• Nie Znaleziono Wyników

The processing of an aqueous hydrogen fluoride/hydrogen chloride-stream into economic valubale products

N/A
N/A
Protected

Academic year: 2021

Share "The processing of an aqueous hydrogen fluoride/hydrogen chloride-stream into economic valubale products"

Copied!
163
0
0

Pełen tekst

(1)

,Pi

T

U

Delft

Technische Universiteit Delft

FVO Nr.

Fabrieksvoorontwerp

Vakgroep Chemische Procestechnologie

Vol.2 APPENDICES

Subject

The processing of an aqueous hydrogen

fluoride/hydrogen chloride

-

stream into

economie valuable produets

Authors

M. Cremers

LD. Heemstra

l.M.

Kleinveld

DJ. Peet

Keywords

Telephone

015-2620567

015-2126591

015-2617027

015-2611187

Hydrogen Fluoride, Hydrogen Chloride, Recovery, Dehydration, Aqueous, Azeotrope, Extraction, Sulfurie acid, Cyclohexanol

Date of Assignment:

Date of Report

lanuary, 22

nd

1997

April, 22

nd

1997

(2)

Kick off:

Report:

Authors:

Preliminary Plant Design 3194

The processing of an aqueous hydrogen

fluoride/hydrogen chloride - stream into

economie valuable products

Recovery of HF and Hel from the waste water stream of

the Thermal Converter on the DuPont Dordrecht site

January 22

nd,

1997

April 22

nd,

1997

M. Cremers

LD.

Heemstra

1.M. Kleinveld

DJ.

Peet

Mentor:

ir. J.G. Wassenaar

Accompaniment: ir. C.P. Luteijn

prof

.

ir. 1. Grievink

TheFVO

cg]POHn

Dream Team

(3)

Appendices

. A Basic principles

Al Assignment and description A2 DuPont thermal converter process A3 Properties of the used components A4 Txy-diagram of HF/tIzO system

A5 Ternary diagram of HFIHCIIH20 system

A6 Construction materials

A 7 DuPont company background information B Block diagrams

BI Hexane stripping process B2 Electrodialysis process

B3 Pressure swing distillation process B4 HCl-make up process

B5 Cyc\ohexanol process B6 Sulphuric acid process

Sulphuric acid process

CAspen specifications CIAspen flowsheet C2 Aspen input parameters D Auto CAD flowsheet

E Mass and energy balance F Stream/components

G Equipment caIculations

G 1 Packed columns

G 1.1 Sizing of the hydrogen fluoride/-chloride separation column, C2 G 1.2 Sizing of the extractive distillation column, Cl

G 1.3 The water removal column, C3 G2 Sieve plate columns

G2.1 Sizing of the hydrogen fluoride/-chloride separàtion column, C2 G2.2 Sizing of the extractive column, Cl

G2.3 The water removal column, C3 G3 Vessels

G4 Heat Exchangers, reboilers and condensors G5 Pumps

H Equipment lists and specification forms

Hl

Equipment list for columns and vessels H2 Equipment list for heat exchangers H3 Equipment list for pumps

H4 Specification form for the extractive distillation column

H5 Specification form for the hydrogen fluoride/-chloride separation column H6 Specification form for the water removal column

H7 Specification form for heat exchanger EI H8 Specification form for pump PI

1 2 3 5 6 7 9 10 10 11 12 13 14 15 16 17 18 20 21 26

29

30 30 32 34· 36 36 38

40

42 43 52 53 54 56 59 60 61 62 63 64

(4)

I Cost calculations of the economics 11 Investment according to DuPont

12 Investment according to Zevnik-Buchanan 13 Investment according to Taylor

14 Co st and revenues IS Economic criteria Cyclohexanol process

JAspen specifications

J I Aspen flowsheet 12 Aspen input parameters

K Auto CAD flowsheet

L Mass and energy balance M Stream/components N Equipment calculations

NI Extraction column

N 1.1 Sieve plate column, Cl N1.2 Rotating Disk column, Cl N2 Packed columns

N2.1 Sizing of the hydrogen fluoride/-chloride separation column, CS N2.2 Sizing of the hydrogen fluoride recovery column, C2

N2.3 The water removal column, C3

N2.4 The cyclohexanol recovery column, C4 N3 Sieve plate columns

N3.1 Sizing of the hydrogen fluoride/-chloride separation column, CS N3.2 Sizing of the hydrogen fluoride recovery column, C2

N3.3 The water removal column, C3

N3.4 The cyclohexanol recovery column, C4 N4 Vessels

N5 Heat Exchangers, reboilers and condensors N6 Pumps

o

Equipment Iists and specification forms

Ol Equipment list for columns and vessels 02 Equipment list for heat exchangers 03 Equipment list for pumps

04 Specification form for the extraction column, Cl

05 Specification form for the hydrogen fluoride/-chloride recovery column, C2 06 Specification form for the water removal column, C3

07 Specification form for heat exchanger EI 08 Specification form for pump PI

P Cost calculations of the economics P I In vestment according to DuPont

P2 Investment according to Zevnik-Buchanan P3 Investment according to Taylor

P4 Cost and revenues PS Economic criteria

Q

Literature search list

R Time scheduling and planning (in Dutch)

S Mail of dr. ir. V.V. de Leeuw (AspenTech Brussels) T Risc outlines

U Information about electrodialysis

65 65 67 68

69

70 71 72 73 75 76 82 85 86 86 87 88 88

90

92 94

96

96

98

100

102

104

105

113

114 lIS 117

120

121

122

123

124 125

126

126

128 129

130

132

133

139 144 145

146

11

(5)

C[[)POtID

1 )ld','li: \,'d"II:II!d

FVO-team T.U. Delft: lIanon Cremers Isold Heemstra Joris Kleinveld Dirk-Jan Peet cc H. Benjamins T. Spoormaker L. Hermans F. Schramm G. v. Unnik E. Hobbel 11. v.d. Graaff C. Luteijn Dordrecht, 25 februari 1997. OPDRACHTOIISCHRIJVING FABRIEKSVOORONTIIERP

In de periode van 27 januari tot en met 7 april 1997 zal bovengenoemd FVO-team van de T.U. Delft een haalbaarheids- studie/fabrieksvoorontyerp uitvoeren voor de DuPont vestiging te Dordrecht.

De specifieke opdracht van DuPont aan het FVO-team is het ontyerpen van een

installatie die een yaterige HF/HCl-stroom veryerkt tot bruikbare produkten (yatervrije HF en 30 geY4 HCl). De installatie zal hierbij moeten voldoen

aan de kyaliteits- en milieu-eisen die staan vermeld in bijlage 1.

Het FVO-verslag dient in het Engels geschreven te yorden en zal tenminste onderstaande onderyerpen omvatten:

- Plan van aanpak/Tijdsschema.

- Literatuurstudie naar mogelijke procesroutes. - lIotivatie van uiteindelijk gekozen procesroute(s).

- Massa- en energiebalansen (proèessimulatie m.b.v. Aspen Plus 9.2) .

- Keuze van procesanalyse-apparatuur. - Keuze van regelstrategie.

- Keuze van constructiematerialen.

- Dimensionering van hoofdapparatuur (kolommen, yarmteYisselaars, vaten, pompen en compressoren).

- Invloed van de installatie op veiligheid, beroepsgezondheid en milieu.

- Kostenschatting van de totale installatie met een nauykeurig-heid van +/- 25%,

Alle informatie in het FVO-verslag dient vertrouyelijk te yorden behandeld en mag slechts na uitdrukkelijke toestemming van de DuPont Dordrecht organisatie yorden vrijgegeven.

\ Het vriendelijke groeten,

Fluoroproducts

C[[)POfID

I )111'\ 1\ I; '\ l ,1..'11;111.;

Opdrachtomschrijving Fabrieksvoorontyerp (bijlage 1)

Ontyerp een installatie voor de ontyatering van yaterige HF.

Voedingsstroom

- 1000 kg/h met de volgende samenstelling o 5 gey% HCL. o 20 gey% HF. o 75 gey% yater. Kyaliteitseisen yatervrije HF - < - > - < - < 100 ppm 2 gey% 98 gey% 100 ppm 50 ppm yater. HCL. HF. S02. H2S04. Kyaliteitseisen HCL gas - < 1 ppm yater, - < 10 ppm HF. balans HCL. Lozingseisen HF (100% basis) - < 1 kg/ho Lozingseisen HCL (l004 basis) - < 50 kg/ho

>

~ ~

re

=

~

...

~

>

~

>

~ ~

...

ere

=

S

re

=

~ ~

=

~ ~

re

~

n

~

...

