• Nie Znaleziono Wyników

Saddle point inflation from f(R) theory

N/A
N/A
Protected

Academic year: 2022

Share "Saddle point inflation from f(R) theory"

Copied!
6
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Saddle point inflation from f ( R ) theory

Michał Artymowski

b,

, Zygmunt Lalak

a

, Marek Lewicki

a,c

aInstituteofTheoreticalPhysics,FacultyofPhysics,UniversityofWarsaw,ul.Pasteura5,02-093Warsaw,Poland bInstituteofPhysics,JagiellonianUniversity,Łojasiewicza11,30-348Kraków,Poland

cMichiganCenterforTheoreticalPhysics,UniversityofMichigan,AnnArborMI48109,USA

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received2September2015

Receivedinrevisedform28September 2015

Accepted30September2015 Availableonline3October2015 Editor:M.Cvetiˇc

Weanalyseseveralsaddlepointinflationaryscenariosbasedonpower-law f(R)models.Weinvestigate inflationresultingfrom f(R)=R+αnM2(1n)Rn+αn+1M2nRn+1and f(R)=l

nαnM2(1n)Rnaswell asl→ ∞limitofthelatter.Inallcaseswehavefoundrelationbetweenαncoefficients andchecked consistencywith the PLANCKdata as wellas constraints comingfrom the stabilityof themodels in question.EachofthemodelsprovidessolutionswhicharebothstableandconsistentwithPLANCKdata, howeveronlyinpartsoftheparameterspacewhereinflationstartsontheplateauofthepotential,some distancefromthesaddle.AndthusallthecorrectsolutionsbearsomeresemblancetotheStarobinsky model.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Cosmicinflation [1–3] isa theoryof theearly universewhich predicts cosmicacceleration andgeneration ofseeds ofthe large scalestructureofthepresentuniverse.Itsolvesproblemsofclassi- calcosmologyanditisconsistentwithcurrentexperimentaldata [4]. Thefirst theory ofinflation was the Starobinsky model[5,6], whichisan f(R)theory[7]withR+R2/6M2Lagrangiandensity.

In such a model the acceleration of space–time is generated by thegravitationalinteractionitself,withoutaneedtointroduceany newparticles orfields.The embeddingofStarobinsky inflationin no-scaleSUGRAhasbeendiscussedinRef.[8].Recentlythewhole classofgeneralisationsoftheStarobinskyinflation havebeendis- cussedin the literature [9–15], also inthe context of thehigher ordertermsinStarobinskyJordanframepotential[16–18].

ThetypicalscaleofinflationissetaroundtheGUTscale,which isoftheorderof(1016GeV)4.Suchahighscaleofinflationseems tobe a disadvantage ofinflationary models.First of all inflation- aryphysicsisveryfarawayfromscaleswhichcanbemeasuredin accelerators and other high-energy experiments. The other issue is, that high scale of inflation enables the production of super- heavyparticlesduring thereheating[19].Thoseparticlescouldbe inprincipleheavierthantheinflatonitself, soparticleslikemag- netic monopoles, which abundant existence is inconsistent with

*

Correspondingauthor.

E-mailaddress:michal.artymowski@uj.edu.pl(M. Artymowski).

observations,couldbeproducedafterinflation.Anotherargument, which supportslow-scale inflation is the Lythbound [20], which istherelationbetweenvariationoftheinflatonduringinflationin Planckunits(denotedas)andtensor-to-scalarratior,namely





N

0



r

8dN

,

(1)

which fornearly scale-invariant power spectrum gives φ <Mp forr<0.002.Small seemstobe preferablefromthepoint of view ofthenaturalnessprinciple, since Mp isthecut-off scaleof thetheory.The value ofr determinesthescale ofinflation,since V/r (where V isthepotentialoftheinflaton)atthescaleofinfla- tionissetby thenormalisationofCMBanisotropies.Thereforein ordertoobtainsmallr oneneedsalow-scaleinflation,whichmay beprovidedbyapotentialwithasaddlepoint.

