• Nie Znaleziono Wyników

Synfolding calcite veins in the Holy Cross Mountains Fold Belt, central Poland

N/A
N/A
Protected

Academic year: 2022

Share "Synfolding calcite veins in the Holy Cross Mountains Fold Belt, central Poland"

Copied!
17
0
0

Pełen tekst

(1)

Bed ding-par al lel cal cite veins in the Holy Cross Moun tains Fold Belt, cen tral Po land

Barbara RYBAK-OSTROWSKA1, *, Andrzej KONON1, Krzysztof NEJBERT1 and Andrzej KOZ£OWSKI1

1 Fac ulty of Ge ol ogy, Uni ver sity of War saw, ¯wirki i Wigury 93, 02-089 Warszawa, Po land

Rybak-Ostrowska B., Konon A., Nejbert K. and Koz³owski A. (2014) Bed ding-par al lel cal cite veins in the Holy Cross Moun - tains Fold Belt, cen tral Po land. Geo log i cal Quar terly, 58 (1): 99–116, doi: 10.7306/gq.1136

Bed ding-par al lel cal cite veins in De vo nian rocks from the south ern part of the Holy Cross Moun tains Fold Belt in cen tral Po - land oc cur as tab u lar bod ies on shal low-dip ping as well as ver ti cal Late Pa leo zoic map-scale and mesoscopic fold limbs. The syntaxial and antitaxial bed ding-par al lel veins con tain ki ne matic in di ca tors such as ro tated blocks, fi bre bound ary steps, boudin trains, beef-like struc tures and con gru ous steps. These struc tures show a sense of move ment con sis tent with the flex ural slip typ i cal of fold ing re sult ing from buck ling dur ing subhorizontal short en ing. We pro pose a mech a nism of the grad - ual for ma tion of the veins and a pro gres sive fab ric de vel op ment which is mostly con sis tent with an in creas ing dip an gle of the fold limbs and their grad ual de for ma tion. The fab ric of the veins and ki ne matic in di ca tors within the veins point to the syntectonic growth of cal cite dur ing the Late Pa leo zoic buckle fold ing in the Holy Cross Moun tains Fold Belt.

Key words: bed ding-par al lel cal cite veins, ki ne matic in di ca tors, flex ural slip, hor i zon tal short en ing, Late Pa leo zoic buckle fold ing, Holy Cross Moun tains Fold Belt.

INTRODUCTION

Bed ding-par al lel veins are use ful tools in de ter min ing mech a nisms of fold growth and de for ma tion his tory. As such, they have been the sub ject of in ves ti ga tions in orogenic belts and in non-folded re gions. Bed ding-par al lel veins are com mon in sed i men tary and low-grade meta mor phic rocks (Tan ner, 1989; Price and Cosgrove, 1990; Roo and Weber, 1992;

Jessell et al., 1994; Fowler, 1996; Cobbold et al., 2013 and ref - er ences therein). Stud ies on bed ding-par al lel veins have shown that they may in di cate high pres sure pore-fluid cir cu la - tion (Cosgrove, 1993; Suchy et al., 2002; Hilgers et al., 2006) that partly re sulted from hy dro car bon gen er a tion (Cobbold and Rodrigues, 2007; Rodrigues et al., 2009). Bed ding-par al lel veins have been used to ob tain in for ma tion on the crys tal growth mech a nism, its sig nif i cance in the de for ma tion pro cess and re la tion ship to dis place ment paths (Durney and Ramsay, 1973; Ramsay, 1980; Cox and Etheridge, 1983; Cox, 1987;

Passchier and Trouw, 1996; Pe tit et al., 1999; Koehn and Passchier, 2000; Means and Li, 2001; Hilgers and Urai, 2002b;

Bons and Montenari, 2005). In ad di tion, com pre hen sive struc - tural anal y sis com bined with petrographic and geo chem i cal stud ies al low to es tab lish the re la tion ship be tween flu ids and tec tonic struc tures (Kenis et al., 2000; Lee and Wiltschko, 2000; Sejourne et al., 2005; Hilgers et al., 2006; Wiltschko et al., 2009; Note et al., 2011).

The aim of this pa per is to pres ent a model for the or i gin of bed ding-par al lel veins oc cur ring in sed i men tary rocks from the south ern part of the Holy Cross Moun tains (HCM; Fig. 1), based on field ob ser va tions cou pled with petrographic and geo chem i - cal stud ies. Tec tonic field stud ies and microstructural anal y sis of the veins have been per formed to de ter mine ki ne matic char - ac ter is tics of the veins and cor re late their de vel op ment with flex ural slip dur ing fold ing.

GEOLOGICAL SETTING

The HCM Fold Belt is lo cated within the broad NW–SE-trending Trans-Eu ro pean Su ture Zone, which sep a - rates the East Eu ro pean Craton from the youn ger fold-belts of Cen tral Eu rope (Berthelsen, 1993). The fold belt com prises a se ries of map-scale folds built of Pa leo zoic rocks and is di vided into two parts – the £ysogóry Fold Zone (to the north) and the Kielce Fold Zone (to the south; Fig. 1; Czarnocki, 1919, 1938, 1957a; Po¿aryski, 1978; Konon, 2008). The zones are sep a - rated by the Holy Cross Fault (HCF), at least 75 km long (Czarnocki, 1938). The geodynamic po si tion of the HCM is still a mat ter of dis cus sion. The fold zones are con sid ered to be two dif fer ent tectono-strati graphic units be cause their rock se - quences can be dis tin guished from each other by li thol ogy and depositional en vi ron ment (Czarnocki, 1919, 1957a; Po¿aryski, 1978; Fig. 2). The bound ary be tween the Kielce and £ysogóry Fold zones is in ter preted as the bound ary be tween the Ma³opolska and £ysogóry ter ranes (e.g., Po¿aryski et al., 1992;

Po¿aryski and Tomczyk, 1993; Unrug et al., 1999). These ter - ranes are con sid ered to be the first tec tonic blocks that accreted to Baltica be tween late Mid dle Cam brian and Tremadocian times (Belka et al., 2002). The rock se quence form ing the Ma³opolska Terrane con sists of Vendian to Tremadocian de -

* Corresponding author, e-mail: Barbara.Rybak@uw.edu.pl Received: June 28, 2013; accepted: October 22, 2013; first published online: December 2, 2013

(2)
(3)

pos its, which are cov ered by Floian (Lower Or do vi cian) to Neo - gene clastic and car bon ate rocks (for re view see Unrug et al., 1999; Belka et al., 2002; Nawrocki and Poprawa, 2006). Five un con formi ties have been rec og nized in this se quence: be - tween the Ediacaran and Cam brian, be tween the Cam brian and Or do vi cian, be tween the Si lu rian and De vo nian, be tween the Car bon if er ous and Perm ian, and be tween the Cre ta ceous and Neo gene, in ter preted as the re sults of tec tonic de for ma tion (e.g., Unrug et al., 1999; Nawrocki and Poprawa, 2006). In the

£ysogóry Terrane the rock se quence com prises Mid dle Cam - brian to De vo nian siliciclastic and car bon ate rocks, which are un con form ably cov ered by Perm ian and youn ger rocks (e.g., Czarnocki, 1919, 1938).

Rocks of the £ysogóry and Kielce re gions were folded to - gether af ter the Visean dur ing Late Car bon if er ous times (Czarnocki, 1919, 1938, 1950, 1957a, b; Lewandowski, 1982, 1985; Tomczyk, 1988; Szulczewski, 1995; Lamarche et al., 1999, 2002; Konon, 2006; Szaniawski, 2008; Szaniawski et al., 2011). This stage of de for ma tion re sulted in the for ma tion of the HCM Fold Belt eastwards of the Variscan Orogen thrust front (Po¿aryski et al., 1992; Dadlez et al., 1994; Mizerski, 1995;

Szulczewski, 1995; Krzemiñski, 1999; Jaworowski, 2002;

Mazur et al., 2006; Konon, 2007). The short en ing di rec tion dur - ing the fold ing was NNE–SSW (Czarnocki, 1938, 1950, 1957a, b, 1961a–f; Konon, 2006, 2007).

The gen er ally WNW–SSE-trending folds from the south ern part in ves ti gated of the HCM belt (Fig. 3), south of the HCF, ex hibit dis tinct vari a tions in wave length range of 1.5 to 8 km and in am pli - tude range of 0.2 to 0.8 km (Konon, 2006). The ge om e try of the fold shape pro files is vari able. The folds may be sym met ri cal or asym met ri cal. Ge om e tries of the fold shape pro files com monly change along their axes (Czarnocki, 1956; Filonowicz, 1967, 1968; Kutek and G³azek, 1972; Hakenberg, 1973; Kowalski, 1975;

Konon, 2006). Dur ing the Late Pa leo zoic fold growth, layer-par al lel short en ing and layer-par al lel shear ing re sulted in the de vel op ment of dif fer ent mesostructures, such as mi nor contractional du plexes, con trac tion and ex ten sion fault sets, sty lo lites, boudinage and cleav age on the fold limbs (Konon, 2006). The fold shape pro files that formed mainly dur ing the Late Car bon if er ous were slightly mod i fied in Maastrichtian–Paleocene times (Kutek and G³azek, 1972; Lewandowski, 1982, 1985; Szaniawski, 2008; Szaniawski et al., 2011).