~ ~

...

o

=

~

o

o

c: '"Cl o ::l

--l ~ ~ 3 VJ ':g tIl ~ i'ï

;0

::l !:?, '0 (D Vl

(6)

FVO DuPont Team 3194 Basic Principles

AppendixA2

DuPont thermal converter process

The Thermal Converter wil! thermally destroy halogenated by-products which are generated in the HCFC-22 and TFEIHFP- processes at the Dordrecht-site.

All halogenated by-product streams wil! be fed to the Thermal Converter via a waste feed line system. This feed line system consists of five main feed Iines which are:

• Stripping air feed line.

• HFC-23 feed line.

• Mon Low boil/Detox feed line.

• TFE feed line.

• Supernate feed line.

The by-product streams, coming from the waste feed line system, are fed into the horizontally mounted combustion chamber through separate feeding in lets. This to minimise explosion hazards between air/Cl2 and TFE/HFP. In the combustion chamber the by-products are intimately mixed with air and natural gas and incinerated. Depending upon the condition, composition and flow of the by-product stream, supplementary fuel gas wil! be automatical!y fed to the Thermal Converter in order to maintain flame

stability.

The tlue gasses formed wil! consist of C02, H20, HF, HCI and low levels of NOx, CO and C12. The CI2 results from the equilibrium reaction between the HCl and 02 at combustion temperatures. Demin water is added to the combustion chamber to force the equilibrium reaction to HCl and away from C12.

The hot flue gas is extracted from the combustion chamber by the Induced Draft fan (=ID-fan). HF and HCI are scrubbed from the flue gasses before this gas is dispersed from the central vent stack. The scrubbing is done by means of a quench venturi scrubber and an absorption column. This column has two water-scrubbing stages and one caustic scrubbing stage. Each scrubbing stage has its' own recirculating system.

An aqueous HF solution of saleable quality is being produced in the quench venturi sc rubber. The HF-concentration will vary between 20 to 30 wt%. The diluted aqueous HF (15-25 wt%) scrubbed out of the HCFC-22 process is used as the quench medium. Provisions are made for using demin-water as a quench medium in case of insufficient aqueous HF-supply or shutdown of the HCFC-22 process. DLll'ing normal operation the Thermal Converter is controlled in automatic mode from DCS. The most important controls are:

• Quench venturi sc rubber and absorption column

Level control and monitoring of flows and temperature

• Combustion chamber

Temperature and 02-contro!. • Burners

Flame and combustion contro!.

• Fans

Pressure con trol and draft into the combustion chamber. • Feed streams and associate utility

Pressure and flow controls.

(7)

DORDRECHT WORKS THERMAL CONVERTER SYSTEM

Stack

Induced Draft Fan

[TFE/HFP

HONOMER

FC WASTE

Hakeup Caustic

k

_

~~N

IIFC23 --WASTE

t

I •

.Salt Solution

Makeup Water

NATURAL GAS ~--- -1

Isrr~~1

~

[~OHBU~;-;ON AI~

-~- -... ---_.

__

._- -

--Combustion Chamber

I~~PE~~~:

-

}-

___

.-J

_

J

Packed Colomn Scrubber

~ ~ J\cid

Solution

G2~O!:i!~

_

IN~

Venturi Scrubber

(8)

,

FVO DuPont Team 3 194 Basic Principles

Appendix A3

Properties of the used components

Table

Al

Properties of the components used in the processes (1-2)

Component Water Hydrogen Fluoride Hydrogen chloride

Formula H20 HF HCI

Molecular weight [gimol] 18.015 20.006 36.461

Boiling Point [EC] 100 19.54 - 114.22 .

Melting Point [EC] 0 - 83.55 - 85.05

Liquid density [ kg/m3] 999.6 350.0 630.0

10 EC, I bar (Iit. HE7)

Solubility in water N/A complete 72 g/lOO mi

20 EC, 1 bar (Iit. HE8)

MAC-dose N/A 3 ppm 5 ppm

20 EC, I bar (lit. HE9) 2-2.5 mg/m3 7 mg/m3

Price [HFI 1 ton] 2.501 m3 2910.10 576.00

(Iit. HEIO)

Table

A2

Properties of the components used in the processes (2-2)

Component Formula

Molecular weight [gimol] Boiling Poi nt [EC]

Melting Point [EC]

Liquid density [kg/m3] 25 EC, I bar (Iit. I)

Solubilit in water b y y [g 20 EC, I bar (Iit. 2) MAC-dose

20 EC, I bar (Iit. 3) Price [HFI 1 ton] (Iit.4) 1100 mi Cyc1ohexanol C6HI2O 100.161 160.85 23.45 940.0 (pure) 5.7 50 ppm 200 mglm3 3513.29 Sulphuric Acid H2S04 98.079 336.85 10.31 1840 (pure) complete I mg/m3 144.00 3

(9)

FVO DuPont Team 3194

Liquid densities (Lo) by Hankinson - Brobst - Thomson (HBT) :

Lo= Mw/Vs

in which:V, = V· * VR(O)

*

[1 -TSRK

*

VR*]

and: VRCO) = I

+

a*(l-TR)1/3

+

b*(l-TR)213

+

c*(l-TR)

+

d*(l-TR)4/3

with: VR* = [e

+

f*TR

+

g*TR2

+

h*TR3] / (TR - 1.00001) 0.25

<

TR < 0.95 TR=T/Tc Constants: a

=

-1.5281; b

=

1.43907; c

=

-0.81446 d

=

0.190454; e = -0.296123; f= 0.386914 g

=

-0.0427258; h

=

-0.0480645

Table A3

Properties of the components used for liquid densities

Component Tc [Kl TSRK (2)

Parameter Critical temperature Redlich Soave Kwong

H20 647 0.3852 HF 461 0.3281 HCI 324 0.1254 CóHI20 625 0.5296 H2S04 900 0.9302 4 Basic Principles V'CZ) 0.0436 0.0586 0.0838 0.3377 0.1230

(10)

FVO DuPont Team 3194 Basic Principles

o

1

ppendix A4

Txy-diagram of HFIH

2

0 system

·

v

.--S

U

>-(IJ '-m .0 G..l TI . .-< '-o :::J LL C G..l 01 o '-TI >-::r::: ...

J

"'

J

, . ,

:---

~---

--

----~---:---;-, , , I r -- - - --- --- -- -,.- - --- - ---- --- -- - - - --.,. - ---- -- ----- . -- -- ,

-\

I , I I

I

I

, , -r --- - - ---- ---- --- -- - --1---- -a (IJ a u m '-LL G..l LO .--. . 0 a::E

~

-

-

-

-

--

i.--

--- ----

--

-

-~---

-- --- ---

-

~-

-

----

-

-

-

--

---

-

--

----i-

---

--

-

----

-

--

-~---

--- -

-

----

---~--

-

-- -

::

\ : , 1 , : ,

~

: : :

\

: : !

, , ,

...

: ' :

\

:

:

, ' I I

~---

---

-\---~---

---

--L---

--

--

---J---

:

_

_

___

________

_

______

__ :_

_

_

_

__

ru '-: : : : a -..; : : :

:

,

'-

....

: : :

" ,

~

~

~

~

:

..

: : : , " : 'a : :

:

'-

~,-

:

!

• I - . I '

.

--.

-

'

.

:

-

-;... ==-.-=. • . . . .

u a a a a a a (IJ LD - L O "<:T (\J a ~ ~ ~ ...-1 Cl E G..l f -5

(11)

FVO DuPont Team 3194 Basic Principles

Appendix

A5

Ternary diagram of HF/HCLHzO system

"1

""

\;b 0

~

("IJ

4

(J.

\.

J:

m

0

Y-~

D.

(J. CD - / / / " (J

.~

a

Î

(J.~

r--. 0. J{:' (J

.1

a

I

co

I

L

!

lD i

en

(J.~

QJ

a

>

C-

m

::J LL 0 U J:

a

("IJ J: QJ

::J

0

' q TI

a

·rl

en

0

QJ

{'.

(Yl

cr:

0

1>.

a

0

("IJ

a

<.

0

..-1

a

.

:~

0

--1 U J: 6

(12)

FVO DuPont Team 3194 Basic Principles

Appendix A6

Construction materials

Stainless steel.

Some stainless steels are resistant more corrosive circumstances

and should therefore be adequate as construction material. These types are:

316 Stainless steel with molybdene 24001 pounds/ton

I

310 Stainless steel with high CR content 3000 pounds/ton

duplex Stainless steel with 30% Ni and 20% Cr. 2400 pounds/ton

s-suplex Stainless steel with 30% Ni en 25% Cr 3600 pounds/ton

Especially duplex and super-duplex are resistant against acids and acidchlorides.

Hawever the question is whether use has ta be made af special develaped materiais.

Stainless steel has gaad mechanical properties and can be caated if necessary with

corrosive resistant materials (Teflan far example)

Monel

Manel is easy ta work and has gaod mechanical properties . It's resistant ta the lawer concentrations

mineral-and arganic acids. The price is abaut 2600 paunds/ton.