Aseparateissuerelatedwith f(R)inflationisrelatedwithloop correctionstothe f(R)function.InordertoobtainquasideSitter evolution ofspace–timeone needs arange ofenergies forwhich theR2M2 termdominatestheLagrangiandensity.Thiswouldre- quireallhigherordercorrections(suchasR3,R4,etc.)[21]tobe suppressed by a mass scale much bigger than M. One naturally expects all higher order correction to GR to appear at the same energyscaleifonewantstoavoidthefine-tuningofcoefficientsof allhigherorderterms.Fromthisperspectiveitwouldbebetterto generateinflation in f(R)theory withouttheStarobinskyplateau, whichinprinciplecouldbeobtainedinthesaddlepointinflation.

http://dx.doi.org/10.1016/j.physletb.2015.09.076

0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

inhomogeneities

The f(R) theory is one of the simplest generalisations of general relativity (GR). It is based on Lagrangian density S=

1 2

d4

g f(R) andit canbe expressedusingthe so-calledaux- iliaryfield

ϕ

defined by

ϕ

=F(R):=dfdR. In such a casethe Jor- danframe(JF)actionisequalto S= √−g(

ϕ

R/2−U(

ϕ

),where U = (R Ff)/2 is the JF potential. For F=1 one recovers GR, sothe GRvacuumofthe JFpotential ispositioned at

ϕ

=1.The samemodelcanbeexpressedintheEinsteinframe(EF),withthe metrictensordefinedbygμν˜ =

ϕ

gμν .Thisispurelyclassicaltrans- formation of coordinates and results obtained in one frame are perfectly consistent with the ones from another frame.1 The EF actionis equalto S= 

−˜g( ˜R/2+ (∂μφ)2/2−V(φ)),where R,˜ φ:=√

3/2 log F and V:= (R Ff)/(2F2)are theEFRicciscalar, field and potential respectively. The EF potential should have a minimumattheGRvacuum,whichispositionedatφ=0.

IntheEFthegravityobtainsitscanonicalformandthisiswhy theEFisusually usedfortheanalysisofinflationandgeneration ofprimordialinhomogeneities.Thecosmicinflationproceedswhen both slow-roll parameters

and

η

are much smallerthan unity.

Theseparametersare,asusualgivenby

=

1 2



Vφ V



2

, η =

Vφφ

V

,

(2)

whereVφandVφφ arethefirstandthesecondderivativeoftheEF potentialwithrespecttoφ.Duringinflation

and

η

canbeinter- pretedasdeviationfromthede Sittersolution forFRWuniverse.

Duringeach Hubble time theEF scalarfield produces inhomoge- neous modeswith an amplitude of the orderof the Hubble pa- rameter.Fromthemandfromthescalarmetricperturbationsone constructs gaugeinvariant curvatureperturbations, which are di- rectlyrelatedtocosmicmicrowavebackgroundanisotropies.Their power spectrum PR, their spectral indexns and their tensor to scalarratioareasfollows

PR



V

24

π

2

,

ns



1

6

+

2

η ,

r



16

.

(3) In the low scale inflation one obtains

 |

η

|, which for

η

<0 gives1−ns2|

η

|.

3. Saddlepointinflationinpower-law f(R)theory 3.1. Saddlepointwithvanishingtwoderivatives

As mentioned inthe introduction,the loop corrections tothe Starobinsky model are of the form

n=2

α

nRnM2(1n), where M

1 DifferencesbetweenEinsteinandJordanframeinloopquantumcosmologyare describedinRef.[23].

whereF=f andprimedenotesthederivativewithrespecttothe Ricciscalar.Letusassumethefollowingformof f(R)

f

(

R

) =

R

+ α

2

R2 M2

+ α

n

Rn

M2(n1)

+ α

n+1

Rn+1

M2n

,

(5)

where n>2 is a given number. Insuch a casethe saddle point appearsfor

R

=

Rs

=

M2

 (

n

2

) α

n

n



1

n1

,

α

n+1

= −

 (

n

2

) α

n

n



n

n1

.

(6)

Equations above are

α

2 independent, becauseany R2 cansatisfy Eq. (4). In order to keep Rs and

α

n+1 real we need to assume that

α

n>0 and

α

n+1<0. Then for sufficiently big R one finds F<0 andthegravitybecomesrepulsive.Thisinstabilitybecomes anissueforRM2nα+nn1(

α

n(n2)/n)n−1−n,whichistypicallyofthe same order ofmagnitude as Rs.By redefining M we canalways set one of

α

n to be anygiven constant.For negative

α

n one can satisfy Eq. (4)forn<2.Nevertheless the saddlepoint wouldlie in therepulsivegravity regime, where F<0.Thus inthefollow- ing analysisn<2 isexcluded.Notethatfornon-zerovalue of

α

2 the valueof M grows with

α

2.Thiscomes fromthefact thatfor

α

2

α

n one obtains inflationary plateaufollowed by the saddle point,duetogrowing valueof Rs withrespectto

α

2.The

α

2 de- pendenceofM isshowninFig. 1.Big

α

2termmeansthatthelast 60 e-foldsofinflation happenon theStarobinsky plateau,so one doesnotobtainsignificantdeviationsfromtheR2 model.