Fig. 1A – tec tonic sketch-map of Cen tral Eu rope (sim pli fied af ter Janik et al., 2009), red square in the mid dle is Fig ure 1B;

B – geo log i cal map of the Holy Cross Moun tains (af ter Czarnocki, 1938, 1961a–f; Filonowicz, 1973; Konon, 2007, mod i fied) MPA – Mid-Pol ish Anticlinorium, HCM – Holy Cross Moun tains; folds in the Kielce Fold Zone (from the north): MG s. – Miedziana Góra Syncline, N a. – Niewachlów Anticline, K a. – Kielce Anticline, K s. – Kielce Syncline, D a. – Dyminy Anticline, G-B s. – Ga³êzice–Bolechowice Syncline, Ch a. – Chêciny Anticline, Rz s. – Rzepka Syncline; main faults in the Holy Cross Moun tains (from the north): HCF – Holy Cross Fault, MGF – Miedziana Góra Fault, NF – Niewachlów Fault, PF – Por¹bki Fault, MFZ – Mójcza Fault Zone, DlF – Daleszyce Fault

Fig. 2A – lithostratigraphic col umns of strata in the Kielce and £ysogóry re gions (based on Nawrocki and Poprawa, 2006, slightly mod i fied); B – lithostratigraphic col umn of strata in the Pa leo zoic core

of the Kielce Re gion (based on Hakenberg et al., 1976; Stupnicka, 1992 and ref er ences therein)

(4)

Map-scale folds in the Kielce Fold Zone are dis sected by lon gi tu di nal faults and cross-fold faults (Czarnocki, 1919, 1938, 1961a–f; Samsonowicz, 1934). Dif fer ent com po nents of move - ment oc curred along and across the fault planes. In the late stage of fold ing or al ready in the post-fold stage, strike-slip com - po nents de vel oped along the oblique fault sets re sult ing from NNE–SSW short en ing (Konon, 2007). The sec ond strike-slip fault ing that also oc curred dur ing the Late Pa leo zoic took place along the lon gi tu di nal faults and part of the oblique faults. The short en ing di rec tion dur ing this event was ap prox i mately NW–SE (Konon, 2007). The strike-slip fault net work in the HCM was later slightly over printed dur ing the Maastrichtian–Paleo - cene sec ond strike-slip stage (Jaroszewski, 1972; Konon and Mastella, 2001; Mastella and Konon, 2002).

LITHOSTRATIGRAPHY OF THE KIELCE FOLD ZONE

The Pa leo zoic suc ces sion in the Kielce Fold Zone com - prises Cam brian to Perm ian, mainly unmetamorphosed, siliciclastic and car bon ate rocks (e.g., Czarnocki, 1919, 1938;

Fig. 2). The Cam brian rocks ex posed in the hinge zones of anticlines in clude Lower to Up per Cam brian shales al ter nat ing with thin-bed ded, fine-grained sand stones, and sand stones with in ter ca la tions of con glom er ate (Or³owski, 1975; Szcze - panik et al., 2004a, b; Geyer et al., 2008). Above the Up per Cam brian–Or do vi cian un con formity a se ries of transgres sive fa cies are rep re sented by Or do vi cian off shore sand stones, which are grad u ally re placed by lime stones. Si lu rian rocks com - prise 150–300 m thick grap to lit ic shales pass ing up wards into a 300–500 m thick suc ces sion of greywackes, de scribed as flysch-like (see Koz³owski, 2008 for re view). Lo cally, an over 140 m thick shale-sand stone suc ces sion and up to 120 m thick con glom er ate unit have been rec og nized in a few places near the HCF (Malec, 1993, 2001; Tomczykowa, 1993; Koz³owski, 2008). The de pos its are fol lowed by a Lower De vo nian se - quence about 250 m thick, con sist ing of Lochkovian–Pragian con glom er ates and Emsian quartzitic sand stones with in ter ca - la tions of shale (Tarnowska, 1981; Szulczewski, 1995). Mid dle and Up per De vo nian car bon ate rocks rep re sent the De vo nian car bon ate plat form, which at tained a thick ness of about 1400 m (Racki, 1993; Szulczewski, 1995; Szulczewski et al., 1996).

The lower part of this suc ces sion (gen er ally Eifelian and Lower Givetian) com prises dolostones, whereas above, up to the Fammenian, shales and lime stones are prev a lent. Above the De vo nian rocks is a Car bon if er ous suc ces sion com pris ing si li - ceous shales with radiolarites and siderites. Their thick ness is es ti mated from 25 m in the south west ern part of the Kielce Re - gion (Szulczewski et al., 1996), through about 250 m far ther north (¯akowa and Migaszewski, 1995), and reaches its max i - mum in the cen tral parts of the re gion, where thick nesses ex - ceed ing 400 m were re ported (¯akowa, 1981). The youn gest folded rocks be long to the Up per Visean and are un con form - ably over lain by Perm ian rocks (e.g., Czarnocki, 1938).

METHODS

Cal cite veins that oc cur par al lel to bed ding have been in ves - ti gated in quar ries within well-ex posed De vo nian car bon ate and siliciclastic rocks. Some of the ex po sures have been ex ploited since the field work was car ried out. Sam ples were taken from bed ding-par al lel veins and host rocks. Bed ding-ori ented sam - eht hguorht noi tces-ssorc la c igo loeG .3 .giFecleiKno desab( enoZ dloF zciwonoliF ;3791 ,grebnekaH3791 ,dna nonoK6002 ,)dei f idom ylthgils , ;noi tces-ssorc eht ot esolc ,sdlof fo sbmileht no dekram era txet ni detic sei rrauQe1 ,nair bmaC rewoL – e2D ,nai ru liS – S ,nai ci vo drO – O ,nair bmaC el ddiM – 1D ,nai no veD rewoL – 2el ddiM – D ,nai no veD3C ,nai no veD re ppU – 1P ,su or ef ino braC rewoL – 3T ,na imreP re ppU – 1T ,ci ss airT rewoL – 2T ,ci ss airT el ddiM – 3J ,ci ss airT re ppU – 1J ,ci ssa ruJ rewoL – 2 ,ci ssa ruJ el ddiM – J3ci ssa ruJ re ppU –

(5)

ples were col lected in or der to pre cisely rec og nize ki ne matic in - di ca tors dur ing petrographic in ves ti ga tion. Anal y sis of the ge - om e try and re la tion ships be tween the veins and the host rocks were based on field stud ies and microstructural ob ser va tions on thin sec tions cut along the slickenlines on the vein planes.

The cal cite veins were stud ied by means of con ven tional op ti cal mi cros copy, X-ray dif frac tion (XRD) and elec tron-probe mi - cro-analyser (EPMA).

The min er al og i cal com po si tion of the cal cite veins was de - ter mined with a DRON-1 diffractometer at the In sti tute of Geo - chem is try, Min er al ogy and Pe trol ogy, Uni ver sity of War saw.

The sam ples were ir ra di ated with CoKa ra di a tion and XRD data were col lected over the range 5–70° 2q, in the step-scan mode em ploy ing 0.04° 2q step-size, and count ing time 4 s per step.

The chem i cal com po si tion of the cal cite was de ter mined by EPMA us ing a CAMECA SX100 microprobe at the Inter-In sti - tute An a lyt i cal Com plex for Min er als and Syn thetic Sub stances at the Uni ver sity of War saw. The anal y ses were per formed us - ing an ac cel er at ing volt age of 15 keV, beam cur rent of 10 nA and beam di am e ter of up to 40 µm. Nat u ral and syn thetic stan - dards dis trib uted by CAMECA and SPI Sup plies were used dur - ing cal i bra tion.

CHARACTERISTICS OF VEINS

Bed ding-par al lel veins were ex am ined in the map-scale folds of the Kielce Fold Zone e.g., on the south ern (Jaworznia Quarry) and the north ern limbs of the Kielce Syncline (Œluchowice Quarry) and on the south ern limb of the Miedziana Góra Syncline (Mogi³ki and Kostom³oty quar ries; Figs. 1B and 3). The veins oc cur in var i ously bed ded, com pe tent and in -

com pe tent rocks: me dium- and thick-bed ded lime stones (Jaworznia Quarry), thin- and me dium-bed ded lime stones with interlayers of thin-bed ded shales and marls (Mogi³ki and Œluchowice quar ries) as well as in thin-bed ded lime stones, shales and marls (Kostom³oty Quarry; Figs. 4–6). In most cases the veins tend to oc cur within thin interlayers of shales or near the bound aries be tween lime stones/shales and marls/shales (Fig. 5B).