Ineonel

Incanel is mainly used at combinatians of acidic circumstances at high temperatures.

Hastelloy

The twa main types Hastelloy are mentianed belaw and are bath resistant ta mineral acids, in

particular HCI Hastell. B 65% Ni, 28% Ma, 6% Fe

Hastell. C 54% Ni, 17% Ma, 15% Cr, 5% Fe

Titanium

Especially the Pd aHoy is carrosian resistant, in particular far HCI. It is of ten used far heat

exchangers (bath shell and tube side). Casts are about 20.000 paunds per ton.

Zireonium

Zircanium is resistant tahot and bailing acids. The price is about 6000 paund per tan

(13)

FVO DuPont Team 3194

In the table below the suitability of each material wiU be summarised.

Legend: '0 not suitable

o

'"

**

neutral suitable very suitable Basic Principles

RVS 316 RVS 310 duplex s-duplex MODel IDcoDel Hastelloy Ti+Pd Zirconium

Corrosion-resistance 0 0

*

*

*

*

**

**

**

Strength

**

**

**

**

**

**

*

*

*

Price (pounds/ton) 2400 3000 2400 3600 2600 ? ? 20,000 6000

The corrosion resistance can be checked in Appendix C in the standard literature Coulson &

Richardson volume 6. From this appendix the following table is extracted, in which the figures refer

tot the temperature at which the acid can still be handled. Hastelloy has been omitted.

Metal HF HF-CODe. HCI HCI-coDc. H2S04,50 H2S04,70 H2S04,95

RVS 316/310 - - - - 20 - 20

Monel 1 lnconel 100 100 40 20 20 20 20

Ti+PcI -

-

100 100 100 100 100

Zirconium - - 100 100 100 100 100

(14)

FVO DuPont Team 3194 Basic Principles

Appendix A7

DuPont company background

information

To get a good insight in what the company of DuPont is about the Internet-site of DuPont (lit IN 1) as

looked at. To give the reader also some information about what kind of chemical company DuPont is

he text of the page has been included in this appendix.

A Global

company

DuPont At A Glance ...

John A. Krol,

60,

is president and CEO. He has been with DuPont for

34

years and has been president

since October

I, 1995

and chief executive officer since December

I, 1995.

He is a graduate of Tufts

University where he received his bachelor's and master's degrees in chemistry.

In

1996,

DuPont had revenues of

$43.8

billion and net income of

$3.6

billion. In

1996,50%

of the

company's sales were outside the United States. Exports from the United States were

$3.8

billion

making the company one of the largest U.S. exporters. At year-end

1996,

the company employed

about

97,000.

Approximately

35%

of the company's employees work outside the United States.

DuPont operates in approximately

70

countries world-wide, with about

175

manufacturing and

processing facilities that include

140

chemicals and specialities plants, eight petroleum refineries, and

27 natural gas processing plants. The company has more than

40

research and development labs and

customer service labs in the United States, and more than

35

labs in 1 J other countries. Conoco,

DuPont's petroleum subsidiary, is invoJved in the world-wide exploration and production of crude oil,

natural gas and gas liquids, and refining, marketing and transportation of natural gas and gas

products, and refined petroleum products.

Conoco employs some

16,000

people in approximately

30

countries. Some of our best-known brands

are: Teflon® resins, SilverStone® non-stick finish, Lycra® brand spandex fiber, Stainmaster®

stain-resistant carpet, Antron® carpet fiber, Dacron® polyester fiber, Kevlar® brand fiber, Corian® solid

surface material, Mylar® polyester films, Tyvek® spunbonded olefin fabric, and Coolmax® and Cordura® textile fibers.

Market perspecti

yes

and economics

DuPont is the largest chemical company in the world, a major producer of oil, natural gas and

petroleum products and a leader in science and technology in a range of disciplines including

high-performance materiais, specialty chemicais, pharmaceuticals and biotechnology. DuPont has a

portfolio of

2,000

trademarks and brands, including such well-known consumer brands as Lycra®,

Teflon®, Stainmaster®, Kevlar®, Nomex®, Tyvek®, Dacron®, Cordura®, Corian®, SilverStone®,

and Mylar®, and energy brands such as Conoco®, Jet® and Seca®. The company operates

200

manufacturing and processing facilities in

40

countries world-wide. It has a long-established presence

in North America and Europe, and strong and growing market positions in South America and Asia

Pacific. DuPont has been in continuous operation for

194

years.

(15)

FVO DuPont Team 3194 Block Diagrams

Appendix BI Block diagram of hexane stripping process

Condensation 3 HF+HCI Flash 5 HF + HCI

Section DONA

[2J [3J

2 HF + HCI + hexane + water

4 hexane + water

Stripping 6 water + hexane

1 Feed

Section [1J

Evaporation Purification

Section Section

9 hexane (g) [4J 8 hexane [5J 7 wate

10 water

(16)

FVO DuPont Team 3194

Appendix B2

5 Azeotropic Distillation 1 Feed 2 [1] 3 Azeotrope Block Diagrams

Block diagram of electrodialysis process

Diluted HF

Electrodialysis 6

DONA---

Section

Cone. Separation Section

(3) (2) HF 55 % .,.

7

1

Inert gas 4 11 Azeotrope 9 8 HF 3 water 10 Ine + rt gas HCI H F Separation Section (4) 11

(17)

FVO DuPont Team 3194 Block Diagrams

Appendix

B3

Block diagram of pressure swing distillation

process

2 water

6 HCI

4 HF + HCI

HFIHCI First Pressure Second Pressure

~

Seperation

Section Section Section

I

1 Feed [tl 3 [3] , [2]

7 HF

5 Azeotropic mixture

(18)

FVO DuPont Team 3194 Block Diagrams

Appendix B4

Block diagram of Hel-make up process

2 wat er 13 HCI-Ieed 12 11 HCI

I

9 14 HCI 7 HF+HCI HF/Hel Separation Section [4]

I

1 Feed Water rernoval Water rernoval

10 section - J o section HF [1] [3] 3 5 HCI+HF+ 4 water -Stripping HF+HCI+water Section ~ [2] 8 HF+HCI+water 6 water/HF/HCI 13

(19)

FVO DuPont Team 3194 Block Diagrams

Appendix BS Block diagram of cyclohexanol process

I

10 HCI 6 HF+HCI HF/HCI Separation Section [4J HF+HCV

I

HF Cyclohexanol 11 Separation Section 4 HF+HCI+cyciohex [2] +water 1 Feed 8 water+cyclo+HF Extraction 7

J

2 Cyclohexanol Section HF+HCV 3 11] Cyclohexanol

I

Separation Section cyclohex.+water +HF [5] water+cyclohexanol 9 Cyclohexanol 5 12

water + cyclohex. CyclohexanoVwater

Distillation Section [3] 13 water 14 14

(20)

FVO DuPont Team 3194 Block Diagrams

Appendix

B6

Block diagram of sulphuric acid process

6 HCI HF/Hel Separalion Section [2J 4 HF+HCI H2S04-Feed 7 HF 2 4 3 Extraction Section [lJ 8 water 1 Feed

5 water + H2S04 H2S04Separation /water Section

[3J

9 H2S04+ H20

(21)
(22)

Sulphuric Acid Extractive Distillation Process

Aspen Flowsheet

Auto CAD flowsheet

Mass and Energy balance

Stream and components

Equipment calculations

Packed columns

Sieve plate columns

Vessels

Heat Exchangers, reboilers, condensers

Pumps

Equipment lists

Columns, vessels

Heat exchangers, pumps

Extractive distillation column

Hydrogen fluoride/ -chloride separation column

Water removal column

Heat exchanger EI

Pump PI

(23)
(24)

FVO DuPont Team 3194

Appendix Cl Aspen flowsheet

qJ=

I

A '-

.

I I ;0 ! I I I I

I

:

l

-

!~

I

I

,

~

:-0

Lc=>-

1

ciJ:

l

;

i

- - - '

Flowsheets

J

17

(25)

FVO DuPont Team 3194 Flowsheets

Appendix C2 Aspen input parameters

Unit id's refer to the PFD flowsheet in appendix D. In brackets the former ASPEN unit id's as in

appendix Cl are given. Some units like pumps and heat exchangers taken up in the AS PEN flowsheet

won' t be mentioned in this chapter because of the fact that in the final PFD they are replaced by the

typicals. All the equipment is simulated with the Elec-NRTL / RK thermodynamic model and the

global chemistry using apparent components unless stated otherwise.