The modeldescried in Eq.(5)can be generalisedinto f(R)= R+

α

2R2M2+

α

nRnM2(1n)+

α

mRmM2(1m). Then, for

α

n=1 onefinds

Rs

=

M2

 (

n

2

)(

m

n

)

m

1



n11

,

α

m

= − (

n

1

)(

n

2

) (

m

1

)(

m

2

)

 (

n

2

)(

m

n

)

m

1



nnm1

(7)

The EF potential around the saddlepoint (up to the maximal allowedvalueofφ)for f(R)=R+

α

2R2/M2+R3/M4+

α

4R4/M6 has beenshowninFig. 1.We haverescaled M to obtain

α

3=1.

The R2 term in not necessary to obtain a saddle point, butwe includeittocombinetheinflationontheStarobinskyplateauwith thesaddlepointinflation. FromEq.(6)onefindsthevalue of

α

4, normalisationofinhomogeneitiesgivesM asafunctionof

α

2.

2 SomehigherordercorrectionstoStarobinskyinflationdiscussedherehaveal- readybeenanalysedinRefs.[24–26],howevernotinthecontextofthesaddle-point inflation.Inaddition,inouranalysiswetakeintoaccountatleast2higherorder terms,whichisnotthecaseinpaperscitedabove.

(3)

Fig. 1. Leftpanel:theEinsteinframepotentialforthe(5)modelaroundthesaddlepointforn=3,α3=1 anddifferentvaluesofα2.Theα4coefficientissetfromEq.(6)for n=3.Themaximalallowedvalueofφisveryclosetothesaddlepoint.Rightpanel:thescaleofnewphysicsM asafunctionofα2.DottedgreenlinerepresentStarobinsky limit.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Fig. 2. Tensortoscalarratior andspectralindexnsasafunctionofα2forthe(5)modelwithn=3.OnecanfitthePLANCKdataforα2100,whichmeansthatthesaddle pointisprecededbytheinflationaryplateau.

Fig. 3. Bothpanelspresentns(n)forthemodelfromEq.(5)forN =50 andα2=0.Ifn isanaturalnumberonecannotfitthePlanckdataduetotoosmallns.Inallof thosecasesasignificantcontributionoftheR2termisneededinordertoobtainns0.958.Ontheotherhandforn2102oneobtainns0.96.Thecaseofn2 seemstobeespeciallyinterestingsinceitallowstoreconstructStarobinskyresultsitthepresenceofhigherorderterms.

3.2.Saddlepointwithvanishingk derivatives

Ingeneralone candefine thesaddlepointwithfirstk deriva- tives vanishing, which was analysed in Ref. [27]. In that case 1−ns N (2kk1) when freeze-out of primordial inhomogeneities happensclosetothesaddlepoint.Thus,forsufficientlybigk one canfitthePlanckdata.Inourcaseall ddkφVk =0 atthesaddlepoint areequivalent to ddRkfk =0 fork>2.The f(R) modelfromEq.(5) cannotsatisfytheseequations,soinordertoobtainasaddlepoint with vanishing higher order derivatives one needs to introduce

moretermsto f(R)function(seealsoFigs. 2–5).Thusletusnow consider

f

(

R

) =

R

+ α

2R

2

M2

+

l n=3

α

n R

n

M2(n1)

,

(8)

wherel>4 isan evennaturalnumber.Again,withoutanylossof generality one can choose

α

3 to be anypositive constant, so for simplicityweset

α

3=1.ThenonecansatisfyEq.(4)and f(n)=0 (forn= {3,4,. . . ,l2}andanyvalueof

α

2)andthesaddlepoint appearsat

(4)

Fig. 4. Leftpanel:Numericalresultsforthemodel(11)forN =50 andN =60 (redandbluedotsrespectively).Rightpanel:EFpotentialforthemodel(11)forl=6,l=8, l=10,l=12 andl=14 (orange,green,red,brownandbluelinesrespectively).Thesaddlepointliesclosetotherightedgeofthepotential,beyondwhichoneobtainsa secondbranchofV ,whichleadstorepulsivegravity.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthis article.)