Bed ding-par al lel veins are com mon on the fold limbs and may be traced con tin u ously through out the hinge with de creas - ing thick ness in a few ex po sures. They oc cur as sub-pla nar bod - ies be tween the sed i men tary lay ers. The veins reach 1–10 cm in thick ness and sev eral of centi metres to tens of decimetres in length. The bed ding-par al lel veins are bounded by slick en sides cor re spond ing with the sense of flex ural slip on bed ding planes (e.g., Fig. 6B). Straight or stylolitic morpho logies of the vein bound aries are com mon in com pe tent thick-bed ded lime stones, whereas in the in com pe tent thin-bed ded shales and marls the veins are fre quently sheared (Fig. 5B).

COMPOSITION, TEXTURES, GEOMETRIC FEATURES AND INTERNAL STRUCTURE OF THE BEDDING-PARALLEL VEINS

Bed ding-par al lel veins con sist of cal cite with chem i cal com - po si tion close to the stoichiometric for mula (Fig. 7). The sum of the trace el e ments (MgO, FeO, MnO) does not ex ceed 1.5 wt.%, and FeO al ways show the high est trace el e ment con - tent in all sam ples stud ied. Veins filled with fi brous cal cite and all highly recrystallised veins have higher FeO con tents (Fig. 7).

En rich ment in FeO, MgO and MnO in the cal cite veins filled by fi brous cal cite may also re flect a stron ger con tam i na tion by tiny host rock par ti cles. Quartz is pres ent in the veins as an ac ces -

Fig. 4. Ex am ples of bed ding-par al lel cal cite veins

A – in thick-bed ded lime stones and thin-bed ded shales in Jaworznia Quarry, bed ding plane 010/39; B – in me dium-bed - ded lime stones and thin-bed ded shales in Mogi³ki Quarry, the vein shows mul ti lay ered struc ture, bed ding plane 010/59;

C, D – lo ca tion of sam pled bed ding-par al lel veins on the fold sketches; ar rows show sense of slip recognized on the ba - sis of slick en sides on vein plane

(6)

sory min eral in fill ing mi nor frac tures and microfaults in the cal - cite veins (Figs. 8E and 9C, D).

The veins oc cur ring on limbs with dip an gles of 20–30°

show mainly pri mary growth fab ric, whereas in the veins oc cur - ring on limbs with a dip an gle of 30–70°, the fab ric is re built or partly changed (Fig. 8). Thus, sev eral microstructurally dif fer ent do mains are pres ent within the veins.

Two main types of bed ding-par al lel veins with pri mary growth tex tures can be dis tin guished: syntaxial veins and antitaxial veins (Fig. 8A, C, E).

SYNTAXIAL VEINS

The bed ding-par al lel veins of this type oc cur in thin interlayers of shale within the thick- or me dium-bed ded lime - stones in the Jaworznia and Mogi³ki quar ries, re spec tively (Figs. 4 and 8A, C). The veins dis play a mul ti lay ered struc ture with sheets sep a rated by host rock par ti cles, stylolitic seams or cal cite growth sur faces (Fig. 8C). The veins are mainly bitaxial with read able me dian line, infilled with blocky or elon gated cal - cite (Fig. 8A–D). The cal cite shows de for ma tion twinning (Fig. 8B, D). Twins are tab u lar or wedge-shaped, rarely ta - pered. Apart from twins, microfracturing is also pres ent but less com mon. The vein cal cite grains in lime stones show epitaxial over growth on the host rock grains. The grain sizes range from 0.1 mm at the edges of the veins to 5 mm to wards their cen tres.

Cal cite grains show per pen dic u lar or oc ca sion ally oblique re la -

tion ships with the vein wall (Fig. 8A, C). In a few places, some of the grains in the vein cen tre show a subhedral habit.

The fab ric of the cal cite veins in di cate that cal cite was grow - ing to wards the vein cen tre. The com po si tion of the veins and host rock as well as geo met ric fea tures sug gest syntaxial growth of cal cite (Durney and Ramsay, 1973; Ramsay and Huber, 1983). Ad di tion ally the in cli na tion of grains may sug gest oblique vein growth (Pe tit et al., 1999). Nev er the less the pres - ence of subeuhedral cal cite as well as open holes in the cen tral part of the veins in di cate that cal cite was grow ing into open space in some parts of the veins. Hence this fab ric re cords the ori en ta tion of the frac ture con sis tent with bed ding and face-con - trolled growth of cal cite.

The outer parts of the veins con tain two dif fer ent do mains that de vel oped due to de for ma tion of the pri mary growth fab ric:

an ir reg u lar fab ric zone (ifz) and a lam i nated zone (lz; Figs. 8A, C and 9A, B). These do mains ei ther oc cur sep a rately or the ir - reg u lar fab ric zones are lo cated close to the con tact of the lam i - nated zones with pri mary growth tex tures.

The ir reg u lar fab ric zones are up to 2 mm wide and sev eral centi metres long. They con sist of fine, ir reg u larly shaped anhedral cal cite. The crys tal size ex ceeds 0.2 mm (Fig. 9A). Lo - cally, ag gre gates of the cal cite are ran domly dis trib uted within the pri mary growth tex ture do mains in the veins.

The lam i nated zones are con nected with ir reg u lar parts of the vein walls (Figs. 8A, C and 9B). The length of the zones ranges from a few to tens of milli metres and the width from 0.2 to 2 mm. The elon gated cal cite grains are par al lel or sub-par al - lel to the vein walls. Rem nants of cal cite growth fab ric were Fig. 5A – frag ment of mesofold in De vo nian shales and marls on the west ern wall of Kostom³oty Quarry;

B – bed ding-par al lel cal cite vein with marked sense of slip, bed ding plane 350/50;

C – lo ca tion of sam pled bed ding-par al lel veins on the fold sketch (Konon, 2006) Arrows show sense of slip recognized on the ba sis of slickenside on vein plane

(7)

noted in the lam i nated zones (Fig. 9B). Lo cally, the lam i nated zones are sub di vided by thin par ti cles of shale and lime stone fur ther re ferred to as host rock in clu sions. Two types of host rock in clu sions are dis tin guished: dis con tin u ous, sub-pla nar, par al lel to the vein walls (I) and small in clu sions in clined at high an gles to the vein walls (~70°) (II).

ANTITAXIAL VEINS

The sec ond type of bed ding-par al lel vein oc curs in shales and marls in the Kostom³oty Quarry and in lime stones interbedded with shales in the Œluchowice Quarry (Figs. 5 and 6). The veins are bitaxial, rarely unitaxial, filled with fi brous

cal cite (Fig. 8E). Fibres ex tend ing from the cen tral me dian line of the veins to wards the vein walls in both di rec tions ex ceed 6 mm in length and have a width of more than 0.2 mm. They are curved, sigmoidal in shape or in clined slightly to wards the hinge of the sam pled fold. The in cli na tion of fibres rel a tive to the vein walls changes within the vein from 80° in the cen tre to 30° to - wards walls. Most of the straight fibres are in clined at an an gle of 70–80°. Fi bre bound aries are smooth and rarely stepped.

The cal cite fibres ap pear to be de formed and show ev i dence of twinning (Fig. 8F). The twins are less read able or ab sent at the outer parts of the veins.

The antitaxial veins con tain host rock in clu sions that are mostly con cen trated in the vein cen tre un der ly ing the me dian line and/or ad ja cent to the vein walls (Fig. 8E). In clu sions of Fig. 6A – mesofolds de vel oped in De vo nian rocks in the Œluchowice Quarry with marked places of sam pling; B – an ex am ple of slickenside on bed ding-par al lel cal cite vein sur face, the slickenside dis plays striation and con gru ous steps, ar row in di cates the sense of move ment of the miss ing bed, bed ding plane 350/29; C – lo ca tion of sam pled bed ding-par al lel veins on the fold sketch

(8)

both types are rep re sented by par ti cles of shale de tached from the vein walls dur ing vein for ma tion. The first type of host rock in clu sion, elon gated or sigmoidal in shape, is iso lated and rarely forms ar rays. These host rock in clu sions are sub-par al lel or rarely slightly in clined to the vein walls (Fig. 8E). The sec ond type of host rock in clu sion usu ally forms ar rays in clined to wards the hinge of the sam pled fold (Fig. 8E). This type of in clu sion is in cor po rated into beef-like struc tures, sim i lar to those first de - scribed by Hilgers and Urai (2005) and are char ac ter ized fur - ther in the text (Fig. 10E, F).

The dif fer ent com po si tion of veins and host rocks and the geo met ric fea tures point to antitaxial growth of cal cite ac cord ing to Durney and Ramsay (1973) and Ramsay and Huber (1983).

The di rec tion of in cli na tion and the cur va ture of fibres in di cate syntectonic growth of cal cite in the veins mu tu ally re versed on both limbs of the sam pled fold. It may also in di cate oblique open ing dur ing vein growth (Cox, 1987; Pe tit et al., 1999;

Koehn and Passchier, 2000).

Antitaxial veins con tain small re verse faults (com pare Rodrigues et al., 2009) that trun cate the veins to wards the hinge of the fold with max i mum off set of the me dian line of 5 mm (Figs. 8E and 9C). Lo cally re verse faults are de vel oped in the outer, up per part of the veins and con tinue into beef-like struc tures (Figs. 8E and 9D). The fault ing re sulted in de vel op -

ment of shear zones filled with fi brous and/or anhedral cal cite grains and ag gre gates of anhedral quartz grains (Fig. 9C–E).

