• Nie Znaleziono Wyników

Ancylite-(Ce) from quartz-calcite-chlorite veins in phyllite of the Opava Mountains (SW Poland)

N/A
N/A
Protected

Academic year: 2022

Share "Ancylite-(Ce) from quartz-calcite-chlorite veins in phyllite of the Opava Mountains (SW Poland)"

Copied!
6
0
0

Pełen tekst

(1)

Ancylite-(Ce) from quartz-cal cite-chlorite veins in phyllite of the Opava Moun tains (SW Po land)

Janusz JANECZEK1, *, Krzysztof SZOPA1 and Monika FABIAÑSKA1

1 Uni ver sity of Silesia, In sti tute of Earth Sci ences, Bêdziñska 60, 41-200 Sosnowiec, Po land

Janeczek, J., Szopa, K., Fabiañska, M., 2020. Ancylite-(Ce) from quartz-cal cite-chlorite veins in phyllite of the Opava Moun - tains (SW Po land). Geo log i cal Quar terly, 64 (3): 801–806, doi: 10.7306/gq.1550

As so ci ate Ed i tor: Jacek Szczepañski

Ancylite-(Ce) oc curs in quartz-cal cite-chlorite veins cross cut ting the fo li a tion of phyllite in the Dewon Quarry in the foot hills of the Opava Moun tains of the east ern Sudetes, south-west Po land. Ir reg u larly shaped grains of ancylite are up to 67 mm long and 22 mm wide. The compositional range of ancylite, de ter mined by elec tron microprobe, is ex pressed by the em pir i cal for - mula: (Sr0.65–0.55Ca0.19–0.14Fe0.03–0.00)S0.87–0.69 (Ce0.58–0.50Nd0.26–0.22La0.26–0.21Pr0.06–0.05Sm0.05–0.04Gd0.07–0.03Dy0.01–0.00)S1.29–1.05 (CO3)2 (OH1.07–0.99F0.22-0.0.06)S1.29–1.05× 0.95–0.93H2O. Ancylite crys tal lized di rectly from CO2-rich hy dro ther mal so lu tions as the last min eral in the veins fol low ing pre cip i ta tion of cal cite. The so lu tion tem per a ture, es ti mated us ing var i ous chlorite geothermometres, was in the range of 260–340°C.

Key words: ancylite-(Ce), phyllite, CO2-rich hy dro ther mal so lu tion, Opava Mts., Po land.

INTRODUCTION

Ancylite-(Ce), ide ally CeSr(CO3)2(OH). H2O, was once con - sid ered a rare ac ces sory min eral of neph el ine syenites and carbonatites (An thony et al., 2003). How ever, it has re cently gained in ter est as one of the prin ci pal rare earth el e ment (REE)-bear ing min er als of carbonatites, and as an in di ca tor of hy dro ther mal or carbothermal pro cesses (Verplanck et al., 2016). On rare oc ca sions, ancylite-(Ce) has been found in rocks other than carbonatites or syenites and their as so ci ated pegmatites. For in stance, ancylite-(Ce) oc curs in the bi o tite-rich exo-con tact of quartz-sul phide veins (Melgarejo et al., 2011) and in gra nitic pegmatites as a prod uct of hy dro ther mal al ter - ation of al la nite-(Ce) (Novák et al., 2013). Re cently, the oc cur - rence of ancylite-(Ce) in quartz-cal cite-chlorite veins cross cut - ting the fo li a tion in the Dewon-Pokrzywna phyllite de posit (DPD), in SW Po land, has been noted, though with out de tails (Sawicka et al., 2018). In this pa per, we pro vide re sults of elec - tron microprobe anal y ses (EPMA) of that ancylite-(Ce) and dis - cuss its or i gin. This is the only oc cur rence of ancylite-(Ce) in the Sudetes dis cov ered so far.

Ancylite-(Ce), to gether with ancylite-(La) (all col lec tively termed ancylite if a dom i nant REE is not spec i fied), and twelve other min er als, be long to the ancylite group of f-el e ment car - bon ates (Godovikov and Nenasheva, 2020) with a gen eral for - mula:

(M2+)1+x(REE)3–x(CO3)4(OH)3-x·(1 + x)H2O

where: M2+ are di va lent cat ions (Ca, Sr, Cu, Pb) and x may vary be - tween –1 and +1 (Larsen and Gault, 2002).