Fig. 5. Numericalresultsforthemodel(11)forN =50 andN =60 (redandbluedotsrespectively).Allvaluesofr obtainedinthisanalysisareconsistentwithPLANCK, butnsfitsthePLANCKdataonlyforN 60.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Fig. 6. Numericalresultsforthemodel(12)forN =60 ThensfitsthePLANCKdatafor0<α<1.4 andforα234,whentheα2termdominatestheinflationaryevolution.

R

=

Rs

= √

p M2

,

where p

=

(

l

1

)



l 2

1



.

(9)

The

α

n coefficientssatisfy

α

n

= (−

1

)

n1 2

(

l

3

) ! (

l

n

)!(

n

1

)!

p

3n

2 for n

= {

3

, . . . ,

l

} .

(10)

Note that Eqs. (9) and (10) are completely independent of

α

2. Since

α

l<0 one obtains F<0 for sufficiently big R. Alike the modelfromEq.(5)thebiggest allowedvalue ofR is slightlybig- gerthan Rs.UsingEq.(8)and(10)oneobtains

f

(

R

) =

R

+ α

2

M2R2

+

R



lM2

p R

+

2M4p2



1

M2Rp

l

1



− (

l

1

)

R2



M4p

M2

p R

.

(11) 3.3. Thel→ ∞limit

Numerical analysis showsthat in orderto obtain correct nor- malisation of primordial inhomogeneities one needs M=M(l). Nevertheless forl→ ∞ oneobtains MMo (where Mo105 for

α

2=0), which implies Rs→ ∞ for l→ ∞.Hence forl1 one cannot obtain inflation closetosaddlepoint. Forl→ ∞ one obtains

(5)

Fig. 7. LeftPanel:TheEinsteinframepotentialasafunctionoftheRicciscalar.TheGRminimumatR=0 appearstobemeta-stable,withapossibilityoftunnellingtoanti deSittervacuum.RightPanel:TheEinsteinframepotentialV asafunctionoftheEinsteinframefieldφforthemodel(12).Twobranchesofpotentialcorrespondtotwo solutionsofϕ=F(R).InordertoavoidovershootingtheminimumatR=0 onerequiresα20.7.

Fig. 8. Theminimalvalueofα2,whichallowstoavoidovershootingthemeta-stable GRminimum.

f

(

R

) =

R

e

2R M2o

+

2

+ α

2

M2o R



.

(12)

The

α

2 maybe again used tostabilise the GR vacuumat φ=0.

Thenumericalresultsfor N =60 areplottedinFigs. 6 and7.As expected,for

α

1 valuesofM/

α

,r andnsobtainthelimitof theStarobinsky theory.AsshowninFig. 7thepotentialshavetwo branches, whichsplit atsome φ= φm, where φm isthe minimal valueofφ.The

α

2 terminnecessaryinorderto stabilisetheGR vacuum.For

α

2=0 oneobtains twobranchesofpotential which growfromφ=0.Both ofthemexistonlyforφ >0 withnomin- imum.Whileincreasing the valueof

α

2 thesplittingof branches moves towards φ <0 and the inflationary branch obtains mini- mum at φ=0. We investigated the stability of minimum from the perspective of classical evolution of the Einstein frame field.

Namely, we considered the slow-roll initial conditions at φ= φ fordifferent valuesof

α

2 andchecked whetherthe minimum is deepenoughtostopthefieldbeforeitwouldreachφm.Wepost- ponetheissueofquantumtunnellingtotheanti-de Sittervacuum forfuturework.

4. Conclusions

In this paper we considered several f(R) theories with sad- dlepointintheEinsteinframepotential.AllmodelsconsistofGR term R,Starobinskyterm

α

2R2 andhigherordertermswhichare thesource ofthe saddlepoint. InSubsection 3.1we investigated

two additionaltermsproportionalto Rn andRn+1.We foundan- alytical relation between their coefficients and Rs, which is the valueoftheRicciscalaratthesaddlepoint.Thepotentialbecomes unstablefor R slightlybiggerthan Rs –thesecond branchofthe auxiliaryfieldequation

ϕ

=F(R)becomesphysical,whichleadsto thesecond branchofpotentialandasaconsequencetorepulsive gravity.Significantcontributionofthe R2 termextendtheplateau beforethe saddlepointandpushesaway theinstability fromthe inflationaryregion.Forn3 itisimpossibletoobtaincorrectns, howeverforn slightlybiggerthan2 onecanfitthePLANCKdata.