Some of the grains show undulose ex tinc tion (Fig. 9C–E), in di - cat ing de for ma tion. The veins show sub se quent growth of cal - cite from the tips of shear zones to wards the vein walls (Figs. 8E and 9C). Horse tail-like dis trib uted thin fibres at the up per and lower fault tips are well-de vel oped in the hang ing wall (Figs. 8E and 9C). The cal cite grains from the foot and hang ing walls ad - ja cent to faults are dif fer en tially strained and show ev i dence of twinning on a level sim i lar to that in the other parts of the vein.

Bed ding-par al lel cal cite veins and lime stones in the Œluchowice Quarry are in parts recrystallised (Fig. 9F). Ag gre - gates of fi brous or elon gated cal cite are spread across the veins and lime stones. A tran si tion from undeformed lime stone through stretched grains of lime stone (e.g., microfossils) to ag - gre gates of fi brous cal cite has been ob served (Fig. 9F).

KINEMATIC INDICATORS IN THE VEINS AND HOST ROCK

Bed ding-par al lel veins con tain nu mer ous micro struc tures con sid ered to point to the sense of move ment along the beds Fig. 7. Chem i cal com po si tion of cal cite de ter mined by EPMA

A – com po si tion of all cal cite sam ples; B – com po si tion of cal cite from dif fer ent parts of the de formed cal cite veins sam - pled at Mogi³ki Quarry (sam ple 3); C, D – MnO-MgO-FeO and MgO*50-CaO-FeO*50 show ing dif fer ences in the chem i cal com po si tion of the bed ding-par al lel veins

(9)

dur ing the pro cess of fold ing. The pres ence of such micro - struc tures is con di tioned by the com pe tence and thick ness of beds in the rock se quences. Five dom i nant micro struc tures may be dis tin guished in the bed ding-par al lel veins: (1) ro tated blocks, (2) fi bre bound ary steps, (3) boudin trains, (4) beef-like struc tures, (5) con gru ous steps (Fig. 10A–G). The most com - mon micro struc tures are boudin trains. The oc cur rence of other struc tures, e.g., fi bre bound ary steps, are re lated to veins formed in in com pe tent rocks such as marls and/or shales. Ad di tion ally fish-shaped struc tures have been dis tin - guished in the shale host rock close to the cal cite veins (Fig. 10H). The ki ne matic in di ca tors ob served on limbs of sam pled folds point to sim ple shear con sis tent with flex ural slip in the sense of move ment.

ROTATED BLOCKS

Ro tated blocks oc cur in the outer part of the antitaxial veins in elon gated and fi brous ag gre gates of cal cite as microfault-bounded block do mains (Fig. 10A). The blocks are up to 1 mm across and are ro tated by up to 10° in dom ino style to wards the hinge of the fold.

FIBRE BOUNDARY STEPS

The cal cite fibres in the antitaxial veins show stepped bound - aries (Fig. 10B). The steps along fi bre-fi bre con tacts ex ceed 0.01 mm in size and con tinue in the cal cite grains as dis crete sys - Fig. 8. Ex am ples of tex tures of the bed ding-par al lel cal cite veins

A, C – pal i sade tex ture, syntaxial vein (Jaworznia Quarry, sam ple 1 and Mogi³ki Quarry, sam ple 3, re spec tively);

B, E, F – cal cite grains with twin lamellae; D – fi brous tex ture, antitaxial vein, cen tral and outer zones of the vein con tain host rock in clu sions (Kostom³oty Quarry, sam ple 6); ar rows show sense of slip

(10)

Fig. 9. Ev i dence of pro gres sive de for ma tion of veins in form of a sec ond ary fab ric

A – ir reg u lar fab ric zone with ir reg u larly shaped cal cite, partly with lobate bound aries (Jaworznia Quarry, sample 1); B – lam i nated zone with elon gated and fi brous cal cite (Mogi³ki Quarry, sam ple 3); C, D – shear zones re sult ing from re verse fault ing of the vein dur ing buckle fold ing (Kostom³oty Quarry, sam ple 6); E – quartz grains with undulose ex tinc tion within shear zone (Kostom³oty Quarry, sam - ple 6); F – tran si tion from undeformed lime stone (bot tom), through stretched bioclasts of lime stone (cen tre), to ag gre gates of fi brous cal cite (top) (Œluchowice Quarry, sam ple 8); ar rows show sense of slip

(11)

Fig. 10. Ex am ples of ki ne matic in di ca tors in the bed ding-par al lel cal cite veins and host rock

A – small blocks in the cal cite vein ro tated in dom ino style (Konon, 2006); B – sys tem atic step ping of a fi bre bound ary (Konon, 2006; veins sam pled in Kostom³oty Quarry, sam ples 4 and 7, re spec tively); C, D – rhomboidal and sigmoidal boudins with for ward vergence, inter-boudin sur faces show oc cur rence of the dip-slip com po nent with a nor mal sense (Jaworznia Quarry, sam ple 2, Œluchowice Quarry, sam ple 8, re - spec tively); E, F – ex am ples of beef-like struc tures with nu mer ous veinlets sep a rated by elon gated par ti cles of shale (Kostom³oty Quarry, sam ples 5 and 6, re spec tively); G – asym met ri cal re peated steps with di hed ral mor phol ogy (Mogi³ki Quarry, sam ple 3); H – fish-shaped struc tures with step ping-up ge om e try (Kostom³oty Quarry, sam ple 5); ar rows show sense of slip

(12)

tem atic shears. The shear length ranges be tween 0.02–0.08 mm. These shears are sub-par al lel to the vein walls.

Sys tem atic step ping of fi bre-fi bre bound aries is con sis tent with the sense of move ment in ter preted from cal cite growth (Konon, 2006). This cor re sponds to the flex ural slip di rec tion mu tu ally re - versed in both limbs of the sam pled fold. These ob ser va tions sug gests that fi bre bound ary steps de vel oped dur ing syntectonic growth of cal cite grains fol low ing an open ing tra jec tory that was oblique to the vein walls and me dian line. We in ter pret that the shears syn thetic with re spect to the flex ural slip could have been formed si mul ta neously with fi bre bound ary steps.

BOUDIN TRAINS

Boudin trains oc cur in thin-bed ded lime stones and shales (Fig. 10C, D). The boudin shape is pre dom i nantly rhomboidal (lime stones, shales), spo rad i cally len tic u lar or sigmoidal (shales). In some cases, di la tion oc curs across the inter-boudin sur face form ing inter-boudin zones. The inter-boudin gaps are filled with blocky or fi brous cal cite. Rel a tive dis place ment along the inter-boudin sur face be tween the in di vid ual boudins in the trains ranges from 0.1 to 0.2 mm. The vergence de fined by the in cli na tion of the inter-boudin sur faces is for ward-vergent. An - gles be tween inter-boudin sur faces and boudin ex te ri ors range from 55 to 65°. The as pect ra tio of the boudins (boudin length to boudin width) var ies from 1 in lime stones to 3 in shales.

The ori en ta tion of the boudin trains is par al lel to the main fo li - a tion in the rock ma trix. Boudins show lit tle or no ev i dence of in - ter nal de for ma tion. Ad di tion ally boudin ro ta tion is com mon and the ro ta tion an gle ex ceeds 5°. The sense of ro ta tion is con sis tent with the flex ural slip di rec tion. Ki ne matic char ac ter is tics (sense of slip di rec tion on the sur face sep a rat ing the boudins) and ar - range ment of the boudins al lows us to clas sify them in the ki ne - matic group of an ti thetic-slip boudinage of dom ino type (Etchecopar, 1977; Hanmer and Passchier, 1991; Swanson, 1992; Goscombe and Passchier, 2003; Goscombe et al., 2004).

BEEF-LIKE STRUCTURES

These struc tures are com mon within the antitaxial clacite veins in the study area (Fig. 10E, F). Beef-like struc tures (af ter Hilgers and Urai, 2005) oc cur in thin interlayers of shale and marl within lime stones or at their bound aries. They cre ate a saw-like mor phol ogy of the vein walls (Fig. 8E). Beef-like struc - tures con sist of nu mer ous sub-par al lel cal cite veinlets, sep a - rated by elon gated par ti cles of shales, form ing stacks (Fig. 10E, F). The veinlets are sub-par al lel to the vein walls and are wavy or len tic u lar in shape and infilled with fi brous cal cite. The fibres grow in the same di rec tion as fibres in the bed ding-par al lel veins. The stacks of veinlets and host rock par ti cles show an asym met ri cal ge om e try with vergence to wards the hinge on both limbs of the sam pled mesofold (Fig. 10E, F). The vergence is con sis tent with the flex ural slip in the sense of move ment.

The veinlets con tinue within the vein in ar rays of host rock in clu - sions, which are hosted in the cal cite crys tals or along the crys - tal bound aries. The dis tri bu tion of the host rock in clu sions and the asym me try of the struc tures re flect pri mary fo li a tion – cleav - age in the shales. There is no ev i dence for shear ing along cleav age in the floor bed of the host rock.