In spec tion of ancylite chem i cal com po si tions re ported in the lit er a ture re veals a wide range of REE, Sr, and Ca con tents and var i ous pro por tions of in di vid ual REE (e.g., Pekov et al., 1997;

Yakovenchuk et al., 1997; Bulakh et al., 1998; Zaitsev et al., 1998; Larsen and Gault, 2002; Sadiq et al., 2014; Coo per et al., 2015; Giebel et al., 2017; Ali-Ani et al., 2018; Jia and Liu, 2020).

Ancylite with pre dom i nantly La (0.54 at oms per for mula unit;

apfu) and very low Ce (0.08 apfu), was found in a hy dro ther mal albitite vein in the Ilímaussaq al ka line rocks of SW Green land (Petersen et al., 2001). Anal y ses of ancylite with Nd>Ce>Pr>

La and the min i mum Nd/Nd + Ce ra tio of 0.456 have been re - ported from ferro-carbonatites in S Westland, New Zea land (Coo per et al., 2015). Ancylite forms a solid so lu tion with calcio-ancylite-(Ce) and calcio-ancylite-(Nd) (Orlandi et al., 1990; Larsen and Gault, 2002). Such a wide compo sitional range re flects both the di ver sity of the lo cal geo chem i cal en vi - ron ments and the flex i bil ity of the ancylite struc ture to ac com - mo date var i ous pro por tions of prin ci pal and mi nor el e ments.

* Corresponding author, e-mail: janusz.janeczek@us.edu.pl Received: May 12, 2020; accepted: June 30, 2020; first published online: August 21, 2020

(2)

GEOLOGICAL SETTING

The ancylite-bear ing sam ple of phyllite was col lected in the Dewon Quarry (50.2943942N, 17.4410747E), lo cated in Jarno³tówek, ~5 km SE of the town of G³ucho³azy in the north - ern foot hills of the Opava Mts. in the East ern Sudetes, SW Po - land (Fig. 1). Phyllites in ter ca lated with meta-sand stones and

meta-con glom er ates be long to the Up per De vo nian-Lower Car - bon if er ous Andìlská Hora Unit of the Moravo-Silesian fold- and-thrust belt (Fig. 1B; ¯aba et al., 2005; ¯elaŸniewicz and Aleksandrowski, 2008). Flysch-type sed i men tary de pos its, pre - dom i nantly al ter nat ing slates and psam mit ic slates, were the protolith for the phyllites (Stañczak, 2016). The protolith was meta mor phosed un der low-tem per a ture greenschist fa cies to high-tem per a ture sub-greenschist fa cies con di tions (Sawicka

Fig. 1A – lo ca tion of the sam ple site in SW Po land; B – sim pli fied geo log i cal map of the west ern mar gin of the Up per Silesia Block (mod i fied af ter ¯aba et al., 2005) with the lo ca tion of the Dewon phyllite Quarry; C – quartz- and quartz-cal cite-chlorite veins in folded and sheared phyllites in the Dewon Quarry; D – hand spec i men of phyllite ad ja cent to the quartz-cal cite-chlorite vein

(3)

et al., 2018). The phyllites were in tensely folded and sheared dur ing four ma jor stages of tec tonic de for ma tion (¯aba et al., 2005).

Phyllites in the Dewon Quarry are com posed of quartz, mus co vite, chlorite (Mg-ripidolite), and al bite as the prin ci pal min er als. Bi o tite, microcline, illite, and kaolinite are mi nor con - stit u ents. Il men ite, ap a tite, zir con, al la nite, monazite, and xeno - time are ac ces sory min er als (Sawicka et al., 2018). The ar gil la - ceous phyllites are highly en riched in Fe com pared to phyllites from other lo cal i ties world wide. Their dark grey col our (Fig. 1D) is due to finely dis persed amor phous or ganic mat ter orig i nat ing from bac te rial deg ra da tion of ma rine plank ton (Sawicka et al., 2018). The phyllites were af fected by in tense hy dro ther mal ac - tiv ity as shown by the oc cur rence of abun dant sulphides (py rite, chal co py rite and cobaltite) and nu mer ous quartz-cal cite, quartz, and quartz-al bite veins of var i ous thick ness, ei ther intra-fo li ated or cross-cut ting fo li a tion (Fig. 1C).

