/d ---t-c L/B

6.5, 7. OicZfL

gRcAito oClio-cto

.

op:/ 9 x04./12M

taft93t0Kr_t.,-c, ti-Afra'aL 2 goltf5ZrYg

Iffrtfilikop*t,a140,1-6L

615

ItUtO M.8060 M. 8065ir_-DO-CidatuyimoDF6N

ISXMa0. 810D:I 9 Bicw LIB

5. 5, 6.42, 7. 5r.VLtz- t,-_,605--e,

OrE1,17cil-76tLAt,tto)111t,N-c

Itz, Lop:./

--CGt 3

- Asopgyolgvc.--D

7coplAid M. 8155 eM 81751c-D ./40, ./60, V80 --C6 0, M. 81641t-00-C4i 1/60, 6,,

75o T66.

( 69 ) g44-2'.

,

(2)

28.

Table 2! Principal Particulars of Model

Propellers

attus4

iiAtkiltf' jilt 41

.( 70 )

Table 1 Principal Particulars of Model' Ships

5.2 6.0 6.5 70

Fig.. 1 Illustration of Model Parameter

Distribution

A:A*7 )1/ - Piz-C-;T:TL

eg0.201)110.-czoti

opRoDPAMLu-ta-\b-VAII-e

ttmon*

OlgIrOpittlaT

Klzr1,3-utooLbIyzati-c, ttc,

Ifg% 1 ANGWRA<I1G1 3,,i4czt.-_abpnaopg6"-. 34,_

-11<iginto%0-eitattnnt R.< t

t*-_

tiMIS < ts ztc&NcAtattizt

®C0

k:DPI1i114.1,0)Mt OD 2 A.

Vivotij

-e 2 bifilDA)IleftET1-1- 0)*A0s 7!p

Model ship No,

_ . _ 8065 1 8070 1 I 8155 . 8164 1 8175

Normal' Normal B1 Normal

' Length betWeen perpendiculars,

L (m ) 4. 500 0 w 1 0 m M m m M

Breadth extreme, B (m ) I 0.7500 a 0.6923 w ,7 0.6429 0.8194 0% 7011! 0. 6010

Draft, tested full load, d (m ) I0, 2475 a I a

0 0 0 0. 3127 O. 2695 O. 2293

0.501

Displacement, V (ms) 0.667 0.672 0.616 0. 618 0.621 ' 0.572 p. 932 0.705

Block coefficient, CI, 0.799 0.805 0.799 0.802 0.805 0.799 1.809 0 0

Prismatic coefficient, cp 0.803 0. 809 0% 803 0.806 0.809 0.803 O. 814 I

a Iw

Midship sectional area coefficient, cm

0. 995

,

' 0

0I,

0

A

. 994

,

w

Longitudinal center of buoyancy,

1.,:b (%L) -1.45

[

-1.80 -1.43 -1.65 -1.81 -1.41 -2. 06. w w

Length-breadth ratio., L/B 6.00 a 6.50 Y/ 7.00 5.50 6.42 7.50

Breadth-draft ratio, B/d J 3.03 ' 0 1 2.80 w ,1 w 2.60 2.62 0 0

I Bulb sectional area coefficient at

1 F. P. , At/Am

0 0.160 0 0.119 0.167 0

.0 276.0 a

i

Actual ship length, Ls (m ) 225.0 w m m I m

Diameter,. D (m) O. 1440 O. 1206 1

Pitch (const.), H (m) O. 1020 0. 0880

Pitch ratio, HID 0. 710 0. 730.

1 Boss ratio

_

0. 180 O. 189

Expanded area ratio 0.550 0.575 1

I Mean blade width ratio O. 263 0% 223

Blade thickness ratio_ 0. 050 O. 064 I

Angle of rake 10° 9°5W

Number of blades H 4 5

Direction of turning Right-handed

Type of blade section Modified AU

Applied model ships, Cb 80serie481seriel

3. 20 16

-a a 75

(3)

frEffim-\batm-vcE 0)-(1icct YiERIPM$3.1-,0 ki&VE,11, Vt3E, 441?.F 4L04):EVIM 1_, tc. Madill

®ljirl,aglelicfiltila

o-cttlgtl,

0)-c, i-oprEklairEfrj 7° El 1,111 opEl E 4)itc-fMrac*Ila T:2 7 7 ic o 4.

leAsctu.g#.

