• Nie Znaleziono Wyników

Sheet 3. Sequences and Their Limits Exercise 3.3.

N/A
N/A
Protected

Academic year: 2021

Share "Sheet 3. Sequences and Their Limits Exercise 3.3."

Copied!
9
0
0

Pełen tekst

(1)

Exercise 3.3. Find the limits:

a) ∞ b) −∞ c) 1 d) 2 e) ∞ f) −∞

g) 0 h) 0 i) 27 j) 8 k) 0 l) 0 m) −∞ n) 0 o) 14 p) 3 q) ∞ r) 0 s) 94 t) 0 u) e v) 1 w) 14 x) −12 y) 3 z) 1 aa) 23 ab) 0 ac) 0 ad) 0 ae) e−3 af) e2 ag) e8 ah) e9 ai) 1

Sheet 4. Limits and Continuity of Functions

Exercise 4.1. Find the limits (if they exists):

a) 12 b) 6 c) −1 d) 43 e) −161 f) 53 g) 12 h) 12 i) e3 j) 1 k) 0 l) 1 m) 13, n) e o) ∞ p) −14 q) 12

2 r) 2

Exercise 4.2. Compute the one-sided limits of the given functions as x approaches x0: a) lim

x→3

1

x − 3 = −∞, lim

x→3+

1

x − 3 = ∞ b) lim

x→3

1

3 − x = ∞, lim

x→3+

1

3 − x = −∞

c) lim

x→3

1

(3 − x)2 = ∞, lim

x→3+

1

(3 − x)2 = ∞ d) lim

x→1

x + 1

x − 1 = −∞, lim

x→1+

x + 1 x − 1 = ∞ e) lim

x→2

1

x2− 4 = −∞, lim

x→2+

1

x2− 4 = ∞ f) lim

x→12x−11 = 0, lim

x→1+2x−11 = ∞ g) lim

x→24x2−41 = 0, lim

x→2+4x2−41 = ∞ h) lim

x→−2e4−x21 = 0, lim

x→−2+e4−x21 = ∞ i) lim

x→0

x

1 + e1x = 0, lim

x→0+

x 1 + ex1 = 0

Sheet 5. Derivatives. L’Hospital’s Rule

Exercise 5.1. Differentiate the following functions:

(2)

1) 0 2) 6x + x12 + 4x3+ 1 2√

x 3) 6x2− 2x

4) 13

(2x − 3)2 5) 4x

(x2+ 1)2 6) − 6 x2

x6− 2x3+ 1 7) ¡

2x2+ 1¢ 1

√x2+ 1 8) −12(x + 1) x 1

x52 9) 2xe

10) ex¡

x + 3x5+ x6− 2¢

x3 11) 10xln 10 12) 1

4x − xln 4 4x 13) x − 3√

x

x32 14) ln x + 1 15) 2x2ln x − x2− 1

(x2+ 1)2x 16) 1

x ln 3 17) cos x − sin x 18) x3cos x + 3x2sin x

19)

1

2cos x − x sin x

√x 20) − 4x3sin x − x4cos x − 4 cos x

(2x + x2+ 2)2(x2− 2x + 2)2 21) 2 sin 2x + 1

22) 0 23) arcsin x + x

√1 − x2 24) 1

x2+ 1+ 1

25) − 1

(2x + x2+ 1)q

1

x+1(1 − x)

26) ex+ 2ex√ ex+ 1 2ex+ 2ex

ex+ 1 + 2 27) 2xex2−3x−4− 3ex2−3x−4

28) − sinxx+1−1 2x +√

x + x32 29) 30x2¡

2x3− 1¢4

30) 5¡

x2+ 1¢4¡

2x + x2− 1¢ (x + 1)6

31) 3 − 3 cos x

2 cos x + cos2x + 1 32) −3 sin 4x − 3 sin 12x 33) −4√

2 − 6x2√ 2 3x5

2x2+ 1 34) 4 × 22x+ 4 (ln 2) 22x(2x + 1) 35) tan√

x +21 x(√4

x + 1)¡ tan2

x + 1¢

36) cos 2x + cos 4x

37) 1

2q

1 −14x2 38) − 5

4 (1 − 5x)34p 1 −√

1 − 5x 39) 2

x2+ 1

Exercise 5.2. For the given functions f find f0, f00, f000:

a) ln x+1,x1, −x12 b) cos x−sin x+2x cos x−x sin x−x2sin x, cos x−2 sin x−x cos x−4x sin x−x2cos x, x sin x−5 sin x−

6x cos x−3 cos x+x2sin x c) x

√x2+ 1, 1

√x2+ 1− x2

√x2+ 1 + x2

x2+ 1, x2 (x2+ 1)3

µ x

√x2+ 1+ 2x√

x2+ 1 + x3

√x2+ 1

3 x

√x2+ 1 + x2√ x2+ 1

Exercise 5.4. Using L’Hospital’s Rule find the limits:

a) 32 b) 0 c) 1

d) 12 e) 1 f) ln e − 1 e − e g) 12 h) 1 i) 1

j) ∞ k) 0 l) 0

m) 12 n) 1 o) 1

(3)