METHODS

Ob ser va tions by scan ning elec tron mi cros copy (SEM) in the back-scat tered elec tron (BSE) mode were con ducted us ing a Philips XL30 ESEM/TMP scan ning elec tron mi cro scope equipped with an en ergy-dispersive EDAX type Sap phire spec - trom e ter and BSE de tec tor op er ated at 15 kV. The work ing dis - tance was 10 mm. The chem i cal com po si tion of ancylite-(Ce) and as so ci ated min er als (i.e., cal cite, chlorite, ap a tite) was de - ter mined by wave length-dispersive spec trom e try (WDS) at the Inter-In sti tu tional Lab o ra tory of Microanalyses of Min er als and Syn thetic Sub stances, Uni ver sity of War saw, us ing a CAMECA SX-100 elec tron microprobe op er ated at an ac cel er ated volt - age of 15 kV and a sam ple cur rent of 10 nA. Count ing time for peak and back ground was 4 s. The beam di am e ter was ei ther 5 or 10 mm, de pend ing on the grain size. ZAF cor rec tion pro ce - dure was used for data re duc tion. Ref er ence ma te ri als, an a lyt i - cal lines, dif fract ing crys tals, mean de tec tion lim its (in wt.%) and un cer tain ties are given in Ap pen dix 1*.

RESULTS

Ir reg u larly shaped grains of ancylite-(Ce), up to 67 mm long and 22 mm wide, oc cur be tween cal cite and Fe-Mg-chlorite in quartz-cal cite-chlorite veins cross-cut ting the phyllite fo li a tion (Fig. 2). They ap pear uni form in BSE im ages. How ever, de spite the lack of vis i ble zon ing, the elec tron microprobe anal y ses re - vealed sig nif i cant dif fer ences in the con tents of both ma jor and mi nor el e ments within the grains in ves ti gated (Ap pen dix 2). The compositional range of the ancylite-(Ce) is ex pressed by the fol - low ing em pir i cal for mula de rived from data in Ap pen dix 2 and cal cu lated based on two cat ions in the for mula unit:

(Sr0.65–0.55Ca0.19–0.14Fe0.03–0.00)S0.87–0.69(Ce0.58–0.50Nd0.26–0.22La0.26–0.21

Pr0.06–0.05Sm0.05–0.04Gd0.07–0.03Dy0.01–0.00)S1.29–1.05(CO3)2(OH1.07–0.99

F0.22–0.0.06)S1.29–1.05× 0.95–0.93H2O.

The sum of di va lent cat ions (Sr + Ca + Ba + Fe) is in the 0.704 to 0.857 apfu range (Ap pen dix 2) in stead of the ideal 1.000 apfu. Ac cord ing to Dal Ne gro et al. (1975) there is a ran - dom (dis or dered) dis tri bu tion of di va lent and tri va lent (REE) cat - ions in the ancylite struc ture cor re spond ing to the gen eral for - mula of REx(Sr,Ca)2–x(CO3)2(OH)x × (2–x)H2O. Thus, an Sr def i - cit is pos si ble in ancylite and the charge bal ance is main tained by (OH + F) equal to the sum of REE. Nu mer ous pub lished EPMA data give the sum of Sr + Ca + Ba + Th as low as 0.502 (e.g., Coo per et al., 2015). The Sr/(Sr + Ca) ra tio in the ancylite-(Ce) ex am ined is in the 0.71 to 0.83 range as a re sult of very lim ited Ca sub sti tu tion for Sr.

Some anal y ses in Ap pen dix 2 show en rich ment in Nd rel a - tive to La with an Nd/La ra tio of up to 1.20 (mean 1.03). Ce rium is a dom i nant REE in all anal y ses. The Ce/(REE – Ce) ra tio ranges from 0.45 to 0.47 (Ap pen dix 2). The ancylite-(Ce) in ves - ti gated, com pared to ancylite from other lo cal i ties, is slightly en - riched in Y + HREE, par tic u larly in Gd (Ap pen dix 2). The amount of REE + Y de creases in the fol low ing or der:

Ce>NdLa>Pr>Gd>Sm>Y>Dy.

The Sr and REE con tents in the ancylite-(Ce) ex am ined are within the range of ancylite chem i cal com po si tions from the world wide lo cal i ties com piled by Coo per et al. (2015). Compo - sitional datasets of DPD ancylite-(Ce) plot on the Sr ver sus REE di a gram in the mid dle, be tween the ex treme ancylite com - po si tions re ported in the lit er a ture (Fig. 3).