MRODIV-i5Rid. Table 3 1C7T-itlfC Fig. 12.1%1T

ic121-7c: u

if,, Fig. 12a 0)=0.81 OD t CDT B/d t.-Z

L/B 5. 5, 6.42,

7.5 r.VE

t

LOD-2/1)-XODIAMfrairc-DLN-CODrE

ViZt.4,19,131C.RtZZR-M-XtFig 14, 15, 161C77:1_,

,Cb=0. 80 Lid L/B 7bI. 6. 0, 6. 5,

7,0 VcViL -7c OVA Fig. 13

1C;1-:1.,--C Z0 LCD% 9 - L/B 7Y6. 0, 6..5ic-D 10-0O31:10,-MODWPC5Tra-MttleMt. Fig. 17,

Fig. 19"--24

ZWA-c

Fig. 25-29r_ltiopkt-,1_,-C1), Fig. 30.-35

ItAZYff. VEVA -6 0

tk1=1437Ct,

cb=o.8o op

:I

Fig. 37, Cb=0. 81

11/

'-

flar--D v-C it Fig. 36 l-CTf<1.. tc:o.

f.

0D-MRMT OicargeoyzLffiLl 0

LIB aDVIEVc.

n-opt'Off-trcoo-c, Bid

7Y1-Zaltf,,lie-,, (Fig. 12), d',7",ttkt-rzefrizza-Flic

ktElAbI-L

ttff, L/B oft,

-clkEla-NoZINitttilms-).t-c1511

d, l. 2:ATt

0 1.,7)q- Alc-fRopfda

LIB <

zo

Lid 75I-tOt.B*. (Fig, 13) -clihtfilzobkr,.-..

mast',

<

zo

T2- 4-1700)XfAti-A-ei4,. Vvil2ogEo-F--eld 1..1-tbIz._-_®141.010111-cSlEtlitz 'teo-J/80 (DWI

vc$310-citrEEM.LE0Aid, itz-nacaLkE11-;29_M VV,,c, 29 </-x 64-at < 7y>', , AVE, ViE,

L-t

)ctxfM75*-141 i-Lz Lo5f1. t.coo AW(L1-60REIgicatl1-V-Isec. 0' I, *-C

LIB 7b1 6. OL 6.5L-ClIZZ1tAftli7)IM-COZ751, OD Z"..1,c1.401-7tAkAMi/b, a IN

oo

'

ItiRtc.Mr-i-u-coz 8 -9 96Riton

tura-6-ea,

4)o3-co, agNizogo,RoiraLkEtv,Nittg

0/07Bct

YcoViNa*Ilit-c.t

\--C65 izmu, Lotgia Cb AbillMfrit

V4L1--C1., t 5.

ii./kI:11:0 0)7 ,tikt*axc.. op

4,101/14tIts:7).-,t10)-c,

opi.V&IntalliffizliMi6taaapti, to2E14-ct,

ilL kEkiLii- l-trilWe 6.

C=O. 800Y -7'T it

I.,/13 tI/J\

<iE--c

V/'-Eg 0±-11A- 037I- tbrifttb>ka-LEIkc..1.t--c

4.P < 0tt3iAlill*0leNitLO!tLf1P.A2R0ill

T-0h1Li4)O)

t7

Cb=0. 81 OD:,

-

it,

Z=05tiald Wfts , ViCf 0)*1&,, zrEffiltRii-c. *, 7 Vit, -D

Z: 0331E11 < i'Dbs Fig. 38 i/C.IVint® 7

I. Oa

C1,31,17t 0 5.

a

L/d-, B/d -cotSZ o.)Tift.iitts 0ACEItt, 3761fffilEig "--,,aorof'ANZL LIB

Lid. B/d VkIL- 7t:t30)-\'',

z-c.t65LEsipti.6 Cb=0. 85, L/B

0, B/d

3.5 è

L,-co EVW5-7-1 5

Wet LE4)i-Lz,0

4

*VA1.1 fraill37MSE0 FT,

Uftr.laalitat± effintMFYE.