CONGRUOUS STEPS

Steps tend to oc cur in in com pe tent rocks, mainly in shales.

Steps rep re sent asym met ri cal re peated fea tures with a di hed ral

mor phol ogy. Bed ding-par al lel veins oc cur ring in the shales show con gru ous steps (Fig. 10G). Threads of steps lie at the an gle of 0 to 10° with ris ers at 50–60° to the bed ding plane.

Such an asym met ri cal struc ture was prob a bly formed by the in - ter sec tion of syn thetic shears and T frac tures cor re spond ing to threads and ris ers re spec tively. The shears tend to par al lel ism with the bed ding plane at their tips. The ori en ta tion of con gru - ous steps in re la tion to the slickenlines on vein planes sug gest that shears and frac tures were pro duced dur ing dis place ment of vein walls re sult ing from sim ple shear ing that cor re sponds with flex ural slip, sim i lar to those de scribed from brit tle fault zones by Norris and Barron (1969) and Pe tit (1987).

FISH-SHAPED STRUCTURES

Fish-shaped struc tures filled with cal cite oc cur in abun - dance within thin-bed ded black shales ad ja cent to antitaxial veins from Kostom³oty Quarry (Fig. 10H). The fish rep re sent asym met ri cal struc tures of lens shape with an gu lar tips and so far they have been known from mylonitic rocks (Passchier and Simpson, 1986; Hanmer, 1990; Passchier, 1994). The fish-shaped struc tures in ves ti gated show step ping-up to wards the hinge of the sam pled mesofold (Fig. 10H). The tips of the struc tures con tinue into thin trails of small cal cite grains ex tend - ing on both sides of the iso lated fish into the ma trix par al lel to each other and slightly oblique (an gle of about 5°) to the main fo li a tion of the en clos ing ma trix. The ge om e try and ori en ta tion of the fish-shaped struc tures are com pa ra ble to mica fish clas - si fied to the type of group 1 sensu Grotenhuis et al. (2003), thus anal o gously we pro pose the same ki ne matic in ter pre ta tion of the struc tures stud ied. The pres ence of the fish-shaped struc - tures in di cates a re duc tion of co he sion within the ma trix and then be tween fish and ma trix (e.g., Kenkmann, 2000) dur ing their for ma tion that prob a bly re sulted from hor i zon tal short en - ing. The pro cess may have been ac com pa nied by pres sure so - lu tion mass trans fer re sult ing in a lens-shaped ge om e try of the struc tures (Grotenhuis et al., 2003). Thus cal cite fish-shaped struc tures can be in ter preted as a re sult of so lu tion and pre cip i - ta tion pro cesses (com pare with quartz fish of Bestmann et al., 2000, 2004) com bined with flex ural slip lo cal ized along bed ding planes.

DISCUSSION AND CONCLUSIONS

In the Kielce Fold Zone of the HCM Fold Belt, bed ding-par - al lel veins oc cur on the map-scale and mesoscopic fold limbs, and oc ca sion ally in the hinge zones. Ki ne matic in di ca tors within the veins on the fold limbs such as ro tated blocks, fi bre bound - ary steps, boudin trains, beef-like struc tures, con gru ous steps and ad di tion ally fish-shaped struc tures within host rock in di cate a sense of move ment re sult ing from sim ple shear that is con sis - tent with flex ural slip on the tilted limbs. Hence we in ter pret that the struc tures could have been formed dur ing main stage of buckle fold ing, a mech a nism that is typ i cal for the anticlines and syn clines in ves ti gated (Figs. 3–6, 8 and 10; Konon, 2006).

The ten dency of the veins to oc cur near the bound aries be - tween rocks of dif fer ent li thol ogy e.g., lime stones/shales, shales/marls or within the shales may be ex plained by con trast - ing me chan i cal prop er ties of the dif fer ent lay ers. The main de - tach ment ho ri zons de vel oped along thin shale or marl lay ers favouring flex ural slip and for ma tion of bed ding-par al lel veins (cf.

Tan ner, 1989; Noten and Sintubin, 2011). Rare con ti nu ity of veins across fold hinges sug gests that the for ma tion of the veins started in the ini tial stage of subhorizontal short en ing (stage I/II,

(13)

Fig. 11. Pro posed model of bed ding-par al lel vein for ma tion Scale bar – 1 mm

(14)

Fig. 11). Like wise the pres ence of syntaxial veins within thick-bed ded car bon ate rocks con firms the di la tion of rocks at this stage. Sub se quently, ac ti va tion of flex ural slip along the vein walls re sulted in the sec ond ary fab ric de vel op ment (stages II–III, Fig. 11). The oc cur rence of antitaxial veins with fi brous fab ric track ing the open ing tra jec tory of the veins within the thin-bed ded car bon ates with interlayers of shales and marls point to op er at ing of di la tion and sim ple shear along bed ding planes at the same time dur ing fold ing (stages I–IV, Fig. 11). Hence antitaxial veins can be in ter preted as synfolding veins.

Bed ding-par al lel veins dis play sev eral microstructural fea - tures giv ing hints of the mech a nism of vein for ma tion. All of the veins show ev i dence of open ing (stages I/II, Fig. 11) such as de tached and dis placed host rock in clu sions (Ramsay, 1980;

Cox and Etheridge, 1983; Lee and Wiltschko, 2000; Hilgers and Sindern, 2005), which are con cen trated mostly in the cen tre of the veins or ad ja cent to the vein walls (Figs. 8–10). The po si tion of these host rock pieces in di cate that co he sion was lost along the bed ding planes due to subhorizontal short en ing and pro - gres sive in cor po ra tion of host rock par ti cles into the vein fab ric.

Syntaxial veins dis play blocky or elon gated grains, which rarely have a subhedral habit, in crease in grain size to wards the vein cen tre and show an ab sence of stepped grain bound aries.

The fab ric of these veins in di cate that the open ing di rec tion was nor mal to the vein wall rather than slightly oblique (Fig. 8C) and that vein growth in volved open space fill ing (Fig. 8A). The lat ter ob ser va tion sug gests that the open ing of some parts of the veins was faster than the growth of cal cite so that the veins could not be filled com pletely. We in ter pret that the typ i cal syntaxial veins with me dian lines (Fig. 8C) re cord nor mal syntectonic growth of cal cite, whereas the veins with subhedral grains of cal cite (Fig. 8A) re cord the ori en ta tion of the bed ding plane and face-con trolled cal cite growth mech a nism (cf. Hilgers and Urai, 2002a). The pres ence of a me dian line and lo cally subhedral cal cite grains as well as open holes in the same vein sug gest the het er o ge neous growth of cal cite within the vein.

Antitaxial veins dis play stepped fi bre bound aries that are con sid ered as in di ca tors of the crack-seal mech a nism (Ramsay, 1980; Cox, 1987; Passchier and Trouw, 1996). How - ever, smooth fi bre bound aries are also com mon and the veins show lit tle or no ev i dence of in clu sion bands doc u ment ing re - peated crack-seal in cre ments. Ad di tion ally re cent stud ies have shown that host rock in clu sions in cor po rated into beef-like struc tures may have been formed dur ing con stant growth of cal cite across the antitaxial vein (Hilgers and Urai, 2005).

Antitaxial veins im ply an oblique open ing rel a tive to the vein walls and a con tin u ous growth of cal cite at the vein/host rock

con tact (stages from I/II to III, Fig. 11) sim i lar to the re sults of lab o ra tory sim u la tion of Bons and Jessel (1997) and Means and Li (2001) and on con di tions pro posed by Hilgers and Urai (2002b) and Hilgers and Sindern (2005). The cur va ture and in - cli na tion of cal cite fibres as well as the fi bre bound ary steps re - cord sim ple shear con sis tent with flex ural slip path dur ing fold - ing. The lack of fi bre twinning or poorly de fined twinning in the outer parts of the antitaxial veins in com par i son to the in ner parts im plies di min ish ing of strain rate to wards the vein walls (e.g., Hilgers and Urai, 2002b). The in ter pre ta tion con firms that synfolding growth of cal cite with the youn gest grains re cord ing a highly obligue vein open ing which re sulted from flex ural slip.

The ev i dence of cal cite growth from the tips of re verse faults to - wards the vein walls im plies that sub se quent cal cite pre cip i ta - tion dur ing and af ter vein fault ing re sulted from con stant subhorizontal short en ing (com pare Rodrigues et al., 2009).

The bed ding-par al lel veins were fre quently de formed dur ing all stages of the fold ing pro cess (Figs. 8, 9 and 11). We con - clude that vein fab ric as well as ki ne matic in di ca tors re cord ev i - dence of the grad ual for ma tion of the vein and the pro gres sion of fab ric de vel op ment, which is mostly con sis tent with an in - creas ing dip an gle of the fold limbs and their grad ual de for ma - tion (stages I–IV, Fig. 11). The pres ence of cal cite twinning is an ubiq ui tous in di ca tor of ini tial de for ma tion. Veins oc cur ring in steeper limbs show sec ond ary fab ric de vel op ment in the form of slip-re ac ti vated fea tures (stage II–III) and are partly recrystallised (stage IV; Figs. 8, 9 and 11).

