• Nie Znaleziono Wyników

LIP11D Delta flume experiments

N/A
N/A
Protected

Academic year: 2021

Share "LIP11D Delta flume experiments"

Copied!
8
0
0

Pełen tekst

(1)

LIP11D D E L T A F L U M E E X P E R I M E N T S

Prediction of wave transformation

Contribution from Luc HAMM'^' - V1.0 - 29 April 1993

Objectives

This note reports simulations carried out to simulate wave transformation along the flume following the initial beach profile and the wave conditions given in Roelvink(1993). Parametric spectral and wave-by-wave approaches are compared. An estimation of the distribution of the skewness of the bottom orbital velocity along the flume is also given.

Initial beach geometry

The initial beach profile consists of four parts:

- an initial flat bottom between x=0 and 20 m at z=0.,

- a constant sloping part with a slope of 1 in 20 between x=20 and 52 m {z= 0 to 1.6 m),

- a Dean's profile of the form z= 4.1 - 0.1(177-x)'^ between x= 52 and 169 m

(z=1.6 to 3.7m),

- a constant sloping part with a slope of 1 in 30 between x=169 and 203m

(z=3.7 to 4.83m).

x = 0. corresponds to the wave-maker and z = 0. to the flume bottom.

Wave conditions

The three following wave conditions will be used during the experiments.

test case (m) energy-based wave height Tp(s) peak period h ( m ) water depth a 0.6 5.0 4.1 b 1.0 5.0 4.3 c ' I" _ 1- 1 _ — a - T 0.3 6.0 4.1

able 1: Incident wave conditions

(2)

2

Simulations in the spectral domain

The parametric spectral approach has been used following Battjes and Stive(1985). Results showing the evolution of the energy-based wave height H ^ , (more correctly referred as H^) for the three test cases are drawn on figure 1. It should be noted that the gamma coefficient in the formulation as been computed according to the empirical fit given in Battjes and Stive paper. For comparison purposes, the new fit proposed by Nairn(1990) which gives lower values for low steepness waves has also been used in test c.

Simulations in the time domain

A wave-by-wave approach with the software REPLA has also been used. For that purpose, it has been assumed that the incident root-mean-square wave height H defined in the time domain is equal to the incident energy-based wave height defined in table 1. Two types of incident wave distributions have been simulated. In the first one, 15 wave heights have been selected assuming a Rayleigh distribution associated with a single frequency fp (see table 2). In the second case, a full joint distribution of periods and heights has been used with an assumed mean period ( T J of 4.3s and mean wave height ( H J of 0.53m for the test case a. As no standar"d theoritical joint distribution is presently available, laboratory records with equivalent wave steepness and relative water depth have been analysed. The resulting non-dimensional probability distribution has been used to define 34 individual waves (see table 3).

The evolution of H,^, and Hy^ for both distributions are drawn on figure 2 (upper part). There is no significant difference between both results. The result obtained from the parametric spectral approach is also shown. As expected, H ^ , becomes larger than HE in the surf zone. A comparison of the fraction of breaking waves along the profile is also given in the lower part of figure 2. Significant differences are observed between the two approaches. The wave-by-wave approach could also give an estimate of the non-breaking and breaking wave height distributions along the profile. The four currentmeter stations at x= 100, 130, 145 and 160m have been chosen to display these distributions in the case of an incident Rayleigh distribution (figure 3) and a joint

distribution (figure 4). ^

Near-bottom velocity s k e w n e s s

The parametrized form of the covocoidal theory as been used to estimate the skewness of the horizontal near-bed velocity along the profile. The results of a simple

(3)

3

Rayleigh distribution Hrms 0.6 Hmax 1.452 deltaH 0.1 400 H ( m ) P(H) Nb waves 0.05 0.028 11 0.15 0.078 31 0.25 0.117 47 0.35 0.138 55 0.45 0.142 57 0.55 0.132 53 0.65 0.112 45 0.75 0.087 35 0.85 0.063 25 0.95 0.043 17 1.05 0.027 11 1.15 0.016 6 1.25 0.009 4 1.35 0.005 2 1.45 0.002 1 Table 2

Probability distribution of a joint distribution of periods and height

T/Tm 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 H/Hm tot 0.1 2.0 2.0 0.3 1.0 2.9 1.3 5.2 0.5 3.3 4.9 3.6 2.0 1.6 15.3 0.7 5.2 2.3 2.9 3.6 1.3 15.3 0.9 2.0 4.9 3.9 4.9 15.6 1.1 1.0 4.6 4.6 3.3 1.3 14.7 1.3 1.6 4.9 3.6 10.1 1.5 2.3 4.6 2.6 9.4 1.7 2.3 5.2 7.5 1.9 2.0 2.0 2.1 1.6 1.6 2.3 1.3 1.3 tot 0.0 1.0 8.1 14.3 21.5 32.9 19.5 2.6 100.0 Table 3

(4)

LIP11D Experiments

Wave transformation parametric spectral approach HE( 1.2 1.05 0.9 0.75 .0.6 0.45 0.3 0.15 0 m) HE( 1.2 1.05 0.9 0.75 .0.6 0.45 0.3 0.15 0 HE( 1.2 1.05 0.9 0.75 .0.6 0.45 0.3 0.15 0 HE( 1.2 1.05 0.9 0.75 .0.6 0.45 0.3 0.15 0 HE( 1.2 1.05 0.9 0.75 .0.6 0.45 0.3 0.15 0 HE( 1.2 1.05 0.9 0.75 .0.6 0.45 0.3 0.15 0