T*2:oARTilf'A2:U-Cfitzbil,t_-.50--Ve2: 0 I

,L6ttop-co

1.1301i-lfuc0:<110/1411_,_Eiftctoc,

(gifkh-ft. 1966.2 ,4)

(71 )

KA\ -c,

(4)

30

( 72 )

Table 3 List of Figures

Table 4 Nomenclature

Fig. No. M. S. No. Contents

1

All

Illustration of Model Parameter Distribution

2 8060

3 8065

4 8070

5 8155 Boby Plan and Stem & Stern Profiles

6 8164 7 8175 8 8060-70 9 8153

la

8164 Rudder Profiles 11 8175

The followings are the test results

Ordinate ! Abscissa 1 Parameter

, 12 8155-75 Ar/Ld, 5 13 8060-70 L /R LIB 6 14 8155 15 8164 L /R Ar/Ld 6 16 8175 17 18 8060 8065 L / R

At/Ama

19 8155 20 8164 L I R 6 Ar/Lci 21 8175 22 8060 23 8065 LJR a At/Am 24 8070 25 8155 26 8164 A / L a Ar/Ld 27

'

8175 28 8060 29 8065 A / L a At/Am 30 8155 31 8164 Tr/L, TD/L a Ar/Ld 32 8175 33 8060 34 8065 Tr/L, TD/L 6 Ar/Am 35 8070 36 8155-75 37 8060-70

LT/T

a L /B 38 8175

LT

Time a

A Abvance Radius of turning circle

Ar Bulb sectional area at F.P Thrust

Am Midship sectional area

PT

Thrust increase in turning

A,. Rudder area To Tactical diameter

Breadth of model ship Tr Transfer

Draft of model ship a Helm angle

Length (b.p.) of model ship ,C2,=L/R Dimensionless angular velocity of turning

.

.

.

R

(5)

rtr-t t TOP OF MODEL .1 1 ALL C L M S

8060

ililialligli"

MiSMFi11I11iII

APilir

0,111111111

1

/III

I

I A

I

I

4

..L

/

I

.,L. i2w.L

a mblivresi

111111111111111111

AMMEILIIMENII

Mill

MOIME111111.1111111

\

\

\

_

'

BY 6W L

4.,

kill

ANIIIIIIIIIIINI

ALINEINIIIIIIIIIIIMKGEMEr

2., AR 1681.. 1481.. 12111. eat. tiat, 601, 4BL. 2BL. 26L. 4111.. 6I1L. eat 1013L.- 1281 1413.L. .16t3 L. Fig, 2

Body. Nan and Stein & Stern Profiles, of M.S: 8060

,OWL

(6)

ilwar

111111111111111/11111111111111

11111111111/11911111111111

lo

rammemmun

1111111111111111

IIMINEELIEN11.11111111111

111111111111111111M111.111111111111111111

M111111111111111111N11111111111111

11111111t111111 1111111111111/E

:L. 3' 1'1.4 10 vt,L. ,8wL,

M.a 8065

TOP OF MODEL

14at, 1281.. lotat: 'Btu_ 681. 48L 281.

2B.1. 46.1. 68. BBL. NM 14131.14B.L.

Fig. 3: Body Plan and stein & stern Profiles of MS. '8065

J8Kt, LF.R. z Etz A A It' 4 W

(7)

LW L. 91-1AFT C.L.

M S. 8070

TOP OF MODEL

MEW

mum WM

11"111111111111

11111MBEININ

111111111111111111111

q4

Rusammoutia

111111.111111111111111110

ummarvinimmivir

LaILIMEGEWMPWAIF

AR 213.1.. losi eat. 6131 MAL. 28.L. 25.1 45.L. 68.L. 8L. 1081. 1281. ER

Fig. 4 Body Plan and Stem & Stern Profiles of M.S. 8070

I ZwL OWL. FOIL 6W L. 4 W.I. 2 W.L.

7)4,5

A

(8)

Fig. 5 Body Plan and Stern & Stern Profiles of M.S. 8155

L-.

IV, .J. , . / 4 --, _,

racipiiii

\bUIiIiI1IIWAPJ1

maw am

11111WANIM

1111111MIIIIIEVENIMMIZIFE/111111111M

1nliSag.119INDNINIMIEIF

11111111=11. NENIII

I

121

III

i4

..L

,

..5.1

ID'

---"'

225.1.

NM

20.L. w.L.

MEN

,G.L I4W.L. 4 '

1 =RIM 'IN21111111

1 I I iz w.L

URI

MR

Immi

NINE=

11,11111111M11.11 1

1 NM II

t

II

I

IIII

MI

iow.L. I III BY,.

am II I

I

IMMO! Ile

6 .., 11111

IIIIIIM 11111M

IIIIIIIMINNIIIIIIMIINIVAI

VIM

_.,r_rii

_or.-NM

,, 5.1. 25.1

1811

lingra.11.-_

11

'WWII l'OnF"

AP PON, le,. 1651- 45L. rBL BL. 55k. 581. 481 28L. 20,- 481. 60, 88L. Ml.1201.. 1481-F. P. .