* Supplementary data associated with this article can be found, in the online version, at doi: 10.7306/gq.1550 Fig. 2. BSE im age of xenomorphic ancylite-(Ce)

in the quartz-cal cite-chlorite (Chl) vein in phyllite

Fig. 3. Sr ver sus REE plot for the ancylite ex am ined (red dots – sam ple 1; green tri an gles – sam ple 2 in Ap pen dix 2) com pared to the ex treme ancylite-group com po si tions (blue dots) taken from Coo per et al. (2015)

(4)

ORIGIN OF THE ANCYLITE

The mode of the oc cur rence of the ancylite sug gests its crystallisation di rectly from the vein-form ing CO2-rich hy dro - ther mal so lu tion as the lat est min eral (Fig. 2). The tem per a ture of that so lu tion was es ti mated from the chem i cal com po si tion of chlorite (in ter me di ate be tween ripidolite and sheridanite) as so - ci ated with the ancylite-(Ce) (Ap pen dix 3), us ing var i ous em pir i - cal chlorite geothermometers (Cathelineau and Nieva, 1985;

Kranidiotis and MacLean, 1987; Jowett, 1991; Zang and Fyfe, 1995; Rugierri et al., 2006). All of these geothermometers re late the num ber of tet ra he dral Al ions (AlIV) in chlorite to its crystallisation tem per a ture, be cause there is a sys tem atic in - crease in AlIV with tem per a ture. The num ber of AlIV in the chlorites ex am ined ranges from 2.25 to 2.69 apfu as cal cu lated on the ba sis of 28 oxygens (Ap pen dix 3), i.e., within the range ob served by Sawicka et al. (2018) in slightly peraluminous chlorites of the ripidolite-sheridanite se ries from both phyllite ma trix and quartz-cal cite veins. The av er age tem per a tures ob - tained from the chlorite geothermometers are in the 261–342°C range (Fig. 4), i.e., within the tem per a ture range of the phyllite for ma tion (Sawicka et al., 2018).

The ancylite crystallisation ap par ently took place from a re - sid ual so lu tion rel a tively en riched in Sr and REE, and de pleted in Ca due to ear lier crystallisation of cal cite. The SrO con tent in cal cite ad ja cent to the ancylite ranges from 0.33 to 0.69 wt.%,

cor re spond ing to 0.003 and 0.008 Sr per for mula unit, re spec - tively (Ap pen dix 4), equiv a lent to ~0.5 mol% SrCO3. This con - tent of Sr is small com pared to 2.41 mol% SrCO3 in cal cite as - so ci ated with ancylite from the ferrocarbonatites of south Westland in New Zea land (Coo per et al., 2015). Nev er the less, even small ini tial con cen tra tions of Sr and REE in the hy dro ther - mal so lu tion were suf fi cient to pre cip i tate ancylite from the re - sid ual so lu tion af ter the crystallisation of cal cite. Stron tium and REE to gether with F were con cen trated in the re sid ual so lu tion fol low ing the cal cite crystallisation and reached supersaturation level with re spect to ancylite.

There are two pos si ble sources of Sr and REEs in the quartz-cal cite veins: in ter nal and ex ter nal. Phyllite was orig i nally a fine-grained sed i men tary rock such as shale or mudstone, com posed mainly of clay min er als as well as de tri tal min er als and/or authigenic sed i men tary phases. Many sed i men tary rocks, in clud ing shale or mudstone, can host de tri tal grains as well as authigenic ones, which com monly are car ri ers for REEs and Y (e.g., Ev ans and Zalasiewicz, 1996; Alipour-Asll et al., 2012; Szopa et al., 2014, 2020). The protolith of the rock could have in cluded bar ite, which is wide spread in fine-grained clastic sed i ments, and can be a Ba and Sr source (e.g., Stamatakis and Hein, 1993; Fernandes et al. 2017). These el e ments may have been leached and con cen trated by flu ids from within the host phyllite, most likely by dis so lu tion of Sr- and REE-bear ing ac ces sory de tri tal min er als, namely fluorapatite, al la nite, monazite, and xeno time. Like ancylite-(Ce), these min er als are light REE-rich and Ce-dom i nant as re vealed by their EDS spec - tra, with the ex cep tion of xeno time, which may have been a source for Y and HREE. Fluorapatite is the sec ond most abun - dant ac ces sory de tri tal min eral, af ter il men ite, in the phyllite. Its rounded grains are up to 60 mm in di am e ter and are evenly dis - persed through out the phyllite ma trix. The SrO and REE ox ide con tents in the fluorapatite are on ~0.14 and 0.46 wt.%, re spec - tively, equiv a lent to 0.014 Sr apfu and 0.029 REE apfu (Ap pen - dix 5). While Ce is dom i nant among REE in the fluorapatite, an en rich ment in Nd is no tice able with a Nd/La ra tio of 2.25, even higher than ob served in the ancylite-(Ce) (Ap pen dix 2). The whole-rock con tents of Sr and Y in the phyllite ex am ined are 79 and 22 ppm, re spec tively, as de ter mined by XRF dur ing this study (Winiarski, 2019 unpubl. data).