Table C2.1 Column

input specifications

Column Cl (Cl) C2 (C2) C3 (C3)

Simulation model Radfrac Radfrac Radfrac

Thermodynamic model Elec-NRTLI RK Elec-NRTL/ RK Elec-NRTLI RK

Chemistry (apparent comp.) Global Global Global

Number of stages 10 10 10

Cond. duty (W) 0

-

-Distillate / feed 0.098 0.999 0.3995

Mass vapor dist. / total dist. 1.000 1.000 0.000

Mass retlux ratio

-

1.000 2.000

P-spec stage 1 (kPa) 150 1400 150

T-est stage 1 (0C) 100 -

-T-est stage 5 (0C) 200 -

-Table C 2.2

Heat exchanger

input

specifications

Exchanger Sim. model T (0C) P (kPa) Vfrac (-)

EI (EI) Heater - 150 0.0

E2 (Reb. Cl) Heater not required not required not required

E3 (-) Heater -24.2 1430

-E4 (-) Heater 7.0 250

-ES (-) Heater 7.0 300

-E6 (Cond. 2) Heater not required not required not required

E7 (E4) Heater 15.0 1400

-E8 (Reb. C2) Heater not required not required not required

E9 (ES) Heater 15.0 1450

-EIO (Cond. C3) Heater not required not required not required

EI j (E7) Heater 15.0 150

-EI2 (Reb. C3) Heater not required not required not required

Table C2.3 Pump

input specifications

Pump Sim. Model Pressure (kPa)

PI (P 1) Pump 300

P2 (-) Pump 1430

P3 (-) Pump 250

P4 (-) Pump 300

(26)

FVO DuPont Team 3194 Flowsheets

Table C2.4 Valve input specifications

Valve Sim. model T (0C) P (kPa) Vfrac(-)

V2 (-) Heater -24.2 ISO

-V4 (-) Heater 7 170

-V6 (-) Heater -24.2 1430

-V7 (E6) Heater 7.0 250

-Table C2.5 Vessel input

specifications

Vessel Sim. model Pressure (kPa)

V I (-) Mixer ISO

V3 (-) Mixer 140

V5 (-) Mixer 140

(27)
(28)

H2S04 recycle

(0

-,

r--- _ _ - - - _ . I Brine I I I I I ~I I

~:

e----~

I I

Sulfuric acid make-up

C 1 Extractive distillation column C 2 HF /HCI Separation column C 3 Water removal column E 1 Condensor E 2 Reboiler E 3 Cooler E 4 Cooler E 5 Cooler E 6 E 7 E 8 E 9 E 10 E 11 E 12 P 1