We con clude that the for ma tion of syntaxial veins is re lated to an ini tial stage of hor i zon tal short en ing whereas the for ma tion of fi brous antitaxial veins and ki ne matic in di ca tors as well as a sec ond ary fab ric within syntaxial veins are re lated to buck ling in the study area. The ho mo ge neous chem i cal com po si tion of the cal cite in the veins points to sta ble con di tions of cal cite crys tal li - sa tion. The struc tures ob served re cord the loss of co he sion along bed ding planes due to con stant hor i zon tal short en ing prob a bly in a closed geo chem i cal sys tem. We con clude that the vein fab ric and the ki ne matic in di ca tors re cord syntectonic grad - ual de for ma tion of the rocks and point to their de vel op ment from hor i zon tal to buck led bed ding dur ing the Late Pa leo zoic buckle fold ing in the HCM Fold Belt.

Ac knowl edge ments. This re search was sup ported by the In sti tute of Ge ol ogy, Uni ver sity of War saw. We thank M. Sintubin and D. Koehn for their con struc tive and use ful com - ments. We are grate ful to A. ¯yliñska and R. Mac don ald for lin - guis tic im prove ment of the manu script.

REFERENCES

Belka Z., Valverde-Vaquero P., Dörr W., Ahrendt H., Wemmer K., Franke W. (2002) Ac cre tion of first Gond wana-de rived ter ranes at the mar gin of Baltica. Geo log i cal So ci ety Spe cial Pub li ca - tions, 201: 19–36.

Berthelsen A. (1993) Where dif fer ent geo log i cal phi los o phies meet: the Trans-Eu ro pean Su ture Zone. Pub li ca tions of the In - sti tute of Geo phys ics, 255: 19–31.

Bestmann M., Kunze K., Matthews A. (2000) Evo lu tion of a cal cite mar ble shear zone com plex on Thassos Is land, Greece:

microstructural and tex tural fab rics and their ki ne matic sig nif i - cance. Jour nal of Struc tural Ge ol ogy, 22: 1789–1807.

Bestmann M., Prior D.J., Veltkamp K.T.A. (2004) De vel op ment of sin gle crys tal sigma-shaped quartz porphyroclasts by dis so lu -

tion-pre cip i ta tion creep in a cal cite mar ble shear zone. Jour nal of Struc tural Ge ol ogy, 26: 869–883.

Bons P.D., Jessell M.W. (1997) Ex per i men tal sim u la tion of the for - ma tion of fi brous veins by local ised dis so lu tion-pre cip i ta tion creep. Min er al og i cal Mag a zine, 61: 53–63.

Bons P.D., Montenari M. (2005) The for ma tion of antitaxial cal cite veins with well-de vel oped fibres, Oppaminda Creek, South Aus - tra lia. Jour nal of Struc tural Ge ol ogy, 27: 231–248.

Cobbold P.R., Rodrigues N. (2007) Seep age forces, im por tant fac - tors in the for ma tion of hor i zon tal hy drau lic frac tures and bed - ding-par al lel fi brous veins (“beef” and “cone-in-cone”).

Geofluids, 7: 313–322.

(15)

Cobbold P.R., Zanella A., Rodrigues N., Loseth H. (2013) Bed - ding-par al lel fi brous veins (beef and cone-in-cone): world wide oc cur rence and pos si ble sig nif i cance in terms of fluid overpressure, hy dro car bon gen er a tion and min er al iza tion. Ma - rine and Pe tro leum Ge ol ogy, 43: 1–20.

Cosgrove J.W. (1993) The in ter play be tween flu ids, folds and thrusts dur ing the de for ma tion of a sed i men tary suc ces sion.

Jour nal of Struc tural Ge ol ogy, 15: 491–500.

Cox S.F. (1987) Antitaxial crack-seal vein micro struc tures and their re la tion ship to dis place ment paths. Jour nal of Struc tural Ge ol - ogy, 9: 779–788.

Cox S.F., Etheridge M.A. (1983) Crack-seal fi bre growth mech a - nism and their sig nif i cance in the de vel op ment of ori ented layer sil i cate micro struc tures. Tectonophysics, 92: 147–170.

Czarnocki J. (1919) Stratygrafja i tektonika Gór Œwiêtokrzyskich.

Prace Towarzystwa Naukowego Warszawskiego, 28: 1–172.

Czarnocki J. (1938) Carte géologique générale de la Pologne, scale 1:100 000, feuille 4, Kielce, Edi tion du Ser vice Géologique de Pologne.

Czarnocki J. (1950) Ge ol ogy of the £ysa Góra re gion (Œwiêty Krzy¿

Moun tains) (in Pol ish with Eng lish sum mary). Prace Pañstwowego Instytutu Geologicznego, IVa, 3–400.

Czarnocki J. (1956) Min eral raw ma te rial in Œwiêty Krzy¿ Moun - tains (in Pol ish with Eng lish sum mary). Prace Instytutu Geologicznego, 12a: 5–108.

Czarnocki J. (1957a) Tec ton ics of the Œwiêty Krzy¿ Moun tains.

Stra tig ra phy and tec ton ics of the Œwiety Krzy¿ Moun tains (in Pol ish with Eng lish sum mary). Prace Instytutu Geologicznego, 18: 11–133.

Czarnocki J. (1957b) Tec ton ics of the Œwiêty Krzy¿ Moun tains. Ge - ol ogy of the £ysogóry Re gion (in Pol ish with Eng lish sum mary).

Prace Instytutu Geologicznego, 18: 11–138.

Czarnocki J. (1961a) Materia³y do przegl¹dowej mapy geologicznej Polski w skali 1:100 000. Re gion Œwiêtokrzyski. Arkusz Kielce.

Wyd. B zaktualizowane. Wyd. Geol., Warszawa.

Czarnocki J. (1961b) Materia³y do przegl¹dowej mapy geologicznej Polski w skali 1:100 000. Re gion Œwiêtokrzyski. Arkusz Bodzentyn. Wyd. B zaktualizowane. Wyd. Geol., Warszawa.

Czarnocki J. (1961c) Materia³y do przegl¹dowej mapy geologicznej Polski w skali 1:100 000. Re gion Œwiêtokrzyski. Arkusz Opatów.

Wyd. B zaktualizowane. Wyd. Geol., Warszawa.

Czarnocki J. (1961d) Materia³y do przegl¹dowej mapy geologicznej Polski w skali 1:100 000. Re gion Œwiêtokrzyski. Arkusz Piñczów. Wyd. B zaktualizowane. Wyd. Geol., Warszawa.

Czarnocki J. (1961e) Materia³y do przegl¹dowej mapy geologicznej Polski w skali 1:100 000. Re gion Œwiêtokrzyski. Arkusz Staszów. Wyd. B zaktualizowane. Wyd. Geol., Warszawa.

Czarnocki J. (1961f) Materia³y do przegl¹dowej mapy geologicznej Polski w skali 1:100 000. Re gion Œwiêtokrzyski. Arkusz Sandomierz. Wyd. B zaktualizowane. Wyd. Geol., Warszawa.

Dadlez R., Kowalczewski Z., Znosko J. (1994) Some key prob - lems of the pre-Perm ian tec ton ics of Po land. Geo log i cal Quar - terly, 38 (2): 169–190.

Durnay D.W., Ramsay J.G. (1973) In cre men tal strains mea sured by syntectonic crys tal growths. In: Grav ity and Tec ton ics (eds.

K.A. Jong de and K. Scholten): 67–96. John Wiley and Sons, New York.

Etcheopar A. (1977) A plane ki ne matic model of pro gres sive de for - ma tion in a polycrystalline ag gre gate. Tectonophysics, 39:

121–139.

Filonowicz P. (1967) Mapa Geologiczna Polski w skali 1:50 000.

Arkusz Morawica. Wyd. Geol., Warszawa.

Filonowicz P. (1968) Objaínienia Mapy geologicznej Polski w skali 1:50 000, arkusz Morawica. Wyd. Geol., Warszawa.

Filonowicz P. (1973) Mapa Geologiczna Polski w skali 1:50 000.

Arkusz Kielce. Wyd. Geol., Warszawa.

Fowler T.J. (1996) Flex ural-slip gen er ated bed ding-par al lel veins from cen tral Vic to ria, Aus tra lia. Jour nal of Struc tural Ge ol ogy, 18: 1399–1415.

Goscombe B.D., Passchier C.W. (2003) Asym met ric boudins as shear sense in di ca tors - an as sess ment from field data. Jour nal of Struc tural Ge ol ogy, 25: 575–589

Goscombe B.D., Passchier C.W., Hand M. (2004) Boudinage clas - si fi ca tion: end-mem ber boudin types and mod i fied boudin struc - tures. Jour nal of Struc tural Ge ol ogy, 26: 739–763.

Geyer G., Elicki O., Fatka O., ¯yliñska A. (2008) Cam brian. In: The Ge ol ogy of Cen tral Eu rope, 1: Pre cam brian and Palaeozoic (ed.