In this re spect, the gold-bear ing quartz car bon ate veins in phyllite of the Mid dle De vo nian Vrbno Se ries – a tectono-meta - mor phic unit ad join ing the Andìlská Hora For ma tion to the west (Fig. 1B), formed dur ing the late phase of the Variscan orog eny (Foit et al., 2012). The tec tonic de for ma tion of the phyllite and intra-fo li ated quartz veins in the Dewon Quarry took place within the same timeframe (¯aba et al., 2005).

A com pos ite, post-orogenic Žulova pluton com posed of bi o - tite gran ite (291 ±5 Ma), granodiorite, and quartz monzodiorite (292 ±4 Ma; Laurent et al., 2014) is a pos si ble ex ter nal source of REE in hy dro ther mal flu ids that may have cir cu lated within the phyllites of the Andìlská Hora For ma tion af ter the Variscan orog eny. The main body of the Žulova Pluton oc curs ~15 km west of the Dewon Quarry. How ever, there are nu mer ous small gran ite out crops out side the pluton. One of them oc curs in Giera³cice ~10 km north-west of the Dewon Quarry. Peg ma tite dykes within the Giera³cice gran ite are en riched in Y + REE up to 512 ppm, whereas quartz veins have much lower con tents of these el e ments in the 7 to 49.5 ppm range (Lasoñ and Markowiak, 2019).

Clearly, a de fin i tive state ment about the source of Sr and REE re quires sig nif i cantly more in ves ti ga tion, which is out side the scope and in tent of the pres ent study.

Fig. 4. Tet ra he dral Al ver sus tem per a ture plot for chlorites from the ancylite-bear ing quartz-cal cite-chlorite vein Solid cir cles de pict tem per a ture cal cu lated us ing the chlorite geo - thermometers of: Cathelineau and Nieva (1985) (black), Kranidiotis and MacLean (1987) (red), Jowett (1991) (or ange), Zang and Fyfe (1995) (pale-green), and Rugierri et al. (2006) (pale-brown); yel low field af ter Sawicka et al. (2018)

(5)

CONCLUSIONS

Data ob tained in this study sup port the re sults of pre vi ous in ves ti ga tors that showed a wide compositional range in ancy - lite, par tic u larly for REE, Sr/REE, and Sr/Ca. While ancylite - -(Ce) from the Dewon Quarry is slightly en riched in Y + HREE com pared to ancylite from other lo cal i ties, its com po si tion is in the mid dle of the compositional range for this min eral re ported in the lit er a ture.

The ancylite-(Ce) crystallisation within the quartz-cal cite - -chlorite veins was pos si ble due to a rel a tive in crease in con - cen tra tions of es sen tial el e ments (Sr, REE and F) in the re sid - ual so lu tion fol low ing cal cite crys tal li sa tion. An open ques tion

re mains whether the mi cro scopic quan ti ties of ancylite-(Ce) re - ported in this pa per re flect its in ci den tal oc cur rence in the phyllite or whether it is a more wide spread min eral in the abun - dant quartz-cal cite veins cross-cut ting the phyllites through out the Andìlská Hora For ma tion.

Ac knowl edge ments. The fi nal ver sion of this pa per bene - fited greatly from crit i cal re views and sug ges tions by Al. F. Coo - per and an anon y mous re viewer. We thank Prof. P. Kennan and A. Gumsley for their help in im prov ing the Eng lish of the manu script. This study was fi nan cially sup ported by the Pol ish Na tional Sci ence Cen ter (NCN) grant to M. Fabiañska:

2014/15/B/ST10/02281.