Sheet 6. Investigation of Functions

Exercise 6.2. Find the local maximum and minimum values of the following functions:

a) {13, 14} , at {[x = 2] , [x = 3]} b) {−5} , at {[x = −1]} c) ©

14,14ª

, at {[x = −2] , [x = 2]}

d) {−2, 0} , at {[x = −1] , [x = 1]} e) ©

14

ª, at ©£

x = 14¤ª f) Exercise 6.6. Investigate the function f and then sketch its graph:

a)

2.5 1.25 0

-1.25 -2.5

5

2.5

0

-2.5

-5

x y

x y

b)

2.5 1.25 0

-1.25 -2.5

5

2.5

0

-2.5

-5

x y

x y

c)

5 2.5 0

-2.5 -5

10

5

0

-5

-10

x y

x y

d)

(4)

5 2.5

0 -2.5

-5

15

10

5

0

-5

x y

x y

e)

1 0.5

0 -0.5

-1

1

0.5

0

-0.5

-1

x y

x y

f)

5 3.75 2.5

1.25 0

1.25

0

-1.25

-2.5

x y

x y

g)

5 3.75 2.5

1.25 0

0

-1.25

-2.5

-3.75

-5

x y

x y

(5)

5 2.5

0 -2.5 -5

1.5

1.25

1

0.75

0.5

0.25 0

x y

x y

i)

5 2.5

0 -2.5

-5

15

10

5

0

-5

-10

x y

x y

Sheet 7. Indefinite Integrals

Exercise 7.1. Using basic properties of integral find:

a) 14x4− x3+ x2 b) 16x634x4+32x2− ln x c) − x − ln (x − 1) d) 13x3− x + arctan x e) 953

x52x1245x52 f) 3√3

x −344x3

g) 563x32−16+7x

3 2

3

x h) ln 344

3x i) 158

q xp

x32x j) − 5ln 5−x2ln 2−x k) −e1x − 2 ln (ex) l) ex+12e2x+ ln (ex)

m) sin x − cos x n) − cos12x sin12x +12x o) − cot x +12π − arccot (cot x) p) sin x cos x1sin x2 cos x

Exercise 7.2. Using the change of variable method (substitution method) find:

a) 12ln¡ x2+ 1¢

b) −10(x21+3)5 c) 13arctan¡ e3x¢

d) ¡

−1 + x2¢ x2−2

−(−1+x2)3

e) 25(x − 3)52 + 2 (x − 3)32 f) 29(3x + 1)32 g) 13¡

x2+ 1¢32

h) − e1x i) −12

2 arctan2

x2−2 j) √

x2− 9 k) 14arcsin x4 l) −12

4 + e−4x m) −12ln (3 + 2 cos x) n) −12cos2x o) sin (ln x) p) −12e−x2

Exercise 7.3. Find using the integration by parts:

(6)

a) cos x + x sin x b) x2ex− 2xex+ 2ex

c) 12excos x +12exsin x d) − 12x cos2x +14sin x cos x +14x e) 12x2ln2x −12x2ln x +14x2 f) − ln xx1x

g) − x cot x + ln (sin x) h) exx

i) − x2cos x + 2 cos x + 2x sin x j) − 15e2xcos x +25e2xsin x k) x tan x + ln (cos x) l) −13xe−3x19e−3x Exercise 7.4. Find:

a) 12sin x cos x +12x b) −12sin x cos x +12x c) 16sin6x d) 2√

1 + sin x e) 12¡

x2+ 1¢ ln¡

x2+ 1¢

1212x2 f) 23(2 + ln |x|)32 g) 12arctan x2 h) 13arcsin x3

Sheet 8. Definite Integrals

Exercise 8.1. Compute the integrals:

a) 18π b) 13π c) − 2e−1+ 1 d) − 2π e) 43 f) 14π −12ln 2 g) 12 h) 12

Sheet 9. Improper Integrals. The Gamma and Beta Functions

Exercise 9.1. Compute the integral:

a) 1 b)√

5 c) ∞ d) 12π e) 19π f) 13 g) 12 h) 12 i) ∞ j) −12

k) 2. 583 9 l) 0 m) undefined n) Exercise 9.2. Compute:

a) 4 b) 158

π c) 720

d) 361

3π e) 51215 f) 271π√ 3 34

Γ(23) g) 161π h) 18π i) 23101 j) 13 135 1221 k) 3814 697 265 625

111 384 l) 5041

Sheet 10. Matrices

Exercise 10.1.

a) A + B =

"

1 5 3 3

# , 2A =

"

6 2 0 −4

#

, 2A − B =

"

8 −2

−3 −9

#

, A − αB =

"