T. McCann): 155–202.

Grotenhuis S.M., ten, Trouw R.A.J., Passchier C.W. (2003) Evo - lu tion of mica fish in mylonitic rocks. Tectonophysics, 372: 1–21.

Hakenberg M. (1973) Mapa Geologiczna Polski w skali 1:50 000.

Arkusz Chêciny. Wyd. Geol., Warszawa.

Hakenberg M., Kutek J., Matyja B.A., Mizerski W., Rutkowski J., Stupnicka E., Œwidrowska J., Trammer J. (1976) Stratygrafia, wykszta³cenie geologiczne i tektonika mezozoiku po³udniowo-zachodniego obrze¿enia Gór Œwiêtokrzyskich. In:

Przewodnik 48 Zjazdu PTG, Starachowice (ed. W. Po¿aryski):

186–202.

Hanmer S. (1990) Nat u ral ro tated in clu sions in nonideal shear.

Tectonophysics, 176: 245–255.

Hanmer S., Passchier C.W. (1991) Shear-sense in di ca tors: a re - view. Geo log i cal Sur vey Can ada Pa pers, 90–17.

Hilgers C., Sindern S. (2005) Tex tural and iso to pic ev i dence on the fluid source and trans port mech a nism of antitaxial fi brous micro - struc tures from the Alps and the Ap pa la chians. Geofluids, 5:

1–12.

Hilgers C., Urai J.L. (2002a) Ex per i men tal study of syntaxial vein growth dur ing lat eral fluid flow in trans mit ted light: first re sults.

Jour nal of Struc tural Ge ol ogy, 24: 1029–1043.

Hilgers C., Urai J. (2002b) Microstructural ob ser va tions on nat u ral syntectonic fi brous veins: im pli ca tions for the growth pro cess.

Tectonophysics, 352: 257–274.

Hilgers C., Urai J. (2005) On the ar range ment of solid in clu sions in fi brous veins and the role of the crack – seal mech a nism. Jour - nal of Struc tural Ge ol ogy, 27: 481–494.

Hilgers C., Kirschner D., Breton J., Urai J. (2006) Frac ture seal ing and fluid overpressures on lime stones of the Jabal Akhdar dome, Oman Moun tains. Geofluids, 6: 168–184.

Janik T., Grad M., Guterch A. (2009) Seis mic struc ture of the litho - sphere be tween the East Eu ro pean Craton and the Carpathians from the net of CELEBRATION 2000 pro files in SE Po land. Geo - log i cal Quar terly, 53 (1): 141–158.

Jaroszewski W. (1972) Mesoscopic struc tural cri te ria of tec ton ics of non-orogenic ar eas: an ex am ple from the north-east ern Me - so zoic mar gin of the Œwiêtokrzyskie Moun tains (in Pol ish with Eng lish sum mary) . Studia Geologica Polonica, 37.

Jaworowski K. (2002) Geotectonic sig nif i cance of Car bon if er ous de pos its NW of the Holy Cross Mts. (cen tral Po land). Geo log i cal Quar terly, 46 (3): 267–280.

Jessell M.W., Willman C.E., Gray D.R. (1994) Bed ding par al lel veins and their re la tion ship to fold ing. Jour nal of Struc tural Ge ol - ogy, 16: 753–767.

Kenis I., Muchez P.H., Sintubin M., Mansy J.L., Lacquement F.

(2000) The use of a com bined struc tural, sta ble iso tope ad fluid in clu sion study to con strain the ki ne matic his tory at the north ern Variscan front zone (Bettrechies, north ern France). Jour nal of Struc tural Ge ol ogy, 22: 589–602.

Kenkmann T. (2000) Pro cess con trol ling the shrink age of porphyroclasts in gabbroic shear zones. Jour nal of Struc tural Ge ol ogy, 22: 471–487.

Koehn D., Passchier C.W. (2000) Shear sense in di ca tors in striped bed ding veins. Jour nal of Struc tural Ge ol ogy, 22: 1141–1151.

Konon A. (2006) Buckle fold ing in the Kielce Unit, Holy Cross Moun - tains, cen tral Po land. Acta Geologica Polonica, 56: 375–405.

Konon A. (2007) Strike-slip fault ing in the Kielce Unit, Holy Cross Moun tains, cen tral Po land. Acta Geologica Polonica, 57:

415–441.

Konon A. (2008) Tec tonic sub di vi sion of Po land: Holy Cross Moun - tains and ad ja cent ar eas (in Pol ish with Eng lish summary).

Przegl¹d Geologiczny, 56: 921–926.

Konon A., Mastella L. (2001) Struc tural evo lu tion of the GnieŸdziska syncline – re gional im pli ca tions for the Me so zoic mar gin of the Holy Cross Moun tains (cen tral Po land). Annales Societatis Geologorum Poloniae, 71: 189–199.

(16)

Kowalski W.R. (1975) Tec ton ics of the west ern end of Chêciny anticline and sur round ing struc tures of Me so zoic mar gins of the Holy Cross Mts. Annales Societatis Geologorum Poloniae, 45:

45–61.

Koz³owski W. (2008) Lithostratigraphy and re gional sig nif i cance of the Nowia S³upia Group (Up per Si lu rian) of the £ysogóry Re gion (Holy Cross Moun tains, Cen tral Po land). Acta Geologica Polonica, 58: 43–74.

Krzemiñski L. (1999) Anorogenic Car bon if er ous sand stones from the north west ern bor der of the Holy Cross Moun tains, Cen tral Po land (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 47: 978–986.

Kutek J., G³azek J. (1972) The Holy Cross area, Cen tral Po land, in the Al pine cy cle. Acta Geologica Polonica, 22: 603–653.

Lamarche J., Bergerat F., Lewandowski M., Mansy J.L., Œwidrowska J., Wieczorek J. (2002) Variscan to Al pine heterogenous palaeo-stress field above a ma jor Palaeozoic su - ture in the Carpathian fore land (south east ern Po land).

Tectonophysics, 357: 55–80.

Lamarche J., Mansy J.L., Bergerat F., Averbuch O., Hakenberg M., Lewandowski M., Stupnicka E., Œwidrowska J., Wajsprych B., Wieczorek J. (1999) Variscan tec ton ics in the Holy Cross Moun tains (Po land) and the role of struc tural in her i - tance dur ing Al pine tec ton ics. Tectonophysics, 313: 171–186.

Lee Y.J., Wiltschko D.V. (2000) Fault con trolled se quen tial vein di - la tion: com pe ti tion be tween slip and pre cip i ta tion rates in the Aus tin Chalk, Texas. Jour nal of Struc tural Ge ol ogy, 22:

1247–1260.

Lewandowski M. (1982) Some as pects of the tec tonic his tory of the Holy Cross Mts in the light of palaeomagnetic stud ies. Acta Geophysica Polonica, 30: 261–277.

Lewandowski M. (1985) On tec ton ics of the Holy Cross Mts in the light of paleomagnetic stud ies. Pub li ca tions of the In sti tute of Geo phys ics Pol ish Acad emy of Sci ences, A 16 (175): 131–150.

Malec J. (1993) Up per Si lu rian and Lower De vo nian in the west ern Holy Cross Moun tains. Geo log i cal Quar terly, 37 (4): 501–536.

Malec J. (2001) Sedimentology of de pos its around the Late Cal edo - nian un con formity in the west ern Holy Cross Moun tains. Geo - log i cal Quar terly, 45 (4): 397–415.

Mastella L., Konon A. (2002) Non-pla nar strike-slip GnieŸdziska-Brzeziny fault (SW Me so zoic mar gin of the Holy Cross Moun tains, cen tral Po land). Acta Geologica Polonica, 52:

471–480.

Mazur S., Aleksandrowski P., Kryza R., Oberc-Dziedzic T. (2006) The Variscan Orogen in Po land. Geo log i cal Quar terly, 50 (1):

89–118.

Means W.D., Li T. (2001) A lab o ra tory sim u la tion of fi brous veins:

some first ob ser va tions. Jour nal of Struc tural Ge ol ogy, 23:

857–863.

Mizerski W. (1995) Geotectonic evo lu tion of the Holy Cross Mts in cen tral Eu rope. Biuletyn Instytutu Geologicznego, 372: 5–47.

Nawrocki J., Poprawa P. (2006) De vel op ment of Trans-Eu ro pean Su ture Zone in Po land: from Ediacaran rift ing to Early Palaeozoic ac cre tion. Geo log i cal Quar terly, 50 (1): 59–76.

Norris D.K., Barron K. (1969) Struc tural anal y sis of fea tures on nat u ral and ar ti fi cial faults. Geo log i cal Sur vey Can ada Pa pers, 68–52: 136–157.

Noten K., van, Sintubin M. (2010) Lin ear to non-lin ear re la tion ship be tween vein spac ing and layer thick ness in centi metre- to decimetre-scale siliciclastic multilayers from the High-Ardenne slate belt (Bel gium, Ger many). Jour nal of Struc tural Ge ol ogy, 32: 377–391.

Noten K., van, Muchez P., Sintubin, M. (2011) Stress-state evo lu - tion of the brit tle up per crust dur ing compressional tec tonic in - ver sion as de fined by suc ces sive quartz vein-types (High-Ardenne slate belt, Ger many). Jour nal of Geo log i cal So ci - ety, 168: 407–422.