(9)

Fig. 6 Body Plan and Stem & Stern Profiles of M.S. 8164 4., J `k- ., -I i ,.., i'' (.71-MU VtL. 11111

ir1rv4rar1ii.

.

-Ntpl_;__ 1-d_,_

1111110E1INIEVIO,3 MillIMIF

MINI

L.

1111

III. 111.11.11E011110 NI

NM

,..,

An 11111116111:1\\III

14 W.L.

11111111.1111LIMMDIE1

12W,L

INIEM IMIIMMM1111

I <0

-NM

IMMO

I

8141,L,

IIIIIMEMI

IN ENTER

'

NE

INIIINIEM NE II INIMMIIIIII

III

.

i

4'5-In.11111111111111E111

EINNIWAIIMINIEFAN,

SZIONIERINNSIIIERMEIPIWAIIMPI

,w.L

-_ A1F: 20BL. ilEtOt. 1651. I4BL. /2K. met. 800 e. 4o7 2B.L. 207 40.0 6130 8111-10B.L. 1280 14aL, 6L 1807. z00L

P1

A I

(10)

TOP F ODL E-'' -L-''

-,

IMMEMOlip

lierii1P.... 28

r

WARREN

w.L. 2. '24w .L.

-

L.,

-9 1A-f

MIME

IN SIM

NOEL

IMIMIIIMM

ii.

MILIMMB

MEM

MIIMMEMMIF III

22,

MWAIVAMM 1/M11

MN,

2.,

18

IIMILIMMIRMULIMININMAIEMEM

16W ,4w,L. rx,

,

,. N

11

1111111,SIIMMISM

NI.K.Igen. Ell

I

I

III

,

I I I 12 WI.

IIIIM

IMRE=

III

MMEMMILIMIll

MMIMOMMII

I I IOWA-,

M

gin=

..L.

WIN MI III III HE III

6.,

Main MINIM 111 ELM VIMMMU .L.

IIMIMIMI BMW

EIMSIERMIESIIIIIP'

11111//MMIMMMEMO

....AIIRFAIIIIMP..

2W'

-A.P 51.413L6BLE43,,,,,,141,10613,18(1,,,... EP. Fig. 7

(11)

Ar/Ld = 1/71.5

6 7. 5

Q5 2 7

19

Fig. 8 Model Rudder Profile for M.S. 8060,

8065 and 8070

IA

/sx

Fig. 9

Model Rudder Profiles for M.S. 8155

Csi 698 25 83 30.2 3 / 5 3. a Fig. 10

Model Rudder Profiles for M.S. 8164

Rudder

Area Ratio

8164 A Ar/Ld = 1/60 B

1/67.2

C 1/80 Rudder Area Ratio 8155 A Ar/Ld = 1/40 B 1/60 C 1/80 A Ls)

(12)

5 7 2 -j6.

/41.8 PORT 50 55 SO 65 70 LEN.M/ BROOCH 60 LENGTH / BREPTH 69 70 Fig. 11

Model Rudder Profiles for M.S. 8175

Fig. 12

Effect of L/B on Turning Radius of

Fig. 13

Effect of LIB on Turning Radius of

const. B/d model

( C

)

const. Lid model (C,--0.80)

Rudder

Rudder Area Ratio

8175 A ArAd = 1/40 B 1/60 0 1/80 STARBOARD L2 STAR B OA RD 06 12 451,- .450 5.43' 40 Veto 55. .8 q .4 7--25' 4 I. le CO 2 5., 1.2 PORT s7ni 40. 35. .6 35 25. q' 4 25. to' 15. 6.0 TO 50 5.5 so 65 70 75 LENGTH/ BRE,. LENGTH / BRED, 1.6

(13)

16 PORT M. S. 81 ,5) STARBOARD

Cb

'q 2.1:C5 (6 0

M.S. 8164 STAR BOARD PORT

/ L

s, .8 1,6 12 .4 M. S. 8175 PORT 3e4? 4e -55

..

.... 15' 10. I 1

litu

Itmemii

Imminini

, 1, 2. 15' illiMINIMMlii i 0. . . - --___ ___ 10- 25* I 8- 4W_ _ 46 _ 0' -10' .