C3

Conden~ Heater IC

acid

Reboiler Cooler Conden~ Cooler Reboiler E o al ...., VJ

v

(I.

~~~n

C"'tb--

~

al C 'C CD r -..., water I

V8

0~---HP Steam

extractive distillation

Preliminary Plant Design nr. Con fiden tial April

Centrifu

o

Absolute pressure (C) (kPa)

Water

process

3194 1997

(29)
(30)

FVO DuPont Team 3194 Mass and energy balance

Appendix E Mass and energy balance

IN Forward Mass and Heat Balance Backward OUT

M 0 MlO Sulfuric Acid Process M/Q M 0

. -1000.000 Feed

....

1000.000 -4213.4 -4213.4 101

--...-

P1 0.0 '---~ 0.0 - - - . - -1000.000 02 -4213.4

~~

...

"""lIl{ C1

~

, -L-~ 40 4008.210 -10480.2 ~

,

~ <--1

-366.102 228.9 HP Steam

....

E2 Condens at&.. 366.102 0.0

165oC; 75psi .... 1600C

...

. .

~

249.273 -7847.0

20583.720 0.0 20583.720 30.9

Brine -30oC ... E1 Brine-25o~

-...

...

'---~ 249.273 05 - - - . -815.6 ~r ~ '---104 V1

~

L r -D02 274.273 -

.,

,

- - - --898.3 ~'---206 25.000 - - . --82.7 P2 1.2 0.0 L-,.-274.273 -

.,

~3

."

-

- - --897.1 21

(31)

FVQ DuPont Team 3194 Mass and energy balance IN Forward ..4 ~

..

Backward OUT M

a

MlO MlO M 0 25.000 -- - - --82.7 204 ~~ ,--'--E3 Brine -300C .... Brine -250 229.291 0.0 JIII'" ;~ 229.291 0.9 ~,--25.000 - - - --82.7 1205

,Y..

104 V2

r

-~ 249.273 07 - --815.3 , .

-...

...

_.~ C2

~

~,--~r r- '-- r---Brine -300C ... E6 Brine -250~ 5908.709 0.0 ~ !""" 5908.709 4.8 -49.948 501 -36.0 r

-....

HCI

..

49.948

...

503 ... -35.5 49.948 -35.5 Water

..

E7 Water 161.442 0.5 +17oC ~ +14.50C ~ 161.442 0.0

~

=J

,....

HP Steam

....

E8 Condensa\li 42.022 26.2 1350C; 25psi .... 1280C

....

42.022 0.0

I ..

~

I

22

(32)

FVO DuPont Team 3194 Mass and energy balance

IN Forward .4~ 8ackward OUT

M 0 MlO MlO M 0

199.325 502

-757.9 ,

-...

"... Eg

Brine + 150C ... Brine +8o(

3829.522 0.0

,...

'----. - -

....

3829.522 12.3 199.325 - - - --770.2 504 ~

,

_ L -V? HF

...

199.325 505

....

-770.2 199.325 -770.2 ' -4758.937 104 -13680.0

-...

,...

V3

+' r -21200.330 - - - --62250.0 302

~t

1.1 P3 0.0 '---,---21200.330 303 - --62248.9 16441.393 304 --~, -48275.6 _ L -306 - - 16441.393 -48570.0 Brine+50C ... E4 Brine+7.5~ 149981.940 0.0

....

....

149981.940 294.4 '----,.-16441.393 - 305 - - - --48570.0

~

V4 4748.397 f -- --13973.3 307 ' -~, 23

(33)

FVO DuPont Team 3194 Mass and energy balance IN Forward ~

~

Backward OUT M 0 MlO MlO M 0 4748.397 . . -13973.3 307 r

-....

...

--,...

~ C3

~

L . . . ,

-~

E10 1 -Water240C .... Water 31"'-. 172047.924 0.0 JIII"'" '--- JIII"'" 172047.924 1400.0 750.727 . . -3235.0 01 r

-~

Brine+50C .... E11 Brine +80< .... 26350.729 0.0 JII""

....

26350.729 84.5 L . . . , -750.727 603 - - - . . -3319.5

"

r ' -V8 H20

...

750.727 701

...

-3319.5 750.727 -3319.5 ' r

-....

....

HP Steam

...

E12 Condensat&.

3345.338 2091.4 1650C; 75psi .... 1600C

....

3345.338 0.0 ' -4008.210 602 -10046.9 r

-~

....

VS JII""

T

24

(34)

FVO DuPont Team 3194 IN M 162598.752 546445.491 Massflow in kg/hr 0 1.2 0.0 -1862.9 Energy in kW Forward MlO 20072.998 -52485.7 20072.998 -52484.5 16064.788 -42004.3 16064.788 -42438.8

...

...

J~ 402 - - - . ~

r

,... L-. -P4 -406 '---,.---403 404 - -

-

,

r

; L -Brine +50C ... Brine+7.5~

...

E5

....

'---,... - - - - -405

~t

V6 I L . .

-TOT AL

Backward MlO 16064.788 -42438.8

~

Mass and energy balance

OUT M 162598.752 546445.491 Massflow in kg/hr 0 0.0 434.5 -1862.9 Energy in kW 25

(35)

FVO DuPont Team 3194 Streams and components

AppendixF

Stream / components

Stream Number 100 101 102 103 104 105

Stream Name make up Feed Feed HF/HCI Acid/Water HF/HCI

To Equipment Number V5 P1 C1 E1 V3 V1 Temperature C 20.000 20.000 20.100 42.000 130.200 -24.200 Pressure KPA 0.000 200.000 300.000 150.000 170.000 150.000 Mass Flow KG/HR 0.000 1000.000 1000.000 249.273 4758.937 249.273 Enthalpy kW 0.0 -4213.4 -4213.4 -784.7 -13680.0 -815.6 Mass Flow KG/HR Water 0.000 750.000 750.000 0.004 1173.494 0.004 HydroÇJen Fluoride 0.000 200.000 200.000 199.270 65.449 199.270 HydroÇJen chloride 0.000 50.000 50.000 49.999 0.001 49.999 Sulfurie Acid 0.000 0.000 0.000 0.000 3519.993 0.000 Mass Frae Water 0.000 0.750 0.750 0.000 0.247 0.000 Hydrogen Fluoride 0.000 0.200 0.200 0.799 0.014 0.799 Hydrogen chloride 0.000 0.050 0.050 0.201 0.000 0.201 Sulfurie Acid 0.000 0.000 0.000 0.000 0.740 0.000 Stream Number 201 202 203 204 205 206

Stream Name Gasvent HF/HCI HF/HCI Recycle T1 Recycle T1 Recyle T1

To Equipment Number P2 C2 E3 V2 V1 Temperature C 20.000 -24.200 -22.200 -22.200 -24.200 -24.200 Pressure KPA 0.000 150.000 1430.000 1430.000 1430.000 150.000 Mass Flow KG/HR 0.000 274.273 274.273 25.000 25.000 25.000 Enthalpy kW 0.0 -898.3 -897.1 -81.8 -82.7 -82.7 Mass Flow KG/HR Water 0.000 0.004 0.004 0.000 0.000 0.000 Hydrogen Fluoride 0.000 219.255 219.255 19.985 19.985 19.985 Hydrogen chloride 0.000 55.013 55.013 5.014 5.014 5.014 Sulfurie Acid 0.000 0.000 0.000 0.000 0.000 0.000 Mass Frae Water 0.000 0.000 0.000 0.000 0.000 0.000 HydroÇJen Fluoride 0.000 0.799 0.799 0.799 0.799 0.799 HydroÇJen chloride 0.000 0.201 0.201 0.201 0.201 0.201 Sulfurie Acid 0.000 0.000 0.000 0.000 0.000 0.000 26

(36)

FVO DuPont Team 3194 Streams and components

Stream Number 207 301 302 303 304 305

Stream Name HF/HCI Gasvent AcidIWater AcidIWater Recycle T2 Recycle T2

To Equipment Number C2 P3 C3 E4 V4 Temperature C -22.200 20.000 30.000 30.100 30.100 7.000 Pressure KPA 1430.000 0.000 140.000 250.000 250.000 250.000 Mass Flow KG/HR 249.273 0.000 21200.330 21200.330 16441.393 16441.393 Enthalpy kW -815.3 0.0 -62250.0 -62248.9 -48275.6 -48570.0 Mass Flow KG/HR Water 0.004 0.000 5227.734 5227.734 4054.240 4054.240 Hydrogen Fluoride 199.270 0.000 291.565 291.565 226.116 226.116 Hydrogen chloride 49.999 0.000 0.004 0.004 0.003 0.003 Sulfuric Acid 0.000 0.000 15681.025 15681.025 12161.032 12161.032 Mass Frac Water 0.000 0.000 0.247 0.247 0.247 0.247 Hydrogen Fluoride 0.799 0.000 0.014 0.014 0.014 0.014 Hydroqen chloride 0.201 0.000 0.000 0.000 0.000 0.000 Sulfuric Acid 0.000 0.000 0.740 0.740 0.740 0.740 Stream Number 306 307 401 402 403 404

Stream Name Recycle T2 AcidIWater Gasvent Recycle Recycle Recycle T3

To Equipment Number V3 C3 P4 C1 ES Temperature C 7.000 30.100 20.000 30.000 30.100 30.100 Pressure KPA 170.000 250.000 0.000 140.000 300.000 300.000 Mass Flow KG/HR 16441.393 4758.937 0.000 20072.998 20072.998 16064.788 Enthalpy kW -48570.0 -13973.3 0.0 -52485.7 -52484.5 -42004.3 Mass Flow KG/HR Water 4054.240 1173.494 0.000 2120.865 2120.865 1697.368 Hydrogen Fluoride 226.116 65.449 0.000 324.111 324.111 259.392 Hydrogen chloride 0.003 0.001 0.000 0.000 0.000 0.000 Sulfuric Acid 12161.032 3519.993 0.000 17628.021 17628.021 14108.028 Mass Frac Water 0.247 0.247 0.000 0.106 0.106 0.106 Hydrogen Fluoride 0.014 0.014 0.000 0.016 0.016 0.016 Hydrogen chloride 0.000 0.000 0.000 0.000 0.000 0.000 Sulfuric Acid 0.740 0.740 0.000 0.878 0.878 0.878 Stream Number 405 406 407 408 409 501

Stream Name Recycle T3 Recycle T3 Recycle Purch Recycle HCI

To Equipment Number V6 V5 C1 C1 E7 Temperature C 7.000 7.000 30.100 0.000 30.100 -21.300 Pressure KPA 300.000 170.000 300.000 0.000 300.000 1400.000 Mass Flow KG/HR 16064.788 16064.788 4008.210 0.000 4008.210 49.948 Enthalpy kW -42438.8 -42438.8 -10480.2 0.0 -10480.2 -36.0 Mass Flow KG/HR Water 1697.368 1697.368 423.498 0.000 423.498 0.000 Hydrogen Fluoride 259.392 259.392 64.719 0.000 64.719 0.001 Hydrogen chloride 0.000 0.000 0.000 0.000 0.000 49.947 Sulfuric Acid 14108.028 14108.028 3519.993 0.000 3519.993 0.000 Mass Frac Water 0.106 0.106 0.106 0.000 0.106 <1ppb Hydrogen Fluoride 0.016 0.016 0.016 0.000 0.016 18ppm Hydrogen chloride 0.000 0.000 0.000 0.000 0.000 1.000 Sulfuric Acid 0.878 0.878 0.878 0.000 0.878 0.000 27