REFERENCES

Al-Ani, T., Molnár, F., Lintinen, P., Leinonen, S., 2018. Ge ol ogy and min er al ogy of rare earth el e ments de pos its and oc cur - rences in Fin land. Min er als, 8: 356.

Alipour-Asll, M., Mirnejad, H., Milodowski, A.E., 2012. Oc cur - rence and paragenesis of diagenetic monazite in the up per Tri - as sic black shales of the Marvast re gion, South Yazd, Iran. Min - er al ogy and Pe trol ogy, 104: 197–210.

An thony, J.W., Bideaux, R.A., Bladth, K.W., Nichols, M.C., 2003.

Hand book of Min er al ogy, Vol ume V. Bo rates, Car bon ates, Sul - fates. Min eral Data Pub lish ing, Tuc son, Ar i zona.

Bulakh, A.G., Le Bas, M.J., Wall, F., Zaitsev, A.N., 1998.

Ancylite-bear ing carbonatites of the Seblyavr mas sif, Kola pen - in sula, Rus sia. Neues Jahrbuch für Mineralogie Monatshefte, (4): 171–192.

Cathelineau, M., Nieva, D., 1985. A chlorite solid so lu tion geo - thermometer. The Los Azufres (Mex ico) geo ther mal sys tem.

Con tri bu tions to Min er al ogy and Pe trol ogy, 91: 235–244.

Coo per, A.F., Col lins, A.K., Palin, J.M., Spratt, J., 2015. Min er al - og i cal evo lu tion and REE mo bil ity dur ing crystallisation of ancylite-bear ing ferrocarbonatite, Haast River, New Zea land.

Lithos, 216–217: 324–337.

Dal Ne gro, A., Rossi, G., Tazzoli, V., 1975. The crys tal struc ture of ancylite, (REE)x(Ca,Sr)2–x(CO3)2(OH)x·(2–x)H2O. Amer i can Min e r a l o gist, 60: 280–284.

Ev ans, J., Zalasiewicz, J., 1996. U-Pb, Pb-Pb and Sm-Nd dat ing of authigenic monazite: im pli ca tions for the diagenetic evo lu tion of the Welsh Ba sin. Earth and Plan e tary Sci ence Let ters, 144:

421–433.

Fernandes, N.A., Gleeson, S.A., Magnall, J.M., Creaser, R.A., Martel, E., Fischer, B.J., Sharp, R., 2017. The or i gin of Late De vo nian (Frasnian) stratiform and stratabound mudstone - -hosted bar ite in the Selwyn Ba sin, North west Ter ri to ries, Can - ada. Ma rine and Pe tro leum Ge ol ogy, 85: 1–15.

Foit, B., Dolníèek, Z., Nepejchal, M., 2012. Gold in the quartz veins of the Hláska and Vysoká hora, north field of the Andìlská Hora Ore Dis trict, Jeseníky Mts., Czech Re pub lic (in Czech with Eng - lish sum mary). Acta Musei Moraviae – Scientiae Geologicae, 97: 47–67.

Giebel, R.J., Gauert, C.D.K., Marks, M.A.W., Costin, G., Markl, G., 2017. Multi-stage for ma tion of REE min er als in the Palabora Carbonatite Com plex, South Af rica. Amer i can Min er al o gist, 102: 1218–1233.

Godovikov, A.A., Nenasheva, S.N., 2020. Struc tural-chem i cal sys - tem at ics of min er als. Springer Na ture Swit zer land AG.

Jia, Y., Liu, Y., 2020. REE en rich ment dur ing mag matic–hy dro ther - mal pro cesses in carbonatite – re lated REE de pos its: a case study of the Weishan REE de posit, China. Min er als, 10: 25.

Jowett, E., 1991. Fit ting iron and mag ne sium into the hy dro ther mal chlorite geothermometer. Pro ceed ings of the GAC/MAC/SEG Joint An nual Meet ing, To ronto, ON, Can ada, 27–29 May 1991, 16: A62.

Ketcham, R.A., 2015. Tech ni cal note: cal cu la tion of stoichiometry from EMP data for ap a tite and other phases with mix ing on monovalent an ion sites. Amer i can Min er al o gist, 100:

1620–1623.