---i Fig. 14

Effect of Rudder Area On Tnrning

Fig. 15

Effect of Rudder Area on Turning

Fig; 16

Effect of Rudder Area on Turning

Radius of M.S. 8155 Radius of M.S. 8164 Radius of KS. 8175 Vao V60 A rz/L Vao V40 40 AVL leo Ye33T 40 Vero STARBOARD 0 ./40 A A r/L 17-.8 2 8

(14)

KS. id0Q0 STARBOARD

IR-35. 3.9* 20" 10' 1 I 0 5 10 15 20

BULB SECTIONAL AREA COE,

Af/Aot

I

BULB SECTIONAL AREA ICOEF.

Af/Am.

2

2

q

12 .8 .4 0

MS. 806 5 STAR BOARD PORT

to

IS

zo

Esoolt

SECTIONAL AREA CORE

AS/AR 0 5 i0 IS 20

BULB SECTIONAL AREA COO,

AVA, I .--r 64 40' 35. ; 1 '.

..-r

20. --- ----i I I ,.... -__ 6= 40. _ 56' -3ct -20. , I iv-, f Fig. 17

Effect. of Bulb onTurning Radius

'Fig'. 18

Effect of Bulb on Turning Radius,

of M.S. 8060 . of .MS. 065 .4 PORT 20 8-40' 40* 30' 20' .30' I 0'

(15)

M

9 J

HELM ANGLE,cf (PoRr)

2e 10* 04 08 1.2 _ 50 49 gELAI ANGLE 6 (STARS OARD). Fig. 19

Diniensionless Angular Velocity of Turning of M.S.815,3

Fig. 20

(16)

Fig. .21

Dimensionless Angular Velocity of Turning of M.S. 8175

M.S. 8 016 0

HELM ANGLE. S (OT)

40. 30-20. 10. 04 04 8 HELM ANGLE , 6 (STARBOARD) AO. -Fig. 22

(17)

ME

El

El 11119111M111

1111111111111111111

iiMiffill04

HELM ANGLE, 6 (STARBOARD)

11/11/11

a8 q

111

MS. 8065

Fig. 23

Dimensionless Angular Velocity of Turning of M.S. 8065

.4 .a rz /0 20' 30" HELM ANGLE, S (STAR BOAR()) M. S.

6070

HELM ANGLE, S (PORT)

30

10-.8 4

Fig. 24

(18)

44

(86 )

10 4 2 iP 0 0 M.S. 8L5

AYL 41'. 1/40 Ar/Ld.=Ye.

I V, A Ld - '430 I I \ I

\

1

,

ck . *,.. --1,... -9 .."111. I .A_ ..i,... 1 i , , il 11

7 Av,.4. 1/40

1 AVi- a - 1/6 0 2 4 . Vac)

1-....

, tpt;;;..._

,

I

AVL4 ''54o Ar/La, = 1./e0) AV/4 - '/60

1 , 1 1 1 a

\

\

'L ..

.

1

Is.-For-

--00-1

I

I 1I

II

1 20; 30' d Jo" 20- zol 30- 40' HELM ANGLE A S Fig. 25 Advance of M.S. ,8155 Ica 80 64 10" 30 ,J0- 00 30 40 ,H01- 14 ANGLE Fig. 26 Advance of M.S. 8164 M.S: 8 175 20- 30 10 40' 00" NEL ,A ANGLE 8 Fig. 27 Advance a M.S. 8175 to a ID" , 6' 30 30.

(19)

4 8 2 10 8 6 4 2 a 6 2 0

MS 8060

M.S. 8155 ict 45 NORMAL I 82.

\

... sTARts.

Po"

..-... NORMAL 1 B 1 82. _ \ *\ \\,...,....v..____...3._____ _

\

\ _ _

_ ./Ld = 1/40 Ar/Ld - Y00 AVIA "-- I/80

\ TACTICAL \ DIA. Z1

\

\C!,, ,PA -9, q

1,

IN

A NI

irmaiws

-mum

II

1.

20 30 40' 0' 10' HELM ANGLE , 8 Fig. 28 Advance ofiM.S. 8060 M.S. 8065 20 30 aFt 10" 20. 20 Ft Ft 00 30 e to' EELM ANGIr , C Fig. 29 Advance of M.S. 8065 so' 40. ?o. 30 4e zo' 0 IC 00 30 0 NELM ANGLE , 3

Fig. 30 Transfer and Tactical Diameter of M.S. 8155 ( 87 )

110

(20)

I 0 ( 88 ) C a

N6

2 MS. 8164

_ ',Ad- %so A YL d 7. 2 AY1,1= Vac

TACTICAL CIA. _

\

\\, N .3 ,;1. ,i,1:;. ..\,,,, .... I. " TRANSFER I .. .. ..'.

-....