" - «

HE( 1.2 1.05 0.9 0.75 .0.6 0.45 0.3 0.15 0 1 1 a > u^m 1 1 1 III I M M • i ^ n t • « HE( 1.2 1.05 0.9 0.75 .0.6 0.45 0.3 0.15 0 HE( 1.2 1.05 0.9 0.75 .0.6 0.45 0.3 0.15 0 case a 9amma=0.70 case b gamma=0.79 case c gamma=0.57 case c Nairn gamma=0.49 25 50 75 100 X ( m ) 125 150 175 200

LIP11D Experiments

Wave transformation initial beach profile

(5)

LIP11D Experiments Wave transformation case a) Hrms=0.6 m and Tp= 5s « itfr " * "* • n i W • V ,0^

^\

25 50 75 100 X(m) 125 150 175 He parametric Hrms_Ra5/|eigh Hrms joint distribution H 1/3 "Raleigh H 1/3 joint distribution 200

(6)

LIP11D Experiments

Wave height distribution at ) f e 1 0 0 m c a s e a) Hrms=0.6 m and Tp= 5 s P(H) 0.3 0.25 0.2 0.15 0.1 0.05 0 ^breal<ing lilnon-breal<ing 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 H/Hm LIP11D Experiments

Wave height distribution at X = 1 3 0 m c a s e a) Hrms=0.6 m and Tp= 5 s

ing lllnon-breal<ing

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

LIP11D Experiments

Wave height distribution at X = 1 4 5 m c a s e a) Hrms=0.6 m and Tp= 5 s P(H) rn I 1 I I 1 I I 1 I I n ®breai<ing Ènon-brea!<ing 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 H / H m LIP11D Experiments

Wave height distribution at X= 160m c a s e c) Hrms^O.S m and Tp= 5 s

P(H)

I I I T j I I I i I I j r ~ j ^breaking lllnon-breal<ing

(7)

LIP11D Experiments

Wave height distribution at X= 100m c a s e a) Hrms=0.6 m and Tp= 5 s |breal<ing IHnon-breal^ing 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 H/Hm LIP11D Experiments

Wave height distribution at X= 130m c a s e a) Hnns^O.S m and Tp= 5 s Kbreal<ing i i non-breaking 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 H/Hm LIP11D Experiments

Wave height distribution at X= 145m c a s e a) Hrms=0.6 m and Tp= 5 s breaking 01 non-breaking 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 H/Hm LIP11D Experiments

Wave height distribution at X= ISOm c a s e a) HrmssO.S m and Tp= 5 s 0.324 breaking El non-breaking 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 H / H m

(8)

LIP11D Experiments

Wave transformation Si<ewness of near-bed velocity

Ske\ 1.5 1.35 1.2 1.05 0.9 0.75 0.6 0.45 0.3 0.15 0 mess Ske\ 1.5 1.35 1.2 1.05 0.9 0.75 0.6 0.45 0.3 0.15 0 Ske\ 1.5 1.35 1.2 1.05 0.9 0.75 0.6 0.45 0.3 0.15 0 Ske\ 1.5 1.35 1.2 1.05 0.9 0.75 0.6 0.45 0.3 0.15 0 Ske\ 1.5 1.35 1.2 1.05 0.9 0.75 0.6 0.45 0.3 0.15 0 Ske\ 1.5 1.35 1.2 1.05 0.9 0.75 0.6 0.45 0.3 0.15 0 Ske\ 1.5 1.35 1.2 1.05 0.9 0.75 0.6 0.45 0.3 0.15 0 Ske\ 1.5 1.35 1.2 1.05 0.9 0.75 0.6 0.45 0.3 0.15 0 Ske\ 1.5 1.35 1.2 1.05 0.9 0.75 0.6 0.45 0.3 0.15 0 Ske\ 1.5 1.35 1.2 1.05 0.9 0.75 0.6 0.45 0.3 0.15 0 Ske\ 1.5 1.35 1.2 1.05 0.9 0.75 0.6 0.45 0.3 0.15 0 0 25 50 75 100 125 150 175 200 X(m)

Cytaty

Powiązane dokumenty

Here, we bench- mark a set of commonly used GFP variants to analyze gene expres- sion in the low-GC-rich Gram-positive model organisms Bacillus subtilis, Streptococcus pneumoniae,

Na potrzeby realizacji niniejszej pracy wybrano bromowolitową chłodziarkę absorpcyj- ną firmy Shuangliang (Shuangliang 2016). Chłodziarka zasilana jest wodą o temperaturze

[r]

Kosicki, Sprawa obliczania zapotrzebowania siły roboczej i siły pociągowej w gospodarstwach rolnych, „Zagadnienia Ekonomiki Rolnej&#34; 1957, nr 6, a 125—127; W.. Kwiecień,

In the preceding paper [1] we did not give the explicit form of the expectation of mean square for interaction AB for the mixed general model I k J (any I and any J &gt; 2) in

15% share of renewable energy in the structure of energy consumption in 2020, although probably possible, is no doubt a real challenge but – taking into consideration the

To przecież oczywiste, że student chętniej pójdzie na zajęcia wykładowcy, którego uważa za znakomitego specjalistę i którego zajęcia go rozwijają, są interesujące,

Using time domain type of methods for the linearized potential flow problem Prins [56] gave an accurate account of how wave drift forces could be calculated using a pressure