Kranidiotis, P., MacLean, W.H., 1987. Sys tem at ics of chlorite al ter - ation at the Phelps Dodge mas sive sul fide de posit, Matagami, Que bec. Eco nomic Ge ol ogy, 82: 1898–1911.

Larsen, A.O., Gault, R.A., 2002. Calcio-ancylite-(Ce) from syenite peg ma tite at Tvedalen, Oslo Re gion, Nor way. Neues Jahrbuch für Mineralogie Monatshefte, 9: 411–423.

Lasoñ, K., Markowiak, M., 2019. Rare Earth El e ments in se lected rocks of the Strzelin–G³ucho³azy area (East ern Sudetes) (in Pol - ish with Eng lish sum mary). Biuletyn Pañstwowego Instytutu Geologicznego, 477: 55–68.

Laurent, A., Janoušek, V., Magna, T., Schulmann, K., Míková, J., 2014. Petro gen esis and geo chron ol ogy of a post-orogenic calc-al ka line mag matic as so ci a tion: the Žulová Pluton, Bo he - mian Mas sif. Jour nal of Geosciences, 59: 415–440.

Melgarejo, J.C., Abat, L.T., Tárrega, E.A., Crego, M.C., DeWitt, M.C.J., Kgothang, L.P., Fernández, J.A.P., Bruchs, J.M., Lewis, J.F., 2011. Sul fide de pos its as so ci ated with Cl metasomatism along thrusts in black shales, Tsodilo, Bot swana.

Macla Revista de la Sociedad EspaÔola de Mineralogía, 15:

129–130.

Novák, M., Kadlec, T., Gadas, P., 2013. Geo log i cal po si tion, min - eral as sem blages and con tam i na tion of gra nitic pegmatites in the Moldanubian Zone, Czech Re pub lic; ex am ples from the Vlastìjovice re gion. Jour nal of Geosciences, 58: 21–47.

Orlandi, P., Pasero, M., Vezzalani, G., 1990. Calcio-ancylite-(Nd), a new REE-car bon ate from Baveno, It aly. Eu ro pean Jour nal of Min er al ogy, 2: 413–418.

Pekov, I.V., Petersen, O.V., Voloshin, A.V., 1997. Calcio- ancylite-(Ce) from Ilímaussaq and Narssârssuk, Green land, Kola pen in sula and Po lar Urals, Rus sia; ancylite-(Ce) – calcio-ancylite-(Ce) an isomorphous se ries. Neues Jahrbuch für Mineralogie Abhandlungen, 171: 309–322.

Petersen, O.V., Niedermayr, G., Gault, R.A., Brandstätter, F., Micheelsen, H.I., Giester, G., 2001. Ancylite-(La) from the Ilímaussaq al ka line com plex, South Green land: con tri bu tion to the min er al ogy of Ilímaussaq. Neues Jahrbuch für Mineralogie Monatshefte, 106: 493–504.

Rugierri, G., Petrone, C.M., Gianelli, G., Arias, H., Henriquez, E.T., 2006. Hy dro ther mal al ter ation in the Berlin geo ther mal field

(6)

(El Sal va dor): new data and dis cus sion on the nat u ral state of the sys tem. Periodico di Mineralogia, 75: 293–312.

Sadiq, M., Rantjith, A., Umrao, R.K., 2014. REE min er al iza tion in the carbonatites of the Sung Val ley ultra mafic-al ka line- carbonatite com plex, Meghalaya, In dia. Cen tral Eu ro pean Jour - nal of Geosciences, 6: 457–475.

Sawicka, N., Janeczek, J., Fabiañska, M., Bahranowski, K., Krzykawski, T., Matuszewska, A., 2018. Min er al ogy and or - ganic geo chem is try of phyllite from the Dewon-Pokrzywna de - posit, the Opava Moun tains (SW Po land). Geo log i cal Quar terly, 62 (4): 817–828.

Stamatakis, M.G., Hein, J.R., 1993. Or i gin of bar ite in Ter tiary ma - rine sed i men tary rocks from Lefkas Is land, Greece. Eco nomic Ge ol ogy, 88: 91–103.

Stañczak, G., 2016. Slates, phyllites and schists from de pos its of SW Po land used as di men sion stones – eval u a tion of their dec - o ra tive ness and the pos si bil i ties of use (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 64: 833–843.