-- 7..--111._ , _ \ AVL.4 = 140 TACTICAL DIA \ A'Act- 160

El

ArA a - Vao

311

_ \ \ ,440.

'

A

IS

NM

'' N ..>.:'.

1

'pi-

14.71'

. _ . TRANSFER . NORMAL B 2 . _ TACTICAL DIA.

\

\

\

41,i,e

\

N N _ .... .... _ T k AN SFER poR --GB 10° 20" 30* 20. 30' 0 HELM ANGLE . S

Fig. 32 Transfer and Tactical Diameter of M.S. 8175

M. S. 8060

o' 10' 20' 30' 40' 0' 10 20' SO 40

HELM ANGLE 8

Fig. 33 Transfer and Tactical Diameter of M.S 8060

20' 30' 0' 0' 2e Sr 10° 20' 30° 40'

HELM ANGLE , S

Fig. 31 Transfer and Tactical Diameter of M.S. 8164 MS. 8175 0 10* 46 10 5 4 2 N 0 I I or

(21)

2

M. S 8065

Fig. 34 Transfer and Tactical Diameter of M.S. 8065

M. S. 8070 o' za* 30. 40' 10

\ 6

-J

N 4

2 H EL M ANGLE

Fig. 35 Transfer and Tactical Diameter of M.S. 8070 47 ( 89 ) NORMAL 8 82.

MLA'

114

121

tRANSFER 1 CA ' A

REM

illIVINA11111

MililittlinIMMilill

\

\

TACTICAL \ DIA.

\

\

\

.., 6. Po 6,t. -, --... "TRANSFER 10" 20' 3e o- 10" 20" 30" 0" 30. 40. H EL M ANGLE a _J N 4

(22)

48

M.S. 3155

( 90 )

M. S. 8 I 7 5

40° 30° 20 /0' PORT 1-* 0z 0/ 0 / 0 / HELM ANGLE

Fig. 36 Thrust Increase in Turning 0 to° 20' 30" 40' 8 STARBOARD HELM ANGLE Ay, = 1/40 I/a AYLA = 1/40 40° 30 20° /0° 0 30' 40' PORT STARBOARD

(23)

M.S. 8060

02 01 0 40. 30° 20° /0° 0' 1 0° 20 30° PORT STARBOARD HELM ANGLE , E

M.S. 8065

HELM ANGLE ,

Fig. 37 Thrust Increase in Turning

40*

( 91)

49

40 30° 20 10° 0 /0° 2e 30. 4

PORT STAR BOARD

HELM ANGLE ,

M.. 8070

40- 30' 10° 0° /0° 20° 30° 40° 0.2 01 0 PORT STARBOARD 0

(24)

50 PORT 20- 02. 0.1 z 2 228 T,2 21 K, 0 Io a01 Er' E 0.2 STARS.. PORT ae 36 2cr 03 04 11.1 L0 50.3 02 4d -TAR 4. ( 92 ) s, Se Re 4 20 30 COURSE ANGLE 40 O 60 70 80 Q0 360 360.

Fig. 38 Example of Thrust Variation after Steering 270. 270.

MS.8175

( d V60) 36,c co 70 sec Z

Cytaty

Powiązane dokumenty

Śledztwo to — które przenio­ sło się na sfery szkolne i prowadzone było z zamiłowaniem przez Pe­ likana, ujawniło wprawdzie znowu i denuncyacye i zdrady w

Corn éste trabalho, todavia, o Professor Malavard, Ilustre catedrático da Universidade de Paris e Diretor do referido Cen- tro de Cálculo Analógico, conseguiu, a nosso ver, produzir

Uwagi: Księga stanowi pełen wykaz profesek I chóru, które przystąpiły do Unii Polskiej Urszulanek w 1919 roku oraz tych, które złożyły w Unii pierwsze śluby do 1928 roku..

In Section 3, we give a pragmasemantic analysis of doctor–patient (nurse–patient) encounters, where the misunderstandings outline two main types of mistakes: one originates from

Na wysta­ wie znalazły się także kroniki miasta, księgi ławnicze oraz zapiski rocznikar- skie, zawierające wzmianki o królu, oraz ważne dokumenty związane

Do oceny bezpieczeństwa użytkowników tunelu drogo- wego w warunkach pożaru wykorzystać można kryterium bezpiecznej ewakuacji, jednak jego wyznaczenie wymaga określenia

To get immediately to the deductive rule, we can see that to get to the nth term you start at the fi rst term and multiply by the common ratio n –

Free trial available