InSubsection3.2we investigatedTheEinstein framepotential withzero value of the firstl−2 derivativesatthe saddle point, where l6 is an even natural number. Toobtain such a saddle point we considered f(R)=R+

α

2R2+l

n=3

α

nM2(1n)Rn. We foundanalyticalformulaeforRsandforall

α

n coefficients,aswell asthe explicit value of f(R) aftersummation. Unfortunately the result is slightly disappointing, because the saddle point moves away from the scale offreeze-out of primordialinhomogeneities withgrowingl. ThusbringingusclosertotheStarobinsky caseas l getsbigger.Wealsoobtainednumericalresultsforns,r andfor thesuppressionscaleM asafunctionofl.Thefinalresultstrongly dependson N ,andtherefore onthe thermalhistoryofthe uni- verse. Onecan fit thePLANCK dataforl20 and N 60 even for

α

2=0.Again,forR slightlybigger than Rsoneobtains anin- stability ofpotential,whichforbigl isorders ofmagnitudeaway fromthefreeze-outscale.

In Subsection 3.3 we considered the limit l→ ∞, which re- sultedin f(R)=R(e2R/M2o+(

2+

α

2)R/M2o),whichisbasically Starobinsky model plus an exponentially suppressed correction.

In such a casethe saddlepoint (and thereforethe instability for R>Rs)movestoinfinityandinflationhappensfarawayfromthe saddlepoint. The

α

2 termis necessary tocreate themeta-stable minimumofthe Einsteinframe potential(Fig. 8). Onecanfit the PLANCKdatafor0.7

α

21.4 and

α

234.

Acknowledgements

This work was partially supported by the Foundation for Pol- ish Science InternationalPhDProjectsProgramme co-financedby the EU European Regional Development Fund and by National Science Centre under research grants DEC-2012/04/A/ST2/00099 and DEC-2014/13/N/ST2/02712. ML was supported by the Pol- ish National Science Centre under doctoral scholarship number 2015/16/T/ST2/00527.MAwassupportedbyNationalScienceCen- tregrantFUGAUMO-2014/12/S/ST2/00243.

(6)

[12]M. Artymowski, Z. Lalak, J. Cosmol. Astropart. Phys. 09 (2014) 036, arXiv:1405.7818[hep-th].

[13]M.Artymowski,Z.Lalak,M.Lewicki,arXiv:1412.8075[hep-th].

[14]L.Sebastiani,G.Cognola,R.Myrzakulov,S.D.Odintsov,S.Zerbini,Phys.Rev.D 89(2014)023518,arXiv:1311.0744[gr-qc].

th].

[25]S.Kaneda,S.V.Ketov,N.Watanabe,Class.QuantumGravity27(2010)145016, arXiv:1002.3659[hep-th].

[26]T. Saidov,A. Zhuk,Phys. Rev. D81 (2010) 124002, arXiv:1002.4138[hep- th].

[27]Y.Hamada,H.Kawai,K.Kawana,arXiv:1507.03106[hep-ph].

Cytaty

Powiązane dokumenty

moments and quantiles of the empirical distribution, so they are estimators of the corresponding theoretical values. sample mean = estimator of the expected

$contrl scftyp=rhf runtyp=tdhfx nosym=1 ispher=0 $end $system mwords=1 $end.. $basis gbasis=n21 ngauss=3 $end $guess

[r]

When is it

and reflexive acting in institutions. For each of these criteria the alternative normative models of risk regulation may be distinguished. As regards the issue of risk

Obviously, the dimensions of the sets mentioned in the formulation of those conditions are understood as the dimensions over the field of complex numbers

Przenikanie siê problemów wewn¹trzpañstwowych do przestrzeni stosunków miêdzyna- rodowych oraz przenoszenia tych ostatnich do wnêtrza pañstwa, proces przenoszenia

W odniesieniu do jZzyka polskiego termin turcyzm moSna zatem odnieUb do saów pochodz_cych wya_cznie z jZzyka osmafsko-tureckiego b_dg teS do wyrazów z któregoU