Szopa, K., Skreczko, S., Chew, D., Krzykawski, T., Szymczyk, A., 2020. Multi-Tool (LA-ICPMS, EMPA and XRD) in ves ti ga tion on heavy min er als from se lected Ho lo cene peat-bog de pos its from the Up per Vistula River Val ley, Po land. Min er als, 10:

doi.org/10.3390/min10010009.

Szopa, K., Brachaniec, T., Krzykawski, T., 2014. Pre lim i nary EMPA and XRD in ves ti ga tion on de tri tal min er als from the Štramberk Lime stone in the Czech Re pub lic. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 276: 201–212.

Verplanck, P.L., Mariano, A.N., Mariano, A. Jr., 2016. Rare earth el e ment ore ge ol ogy of carbonatites. Re views in Eco nomic Ge - ol ogy, 18: 5–32.

Zaitsev, A.N., Wall, F., Le Bas, M.J., 1998. REE-Sr-Ba min er als from the Khibina carbonatites, Kola Pen in sula, Rus sia: their min er al ogy, paragenesis and evo lu tion. Min er al og i cal Mag a - zine, 62: 225–250.

Zang, W., Fyfe, W.S., 1995. Chloritization of the hy dro ther mally al - tered bed rock at the Igarape–Bahia gold de posit, Carajas, Brazil. Mineralium Deposita, 30: 30–38.

¯aba, J., Ciesielczuk, J., Malik, K., Strzy¿ewska-Konieczna, S., 2005. Budowa oraz ewolucja strukturalna utworów dewoñsko - -karboñskich Gór Opawskich (strefa morawsko-œl¹ska) (in Pol - ish). In: Geologia i zagadnienia ochrony œrodowiska w regionie górnoœl¹skim (eds. J. Jureczka, Z. Bu³a and J. ¯aba): 116–127.

LXXVI Zjazd nau kowy Polskiego Towarzystwa Geologicznego, Rudy k/Rybnika, 14–16 wrzeœnia 2005. Pañstwowy Instytut Geologiczny, Polskie Towarzystwo Geologiczne, Warszawa.

¯elaŸniewicz, A., Aleksandrowski, P., 2008. Tec tonic sub di vi sion of Po land: south west ern Po land (in Pol ish with Eng lish sum - mary). Przegl¹d Geologiczny 56: 904–911.

Yakovenchuk, V.N., Menshikov, Yu.P., Pakhomovsky, Ya.A., Ivanyuk, G.Yu., 1997. Ancylite-(La) Sr(La,Ce)(CO3)2(OH) × H2O – A new car bon ate from hy dro ther mal vein at the Kukisvumchorr Moun tain (Khibiny Mas sif) and its com par i son with ancylite-(Ce) (in Rus sian). Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 126: 96–108.

Cytaty

Powiązane dokumenty

The min eral as sem blage (i.e. lack of chlorite) and metasomatic tex ture of the Mount Œlê¿a ophiolite epidosites are sim i lar to those from Cy prus (Troodos ophiolite)

As pre vi ously sug gested, de po si tion of MREE, like REE, oc curred due to destabilization of REE-sul phate com plexes through pH neu tral iza tion by car bon ates, or

The substage division of the Santonian is based on inoceramids, with the lower boundary of the Middle Santonian indicated by the LO of Cladoceramus undulatoplicatus and the

Rodingites crop out in the up per part of the wall of the ser - pen tin ite quarry, on the south west ern slope of the Mnich Hill (Kozie Chrzepty). In strongly frac tured

(2014) Bed ding-par al lel cal cite veins in the Holy Cross Moun - tains Fold Belt, cen tral Po land. The syntaxial and antitaxial bed ding-par al lel veins con tain ki ne matic

The Coniacian sand stones of the North Sudetic Synclinorium, the most ma ture among the Cre ta ceous siliciclastic rocks, are com posed al most ex clu sively of quartz grains

The palynofacies ob ser va tions made for the Marsdenian and the Yeadonian rocks from the Czerñczyce IG 1 bore hole in di cate that this di verse palynological ma te rial dif fers

Lo ca tion of the area stud ied and sim pli fied geo log i cal map of the Prague Synform (based on pre vi ous 1:50 000 map ping) Sample localities: 1 — Lištice — aban doned quarry