(37)

FVO DuPont Team 3194 Streams and components

Stream Number 502 503 504 505 601 602

Stream Name HF Prod Hel HF Prod HF Water Recvcle

To Equipment Number E9 V7 E11 V5

Temperature C 110.000 15.000 15.000 15.000 111.400 147.300 Pressure KPA 1450.000 1400.000 1450.000 300.000 150.000 170.000 Mass Flow KG/HR 199.325 49.948 199.325 199.325 750.727 4008.210 Enthalpy kW -757.9 -35.5 -770.2 -770.2 -3235.0 -10046.9 Mass Flow KG/HR Water 0.004 0.000 0.004 0.004 749.996 423.498 Hydrogen Fluoride 199.269 0.001 199.269 199.269 0.730 64.719 Hydrogen chloride 0.052 49.947 0.052 0.052 0.001 0.000 Sulfuric Acid 0.000 0.000 0.000 0.000 0.000 3519.993 Mass Frac Water 18ppm <1ppb 18ppm 18ppm 0.999 0.106 Hydrogen Fluoride 1.000 18ppm 1.000 1.000 0.001 0.016 Hydrogen chloride 259ppm 1.000 259ppm 259ppm 1.3ppm 0.000 Sulfuric Acid 217ppb 0.000 217ppb 217ppb <1ppb 0.878 Stream Number 603 701

Stream Name Water Prod Water

To Equipment Number

va

Temperature C 15.000 15.000 Pressure KPA 150.000 150.000 Mass Flow KG/HR 750.727 750.727 Enthalpy kW -3319.5 -3319.5 Mass Flow KG/HR Water 749.996 749.996 Hydrogen Fluoride 0.730 0.730 Hydrogen chloride 0.001 0.001 Sulfuric Acid 0.000 0.000 Mass Frac Water 0.999 0.999

Hydrogen Fluoride 0.001 0.001 Hydrogen chloride 1.3ppm 1.3ppm Sulfuric Acid <1ppb <1ppb

(38)

Appendix G

Equipment calculations

Appendix G 1 Packed columns

Appendix G 1.1 Sizing of the

HFIHCl

separation column (C2)

Appendix G 1.2 Si zing of the extractive distillation column (Cl)

Appendix G 1.3 Sizing of the water removal column (C3)

Appendix G2

Sieve plate columns

Appendix G2.1 Sizing of the HFIHCl separation column (C2)

Appendix G2.2 Sizing of the extractive distillation column (Cl)

Appendix G2.3 Sizing of the water removal column (C3)

Appendix G3

Appendix G4

Appendix G5

Vessels

Heat exchangers, reboilers

and condensers

(39)

FVO DuPont Team 3194 Equipment calculations

Appendix

Gl

Packed columns

Appendix G 1.1

Sizing of the HFIHCI separation column (C2)

Construction material: cold resistant carbon steel

Table

Gl

Equipment calculation HF/HCl separation column (1-2)

Name Symbol Value Unit Formula Number of stages N 10

-Reflux ratio RR 1

-Feed flow F 249.30 [kq/hrl Liquid flow stage 1 L1 49.95 [kg/hr] Vapour flow stage 1 V1 49.95 [kg/hr] Distillate D 49.95 [kg/hr] Liquid flow stage 10 Ln 199.3 [kg/hrl Vapour flow stage 10 Vn 529.3 [kg/hrl Bottom product B 199.35 [kq/hrl Density Liquid stage 10 rho liq 764.67 [kg/m31 Density Vapour stage 10 rho vap 8.82 [kg/m31 Av Molar mass stage 1 Mw top 36.5 [kg/kmol] Av Molar mass stage 10 Mw bot 20 [kg/kmol] Top temperature T top -21.3 [0C]

Bottom temperature T bottom 110 [0C]

Top pressure P top 14 [kPal Bottom pressure P bottom 14.5 [kPal Feed pressure P feed 14.3 [kPal liquid flow staqe 10 Lw 0.06 [kq/sl max vapour flow stage 10 Vw 0.15 [kg/sj Dimensions

Height of an equivalent theoretical HETP 0.29 rml

Height packing H _packing 2.91 [mI N' HETP Height section H section 1.45 [mI H _packing 12

volume section V section 0.04 [m31 H _packing'A col

maximum allowable vapour velocit u v 0.68 [mIs] See Intalox hiqh-performance seperating systems Column diameter D col 0.18 rml See Intalox high-performance seperating systems Column area A col 0.02 [m21 I(pl I 4)' (D col) "2

Skirt heiqht H skirt 1.5 [mI Reboiler height H reb 1 [mI Condensor height H cond 1 rml Distributor height H distr 0.5 [mI

Total column heiqht H total 6.41 [mI H _packing + H skirt + H reb + H cond + H distr

Packing: Carbon steel IMTP No. 15,13 mm, 1201 kg/m3, 417 m2/m3, 980 F_p/m (CTR table 11.3)

(40)

FVO DuPont Team 3194 Equipment calculations

Table G2

Equipment ca1cul

a

tion HFIHCl sep

a

ration column

(2-

2

)

Name Symbol Value Unit Formula

Estimated bed porosity eps bed 0.50

-Oensity of the packina table 11.3 C rho section 1201.00 [kg/m3]

Weiaht of the section W section 21.34 [kg] 1(1 - eps)' V section' rho section

Minimal number of stages

Relative volatility alpha LK 13.42

-

(Y. LK • x HK) I (Y. HK • x LK)

Minimum number of trays N min 6

-

log {(x LK I x HKl. d' (x HK I x LK). b} I log (alfa LK)

Wall thickness

Column pressure P col 1.4 [N/mm2]

Diameter o col 176.50 [mm]

design stress Carbon steel at 150 0 f 115 [N/mm21

Joint factor estimate J 0.5

-Wall thickness Eq. 13.39a C+R d wall 2.18 [mm1 P col • 0 col I 2 • J • f • P col

Corrosion allowance estimate d corrosion 3 [mm1

Actual thickness d actual 5.18 [mm1 d wall + d corrosion

From Intalox high-performance seperatings}'stems

Flow parameter X 0.04

-

I (L w I V w) • (rho vap I rho liqY'0.5

Capacity factor CO 0.10 [mis]

Superficial gas velocity v sup 0.68 [mis] I(V w' rho vap) I A col

Estimated surface tension sig 19 [dynelcm]

Estimated liquid visosity visc 0.1 [cp]

Efficient capacity C sc 0.11 [m/s1 CO' (sia I 20)"0.16 • (vi sc I 0.2)"-0.11

Capacity C s 0.07 [m/s1 v sup' (rho v I (rho liq - rho vap»"O.5

Pressure drop correlation coefficier Y 2.36

-

549 • (C sY'2 • viscl\().1

Pressure drop per meter OP 408.50 [Palm]

Pressure drop per meter OP 41.72 mm water/m

Total pressure drop OP tot 1186.77 [Pa] OP per m • H .packing

Height of an equivalent theoretical HETP 290.52 [mm] 272 • (sig I 20)"-0.16 • 1.78J\(viscl

Capacity rating C siC sc 0.69

(41)

FVO DuPont Team 3194 Equipment ca1culations

Appendix G1.2

Sizing of the extractive distillation column (Cl)

Construction material: Teflon Hned Stainless steel 316

Table G3 Equipment calculation extractive distillation column (1-2)

Name

Number of stages Reflux ratio Extractant flow Feed flow Liquid flow stage 1 Vapour flow stage 1 Distillate

Liquid flow staqe 10 Vapour flow stage 10 Bottom product Density Liquid stage 5 Density Vapour staqe 5 Av Molar mass stage 1 Av Molar mass stage 10 Top temperature Bottom temperature T ojJ pressure Bottom pressure Feed pressure liquid flow stage 5 max vapour flow stage 5 Dimensions

Heiqht of an eq. theor. plate Height packing

Height section volume section

maximum allowable vapour velocit Column diameter Column area Skirt height Reboiler height Condensor height Distributor height Total column height

Packing rectifying

Packing stripping

32

Symbol Value Unit Formula

N 10

-RR 1

-F extractan 4006.27 [kg/hr] F 1000 [kg/hr] L1 4170 [kg/hr] V1 249.3 [kg/hr] 0 249.3 [kg/hr] Ln 4757 [kg/hr] Vn 187.1 [kg/hr] B 4756.97 [kg/hr] rho liq 2796.57 [kg/m3] rho vap 0.85 [kg/m3] Mw top 21.99 [kg/kmol] Mw bot 57.14 [kg/kmol] T top 20.10 [OC] T bottom 130.20 [0C] P top 1.5 [kPa] P bottom 1.7 [kPaj P feed 3 [kPa] Lw 1.16 [kq/s] Vw 0.12 [kg/sj HETP 0.29 rml H _packing 2.91 [m] H section 1.45 [m] V section 0.05 [m31 u v 4.37 fm/sj

o col 0.20 rml From Intalox High-performance seperation systems

A col 0.03 [m2] H skirt 1.5 rml H reb 1 [m] H cond 1.5 [ml H distr 0.5 rml H total 7.41 [m] Polypropeen super-intalox, 16 mm, 112 kg/m3, 341 m2/m3, 320 F _p/m (CTR table 11.3) Tefzel super-intalox 16 mm, 112 kg/m3, 341 m2/m3, 320 F _p/m (CTR table 11.3)

(42)

FVO DuPont Team 3194 Equipment caIculations

Table G4

Equipment calculation extractive di

sti

ll

ation

column

(2-2)

Name Symbol Value Unit Formula

Estimated bed porosity eps bed 0.50

-Density of packing table 11.3 C+R rho rect 112.00 [kg/m3]

Density of packing table 11.3 C+R rho strip 737.00 [kg/m3]

Weight of the section W rect 2.65 [kg] 1(1 -eps) • V section' rho section