Or³owski S. (1975) Cam brian and Up per Pre cam brian lithostratigraphic units in the Holy Cross Mts (in Pol ish with Eng - lish sum mary). Acta Geologica Polonica, 25: 431–446.

Passchier C.W. (1994) Mix ing in flow per tur ba tion: a model of de - vel op ment of man tled porphyroclasts in mylonites. Jour nal of Struc tural Ge ol ogy, 16: 733–736.

Passchier C.W., Simpson C. (1986) Porphyroclast sys tems as ki - ne matic in di ca tors. Jour nal of Struc tural Ge ol ogy, 8: 831–843 Passchier C.W., Trouw R.A.J. (1996) Microtectonics. Springer,

Berlin.

Pe tit J.P. (1987) Cri te ria for the sense of move ment on fault sur - faces in brit tle rock. Jour nal of Struc tural Ge ol ogy, 9: 597–608.

Pe tit J.P., Wibberley C.A.J., Ruiz G. (1999) ‘Crack–seal’, slip: a new fault valve mech a nism? Jour nal of Struc tural Ge ol ogy, 21:

1199–1207.

Po¿aryski W. (1978) The Œwiêtokrzyski Mas sif. In: Ge ol ogy of Po - land, Tec ton ics: 216–227. Wyd. Geol., Warszawa.

Po¿aryski W., Tomczyk H. (1993) Geo log i cal cross-sec tion through SE Po land (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 41: 687–695.

Po¿aryski W., Grocholski A., Tomczyk H., Karnkowski P., Moryc W. (1992) The tec tonic map of Po land in the Variscan ep och (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 40:

643–651.

Price N.J., Cosgrove W. (1990) Anal y sis of geo log i cal struc tures.

Cam bridge Uni ver sity Press, Cam bridge.

Racki G. (1993) Evo lu tion of the bank to reef com plex in the De vo - nian of the Holy Cross Moun tains. Acta Palaeontologica Polonica, 37: 87–182.

Ramsay J.G. (1980) The crack-seal mech a nism of rock de for ma - tion. Na ture, 284: 135–139.

Ramsay J.G., Huber M.K. (1983) Tech niques in Mod ern Struc tural Ge ol ogy. Vol ume I: Strain Anal y sis. Ac a demic Press, Lon don.

Rodrigues N., Cobbold P.R., Loseth H., Ruffet G. (2009) Wide - spread bed ding-par al lel veins of fi brous cal cite (“beef”) in ma - ture source rock (Vaca Muerta Fm., Neuqeuén Ba sin, Ar gen - tina): ev i dence for overpressure and hor i zon tal com pres sion.

Jour nal of Geo log i cal So ci ety, 166: 695–709.

Roo J.A., Weber K. (1992) Lam i nated veins and hy dro ther mal brec - cia as mark ers of low an gle fault ing, Rhenish Mas sif, Ger many.

Tectonophysics, 208: 413–430.

Samsonowicz J. (1934) Ex pli ca tion de la feuille Opatów. Carte Géologique Générale de la Pologne au 100 000. Varsovie.

Sejourne S., Malo M., Savard M.M., Kirkwood D. (2005) Mul ti ple or i gin and re gional sig nif i cance of bed ding-par al lel veins in a fold and thrust belt: the ex am ple of a car bon ate slice along the Ap pa la chian struc tural front. Tectonophysics, 407: 189–209.

Suchy V., Dobes P., Filip J., Stejskal M., Zeman A. (2002) Con di - tions for vein ing in the Barrandian Ba sin (Lower Palaeozoic), Czech Re pub lic: ev i dence from fluid in clu sion and ap a tite fis - sion track anal y sis. Tectonophysics, 348: 25–50.

Swanson M.T. (1992) Late Aca dian Alleghenian transpressional de for ma tion: ev i dence from asym met ric boudinage in the Casco Bay area, Coastal Maine. Jour nal of Struc tural Ge ol ogy, 14:

323–341.

Szaniawski R. (2008) Late Palaeozoic geodynamics of the Ma³opolska Mas sif in the light of new palaeomagnetic data for the south ern Holy Cross Moun tains. Acta Geologica Polonica, 58: 1–12.

Szaniawski R., Konon A., Grabowski J., Schnabl P. (2011) Paleomagnetic age con straints on fold ing and fault ing events in De vo nian car bon ates of the Kielce Fold Zone (south ern Holy Cross Moun tains, Cen tral Po land). Geo log i cal Quar terly, 55 (3):

223–234.

Szczepanik Z., Trela W., Salwa S. (2004a) Up per Cam brian in the Kielce Re gion of the Holy Cross Mts. – pre lim i nary re port (in Pol - ish with Eng lish sum mary). Przegl¹d Geologiczny, 52: 895–898.

Szczepanik Z, Trela W., ¯yliñska A., Salwa S. (2004b) Nowe kambryjskie i ordowickie jednostki litostratygraficzne w regionie kieleckim Gór Œwiêtokrzyskich. Posiedzenia Naukowe Pañstwowego Instytutu Geologicznego, 61: 57–58.

Szulczewski M. (1995) Depositional evo lu tion of the Holy Cross Mts. (Po land) in the De vo nian and Car bon if er ous – a re view.

Geo log i cal Quar terly, 39 (1): 471–488.

(17)

Szulczewski M., Belka Z., Skompski S. (1996) The drown ing of a car bon ate plat form: an ex am ple from the De vo nian-Car bon if er - ous of the south west ern Holy Cross Moun tains, Po land. Sed i - men tary Ge ol ogy, 106: 21–49.

Tan ner P.W.G. (1989) The flex ural-slip mech a nism. Jour nal of Struc tural Ge ol ogy, 11: 635–655.

Tarnowska M. (1981) Dewon dolny w centralnej czêœci Gór Œwiêtokrzyskich. Przewodnik 53 Zjazdu Polskiego Towarzystwa Geologicznego: 57–68.

Tomczyk H. (1988) Tec tonic move ments be tween mar gin of the East-Eu ro pean Plat form and the Holy Cross Mts re gion in the Palaeozoic (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 36: 9–17.

Tomczykowa E. (1993) Up per Lud low trilobites from the south ern part of the Holy Cross Mts. Geo log i cal Quar terly, 37 (3):

359–384.

Unrug R., Harañczyk C., Chocyk-Jamiñska M. (1999) East ern - most Avalonian and Armori can-Cadomian ter ranes of cen tral Eu rope and Cal edo nian-Variscan evo lu tion of the polydeformed Kraków mo bile belt: geo log i cal con straints. Tectonophysics, 302: 133–157.

Wiltschko D.V., Lam bert G.R., Lamb W. (2009) Con di tions dur ing syntectonic vein for ma tion in the footwall of the Absaroka Thrust Fault, Idaho-Wy o ming-Utah fold and thrust belt. Jour nal of Struc tural Ge ol ogy, 31: 1039–1057.

¯akowa H. (1981) Rozwój i stratygrafia karbonu Gór Œwiêtokrzyskich. Przewodnik LIII Zjazdu Polskiego Towarzystwa Geologicznego, Kielce: 89–100.

¯akowa H., Migaszewski Z. (1995) The Car bon if er ous in the Holy Cross Mts. In: Guide to Ex cur sion A2, De vel op ment of the Variscan ba sin and epi-Variscan cover at the mar gin of the East Eu ro pean plat form (Pomerania, Holy Cross Mts., Kraków up - land): 9–11. Pol ish Geo log i cal In sti tute, Warszawa.

Cytaty

Powiązane dokumenty

Stromatoporoid skeletons from polished slabs of stromatoporoid- and coral-bearing limestones of the Upper Devonian Kowala Formation from the Holy Cross Mountains in central Poland

TYPES: The lectotype is an axial shield without pygid- ium from Andrarum, Scania, Sweden, illustrated by WESTERGARD (1922, PI. BIOMETRIC DATA: Nine parameters measured

Ambulacral ossicles (PI. 2) are asymmetric and high; length, width, and height of 3 ossicles are respectively (mm): 1.8, 4.4, -; 0 .8,2.6,1.1; 1.0,2.9 , 1.3; distal concavity

Ruda Strawczyñska, Bolechowice IG 1, Zarêby IG 2 and Kowala, the De vo nian/Car bon if er ous bound ary is lo cated within a con tin u ous se ries of deep-wa ter car bon

ABSTRACT: The assemblage of echinoids from the Middle Miocene (BadeD.ian) red-algal (lithothamnian) detrital limestones (the Pinczow Limestones) of the Pinczow

ecological relationships between species (Middle Miocene; Holy' Cross Moun- tadns, Central Poland). Barrier rocks 1n the Upper Miocene at southenn margm

ABSTRACT: A few exceptionally weU preserved Hyolitha are described from the .early Lower cambrian strata (Czatna Shale Formation) of the Holy Cross Moun- iains,

.Indicated are: marJ.ne area of the Korytnica Basin during the Middle Miocene (8adenianJ transgression (bla7itk) and present-day outcrops of the Korytnica Clays