Weight of the section W strip 17.46 [kg] 1(1 - eps)' V section' rho section

Wall thickness

Column pressure P col 0.2 [N/mm21

Diameter D col 203.80 [mm]

design stress Carbon steel at 150 0 f 95 [N/mm21

Joint factor estimate J 0.75

-Wall thickness Eq. 13.39a C+R d wall 0.29 [mm] P col' D col I 2Jf-P col

Corrosion allowance estimate d corrosion 3 [mm1

Actual thickness d actual 3.29 [mm] d wall + d corrosion

From Intalox high-performance seperating systems

Flow parameter X 0.17

-

1 (L w I V w) • (rho vap I rho liq)"0.5

Capacity factor C 0 0.11 [mIs]

Superficial gas velocity v sup 4.37 [m/s1 V w' rho vap) I A col

Estimated surface tension sig 19 [dynelcm]

Estimated liquid visosity visc 0.1 [cp]

Efficient capacity Cse 0.12 [m/s1 CO' (sig I 20)"0.16 • (visc I 0.2)"-0.11

Capacity C s 0.08 [mIs] v sup' (rho v I (rho liq -rho vap))"0.5

Pressure drop correlation coef. Y 2.52

-

549 • (C s)"2' visc"0.1

Pressure drop per meter DP 1225.50 [Palm1

Pressure drop per meter DP 125.17 mm water/m

Total pressure drop DP tot 3560.32 [Pa1 DP per m • H _packing

Height of an eq. theor. plate HETP 290.52 [mm] 272 • (sig I 20}"-0.16 • 1.78"(visc)

Capacity rating C siC sc 0.65

(43)

FVO DuPont Team 3194 Equipment Calculations

Appendix Gl.3

Sizing of the water removal column (C3)

Construction material: teflon Hned stainless steel 316

Table GS

Equipment calculation of the water removal column

(1-2)

Name

Number of stages Reflux ratio Feed flow Liquid flow stage 1 Vapour flow stage 1 Distillate

Liquid flow stage 10 Vapour flow staQe 10 Bottom product Density Liquid stage 9 Density Vapour stage 9 Av Molar mass staQe 1 Av Molar mass stage 10 Top temperature Bottom temperature Top pressure Bottom. pressure Feed pressure liquid flow stage 9 max vapour flow stage 9 Dimensions

Height of an eq. theoretical plate Height packing

Height section volume section

maximum allowable vapour velocity Column diameter Column area Skirt height Reboiler height Condensor height Distributor height Total column height

Packing rectifying Packing stripping

34

Symbol Value Unit Formula

N 10

-RR 2 -F 4756.97 [kg/hr L1 1501 [kg/hr V1 0 [kg/hr 0 750.7 [kQ/hr Ln 4006 [kg/hr Vn 3990 [kg/hr] B 4006.27 [kg/hr] rho liq 2915.34 [kg/m3 rho vap 0.91 [kQ/m3 Mw top 18.02 [kg/kmol] Mw bot 89.27 [kg/kmol] T top 111.4 lOC] T botton 147.3 [0C] P to~ 1.5 [kPa] P bottor 1.7 [kpa] P feed 2.5 [kPa] L w 2.22 [kg/sj Vw 1.12 [kg/sj HETP 0.3 [ml H _packi 3.00 rml H sectio 1.5 rml V sectio 0.35 [m3] u v 5.22 [mts]

o

col 0.55 rml From Intalox High-performance sep. systems

A col 0.24 [m2] H skirt 1.5 rml H reb 1 [ml H cond 1.5 [mI H distr 0.5 rml H total 7.50 rml Tefzel super-intalox, 25 mm, 88 kg/m3, 207 m2/m3, 170 F _p/m (CTR table 11.3) ceramic super-intalox 25 mm, 673 kg/m3, 253 m2/m3, 300 F _p/m (CTR table 11.3)

(44)

FVO DuPont Team 3194 Equipment Calculations

Table G6 Equipment calculation of the water removal column (2-2)

Name Symbol Value Unit Formula Estimated bed porosity eps bed 0.50

-Density of the packing table 11.3 C+R rho rect 88.00 [kQ/m3] Density of the packing table 11.3 C+R rho strip 673.00 [kg/m3]

Weight of the section W rect 15.60 [kg] 1(1 - eps) * V section * rho section WeiQht of the section W strip 119.31 [kg] 1 (1 - eps) * V section * rho section Wall thickness

Column pressure P col 0.15 [N/mm2] Diameter D col 548.60 [mm] design stress Carbon steel at 150 °C f 115 [N/mm2] Joint factor estimate J 0.75

-Wall thickness Eq. 13.39a C+R d wall 0.48 [mm] P col * D col / 2 * J * f * P col Corrosion allowance estimate d corros 3 [mm]

Actual thickness d actual 3.48 [mm] d wall + d corrosion Minimal number of stages

Relative volatility alpha L 13.00

-

l(y_LK*x HK)/(y_HK*x LK)

Minimum number of trays N min 3

-

log (x LKlx HK)d*(x HKlx LK)b/ log alfa LK From Intalox high-performance seperating s~stems

Flow parameter X 0.03

-

L wlV w*(rho vap/rho liq)"O.5 Capacity factor C 0 0.16 [mis}

Superficial gas velocity v sup 5.22 [mts] V w*rho vap/A col

Estimated surface tension sig 19.00 [dyne/cm] Estimated liquid visosity visc 0.10 [cp]

Efficient capacity C sc 0.17 [mis] C 0 * (sig / 20)"0.16 * (visc/0.2)"-0.11 Capacity C s 0.09 [mis] v sup*(rho v/(rho liq-rho vap»"0.5 Pressure drop correlation coefficient Y 3.71

-

549*C s"2*visc"O.1

Pressure drop per meter DP 1225.5 [Palm] Pressure drop per meter DP 125.17 mm water/m

Total pressure drop DP tot 3676.5 [Pa] DP perm*H _packing

Height of an eq. theoretical plate HETP 290.52 [mm] 272*(siQl20)"-0.16*1.78"(visc) Capacity rating C siC s 0.54

(45)

FVO DuPont Team 3194 Equipment Calculations

Appendix G2

Sieve plate columns

Appendix G2.1

Sizing of the HFIHCI separation column (C2)

Construction material: cold resistant carbon steel

Table G7 Equipment calculation HF/Hel separation column (1-2)

Speciflcations

l

, I

I

N 10

-

Number of stages

:

RR 1

-

Reflux ratio

1

! , I , F 249.30 [kg/hr) Feed flow

1

i

l1 49.95 [kg/hr) Liquid flow stage 1

,

i

V1 49.95 [kg/hr) Vapour flow stage 1

I

!

l

,

D 49.95 [kg/hr) Distillate !

Ln 199.3 [kg/hr) Liquid flow stage 10 i

Vapour flow stage 10

,

Vn 529.3 [kg/hr) I

B 199.35 [kg/hr) Bottom product

I

, rho liq 764.67 [kg/m3) Density Liquid stage 10

!

I

rho vap 8.82 kglm3) Density Vapour stage 10 i ,

~w top 36.5 [kg/kmol) Av Molar mass stage 1 :

Mw bot 201 [kglkmol) Av Molar mass stage 10 :

I

T top -21.3 [0C] Top temperature I I

I

T bot 110 [0C] Bottom temperature !

P top 14 [kPa) Top pressure

1

t

!

P bot 14.5i [kPa) Bottom pressure i

i

P feed 14.3 [kPa) Feed pressurel I

I

Lw 0.061 [kg/s) liquid flow stage 10 ,

I

Vw 0.15 [kg/s) max vapour flow stage 10

1

Dimensions

1

HETP 0.35 [m) Height of an equivalent theoretical plate

EO 0.75

-

Plate efficiency

Column heightl I

H strip 5.37 [m) I

I

u v 0.25 [mis) maximum allowable vapour velocity u v(0.8) 0.20 [mis) Design superficial gasvelocity (0.8*u v) D col 0.33 [m) Column diameter

D hole 5 [mm) hole diameter

1

A hole/A col 0.09

-

Degree of perforation A col 0.08 [m2) Column area

1

H skirt 1.5 [m) Skirt height

I

H reb 1 [m) Reboiler height

I

Condensor height I

i

H cond 1.5 [mI I

H total 9.37 [mI Total column height A holes 0.0076 [m2) Area of the holes A hole 2E-05 [m2) Area of one hole

N holes 388

-

Number of holes

I

D valpijp 0.08 [m) Downcomer diameter

A downc 0.01 [m2) Area of downcomer A active 0.06 [m2) Active area of plate

I

Flooding

I

Fiv 0.04 Liquid-vapour flow factor I

36

K1 0.065 fig. 11.27 C+R Constant

I

.

__

._ -sig 0.01 [dyne/cm) Surface tension: C+R eq. 8.23 - -t----- I

.-. -- - - j - - - I

_ K_ 1 corrected

I

!

I

K1_re~_. _ ~~.Q~~ ___ . _____ _. - - - , - - ---- -- 1------- ---

-Flooding vapour velocity I

,

(46)

-FVO DuPont Team 3194 Equipment Calculations

Table G8

Equipment calculation

HF/HCl

separation column

(2-2)

"loflood 0.50 % Percentage f100ding I I

. Psi 0.0067 [kg/kg] Fractional entrainment i ,

kg/kg liquid flow from fig. 11.29 C+R weil above 0.1 ,

Minimal number of stages , I

alpha LK 13.42

-

relative volatility N min = log (x LK/x HK)d'(x HK/x LK)bl log alfa L

N min 6.0

-

minimal number of stages alfa LK = (y LK'x HK) I (y HK'x LK)

, Wall thickness I , P col 1.4 [N/mm2] 0 col 328.50 [mm] I f 115 [N/mm2] Carbon steel at 150°C , : J 0.5

-

see C+R section 13.5.3 1 i , , d_wall 4.05 [mm] I I I d corrosion 3 [mm] 1 d actual 7.05 [mm]

!

, I I Weeping , ! :

Iw 0.25 [mI weir length !

h ow 3.26 [mm] weir crest C+R eq. 11.85 i

hw 50 [mm] weir height :

K 2 30.1 C+R fig. 11.301

u h 0.42 [mis] min vapour velocity through the holes

act. u h 25.77 [mis] actual minimum vapour velocity

-Downcomer design [back-up]

C 0 0.84 Orifice coefficient C+R fig. 11.34 i

h_d 0.03 [mm] h because of pressure drop I , i

h r 16.35 [mm] residual head i

!

h dc 1.18 [mm] head loss in the downcomer

,

h t 69.64 [mm] total plate drop

i

h b 124.08 [mm] downcomer back-up in terms of clear liquid

I

I i

I

Orukval in de kolom ! , I

,

OP tray 522 [Pa] Pressure drop per stage (stage 5) i i

I

OP total 5224 [Pa] Pressure drop over the entire column

i

I

(47)

FVO DuPont Team 3194 Equipment Calculations

Appendix G2.2

Sizing of the extractive distillation column

(Cl)

Construction material: teflon lined Stainless steel 316

Table G9

Equipment calculation extractive distillation column (1-2

)

._----_ .. --_.

-Speeltleatlons

I

N 10

-

Number of stages

RR 1

-

Reflux ratio !

F extraetant 4006.27 [kg/hr] Extractant flow , I

F 1000 [kglhr] Feed flow

L1 4170 [kglhr] Liquid flow stage 1

i

V1 249.3 [kglhr] Vapour flow stage 1 I

D 249.3 [kglhr] Distillate

Ln 4757 [kglhr] Liquid flow stage 1 0

Vn 187.1 [kglhr] Vapour flow stage 10

I

Bottom product ,

B 4756.97 [kglhr] ,

rho liq 2796.57 [kg/m3] Density Liquid stage 5 I

rho vap 0.85 kg/m3] Density Vapour stage 5 :

Mw top 21.99 [kg/kmol] Av Molar mass stage 1 I

!

Mw bot 57.14 [kg/kmol] Av Molar mass stage 10 !

-T top -) -. !

.: .... ~ I 3&:20

,

[0C] Top temperature I

T bot " 111.S0 [0C] Bottom temperature

P top /..

.-

1 [kPa] Top pressure I

P bot !

-

1.2 [kPa] Bottom pressure

I

i

,

P feed 3 [kPa] Feed pressure I

"

L w 1.16 [kg/sj liquid flow stage 5 ,

~

V w 0.12 [kg/sj max vapour flow stage 5 I

I I Dimensions

I

HETP 0.6 [mI Height of an equivalent theoretical plate I

I

EO 0.75

-

Plate efficiency I

H strip 9.20 [mI Column height

I

I

u v 3.07 [mis] maximum allowable vapour velocity

u v(0.8) 2.45 [mis] Design superficial gasvelocity (O.S'u v)

!

D col 0.S4 [mI Column diameter

i

D hole 5 [mm] hole diameter

!

A hole/A colum 0.09

-

Degree of perforation

i

D plate/D hole 1

-

Plate thickness/Hole diameter !

D plate 5 [mm] Plate thickness

i

A col 0.56 [m2] Column area

i

H skirt 1.5 [mI Skirt height

I

I

H reb 1 [mI Reboiler height ---.l

H cond 1.5 [mI Condensor height I

I

H total 13.20 [mI Total column height I

A holes 0.05029 [m2] Area of the holes

A hole 2E-05 [m2] Area of one hole

N holes 2561

-

Number of holes

D downcomer 0.19 [mI Downcomer diameter

A downc 0.07 [m2] Area of downcomer

A active 0.42 [m2] Active area of plate

I

I

-!

(48)

FVQ DuPont Team 3194 Equipment Calculations

Table G

10

Equipment caIculation extractive distillation column (2-2)

'Flooding 1 ,

!

I

-. Fiv 0.17 Liquid-vapour flow factor

I

K1 0.06 fig. 11.27 C+R Constant

I

sig 0.19 [dyne/cml Surface tension: C+R eq. 8.23 I

K1 reai ! 0.09 K_1 corrected

U f 5.43 [m/sl Flooding vapour velocity

I

1

"loflood

I

0.57 % Percentage flooding

1

Psi 0.008 [kg/kgl Fractional entrainment

I

kg/kg liquid flow from fig. 11.29 C+R weil above 0.1

!

Weeping I

Iw 0.65 [mi weir length

h ow 5.57 [mml weir crest C+R eq. 11.85

I

hw 50 [mml weir height i

K 2 1 30.5 C+R fig. 11.30

I

u h

i

13.18 [m/sl minimum vapour velocity through the holes i

act. u h i 48.79 [m/sl actual minimum vapour velocity

i

I

I

Oowncomer design [back-up] !

C 0 ! 0.84 Orifice coefficient C+R fig. 11.34

h d i I 0.1 [mml h because of pressure drop

h_r I 4.47 [mml residual head

.-h dc i 1.031 [mml head loss in the downcomer I

- I I ---- -

-I

i

h t I 56.07 [mm] total plate drop

I ,

.- . _

-I

h b 116.11 [mml downcomer back-up in terms of clear liquid ,

I

-Pressure drop in the column

OP tray

i

1538 [Pal Pressure drop stage 5 OP total 15381 [Pal Pressure drop entire column

-Wal! thickness P col

I

0.2 [N/mm21

o

col 843.49 [mml f 95 [N/mm21 Carbon stee I at 250 °C J 0.75

-d wall 1 1.19 [mml Eq. 11.39a C+R d corrosion 3 [mml d actual 4.19 [mml 39

(49)

FVQ DuPont Team 3194 Equipment Calculations

Appendix G2.3

Sizing of the water removal column CC3)

Construction material: teflon lined stainless steel 316

Table

cn

Equipment calculation of the water removal column (1-2)

Specifications

I

I

N 10

-

Number of stages

i

RR 2

-

Reflux ratio

I

I

,

i , F 4756.97 [kg/hr) Feed flow

I

! ,

,

i

L1 1501 [kg/hr) Liquid flow stage 1

I

: !

V1 0 [kg/hr) Vapour flow stage 1 i !

[kg/hr) Distillate

I

i i

D 750.7 i

Ln 4006 [kg/hr) Liquid flow stage 10 i ,

3990 [kg/hr) Vapour flow stage 10 I

Vn i I

B 4006.27 [kg/hr) Bottom product I i ,

Density Liquid stage 9

I

i I

rho liq 2915.34 [kg/m3) !

rho vap 0.91 kg/m3) Density Vapour stage 9 I

,

!

Mw top 18.02 [kg/kmol) Av Molar mass stage 1 , I

i

Av Molar mass stage 10

I

! Mw bot 89.27 [kg/kmol) , !

T top 111.4 [0C) Top temperature : ;

! ,

T bot 147.3 [0C) Bottom temperature i

,

1.5 [kPa) Top pressure

I

! ,

P top I :

,

P bot 1.7 [kPa) Bottom pressure

:

P feed 2.5 [kPa) Feed pressure I Lw 2.22 [kg/s) liquid flow stage 9 I

Vw 1.12 [kg/s) max vapour flow stage 9 : :

I

i , ;

Dimensions

I

I

, i

,

Height of an equivalent theoretical plate ,

HETP 0.5 [m) i EO 0.75

-

Plate efficiency i I ,

,

Column height I ,

i

H strip 7.67 [m) i ,

I

I i i I

U v 2.56 [mIs) maximum allowable vapour velocity

!

i ,

I

u v(0.8) 2.05 [mIs) Design superficial gasvelocity (0.8'u v)

Column diameter I I I D col 0.88 [m) I i !

[mm) hole diameter

I

I i

i

D hole 5 I

A hole/A coll 0.09

-

Degree of perforation ! , I

I

A col 0.60 [m2) Column area

I

i 1

I

H skirt 1.5 [m) Skirt height

I

, i I i

H reb 1 [m) Reboiler height ! !

i

!

H cond 1.5 [m) Condensor height

I

, ; H total 11.67 [m) Total column height i , i

I

A holes 0.05417 [m2) Area of the holes ,

,

! ,

A hole 2E-05 [m2] Area of one hole I I

I

i

N holes 2759

-

Number of holes I

!

i

D valpijp 0.20 rml Downcomer diameter

i

A downc 0.07 [m2) Area of downcomer

I

I

A active 0.46 [m2) Active area of plate I

I

I

I

i

Flooding

I

I

!

Fiv 0.03 Liquid-vapour flow factor I i

I

K1 0.11 fig. 11.27 C+R Constant

I

i

sig 0.07 [dynelcm] Surface tension: C+R eq. 8.23

I

K1 real 0.14 K 1 correctedl

!

I I

U f 8.09 [mIs) Flooding vapour velocity !

-I

I

!

:

,

Cytaty

Powiązane dokumenty

wiąc — porządku przedm iotu poznania rozumowego, pośred­ niego pomiędzy duszą i absolutem. Istnieją tylko zasady, idee albo kategorie, zwłaszcza by t jako zasada

For the conventions we used in naming the groups and for a non- exhaustive compilation of alternative names common in the physics and mathematics literature see Appendix A

Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Analysis 7 (1983), 1351–1371..

Prawie wszystkie tkanki zawierają histaminę, a jej stężenia są szczegól- nie duże w skórze, błonie śluzowej żołądka i jelit oraz w płucach. Wszystkie tkanki

Wśród nowotworów przewodu pokarmowego pierwotne nowotwory wy- rostka robaczkowego znajdowane są w niespełna 0,5% przypadków [1]. Pier- wotny gruczolakorak

• Data must first be collected to do this, namely extreme water level and wave values, topographic data of coastal defences and low-lying polders, and data on the condition of

According to this concept the generated cells are connected to construct a three-dimensional synaptically connected network that resembles a cortical proto-column.. For

In March 2011, the patient was qualified for surgery, with an initial diagnosis of a right ovarian tumor.. In a his- topathological examination, adenocarcinoma metastases