3 + 2α 1 − 4α

−3α −2 − 5α

#

b) A+B =

⎢⎣

−2 8 4

1 7 8

−1 72 5

⎥⎦ , 2A =

⎢⎣

0 14 2

2 0 8

−4 1 6

⎥⎦ , 2A−B =

⎢⎣

2 13 −1

2 −7 4

−5 −2 4

⎥⎦ , A−αB =

⎢⎣

2α 7 − α 1 − 3α

1 −7α 4 − 4α

−2 − α 12 − 3α 3 − 2α

⎥⎦

c) A+B =

"

3 −1 √

2 4 9 −2 −√

3

# , 2A =

"

2 −6 0

6 8 −4

#

, 2A−B =

"

0 −8 −√ 2 5 3 −4 +√

3

#

, A−αB =

"

1 − 2α −3 − 2α − 3 − α 4 − 5α −2

"

0 8 + α # "

2α 2 − 2α # "

3α −5 − 4α # "

α + α2 1 − α − α (7 + 2α) #

(7)

Exercise 10.2.

a)

"

1 −3 0

3 4 −2

#⎡

⎢⎣

−2 1 3 0 7 4 1 3 2

⎥⎦ =

"

−2 −20 −9

−8 25 21

# ,

"

1 −3 0

3 4 −2

#⎡

⎢⎣

−2 0 1 1 7 3 3 4 2

⎥⎦ =

"

−5 −21 −8

−8 20 11

#

, niemo˙zliwe, niemo˙zliwe,

b)

"

3 1

0 −2

# "

−2 4 3 5

#

=

"

−3 17

−6 −10

# ,

"

3 1

0 −2

# "

−2 3 4 5

#

=

"

−2 14

−8 −10

# ,

"

−2 4 3 5

# "

3 1

0 −2

#

=

"

−6 −10 9 −7

# ,

"

−2 4 3 5

# "

3 0 1 −2

#

=

"

−2 −8 14 −10

#

Exercise 10.3.

a) X =

"

3 −5 2 1 −11 3

#

− 2

"

1 −4 −2

3 7 0

#

=

"

1 3 6

−5 −25 3

# ,

b) X =

"

20 −4

−2 −5

# , Y =

"

−13 4

3 3

#

Exercise 10.4.

a)

¯¯

¯¯

¯

7 0

1 −1

¯¯

¯¯

¯= −7 b)

¯¯

¯¯

¯¯

¯

1 3 −2

2 4 5

−1 0 −2

¯¯

¯¯

¯¯

¯

= −19 c)

¯¯

¯¯

¯¯

¯¯

¯¯

1 0 1 7

0 −3 2 2 0 0 4 −4

0 0 0 5

¯¯

¯¯

¯¯

¯¯

¯¯

= −60

Exercise 10.5.

a)

¯¯

¯¯

¯¯

¯¯

¯¯

−1 −2 4 1

−3 1 3 1

0 2 1 4

1 −1 2 0

¯¯

¯¯

¯¯

¯¯

¯¯

= 65 b)

¯¯

¯¯

¯¯

¯¯

¯¯

0 1 3 −2

1 2 −1 4

−1 −3 −5 0

1 3 −2 1

¯¯

¯¯

¯¯

¯¯

¯¯

= −11

Exercise 10.6.

a)

¯¯

¯¯

¯¯

¯¯

¯¯

1 −2 0 0

0 1 3 5

2 4 −1 −1

−2 2 0 1

¯¯

¯¯

¯¯

¯¯

¯¯

= −29,

b)

¯¯

¯¯

¯¯

¯¯

¯¯

¯¯

2 −1 3 1 3

0 1 0 −1 0

1 3 0 2 −1

3 −1 −1 −2 −1

0 3 1 2 1

¯¯

¯¯

¯¯

¯¯

¯¯

¯¯

= 49

c)

¯¯

¯¯

¯¯

¯¯

¯¯

a 3 0 1

0 b 2 −1

1 0 c 3

−5 d 0 1

¯¯

¯¯

¯¯

¯¯

¯¯

= abc + 6ad + adc + 96 − 2d + 15c + 5bc

(8)

Exercise 10.7.

a) x = −6, x = −4 b) x = 0 Exercise 10.8.

a)

"

−5 3 2 −1

# b)

⎢⎣

2 3

1 313

13 1313

1323 5 3

⎥⎦ c)

⎢⎣

1 2 3 0 1 5 1 2 3

⎥⎦ d)

⎢⎢

⎢⎢

1

2 −2 0 0 0 0 12 0

1

2 −2 0 1

0 1 0 0

⎥⎥

⎥⎥

⎦ ,

Exercise 10.9. b) X =

"

1732329 11 32

19 32

#

Exercise 10.10. Reduce to the base form:

a)

⎢⎣

1 2 5 0 0 0 0 0 0

⎥⎦ b)

⎢⎣

1 0 14 54 34 0 1 143414

0 0 0 0 0

⎥⎦ c)

⎢⎢

⎢⎢

⎢⎢

⎢⎢

⎢⎣

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎥⎦

d)

⎢⎢

⎢⎢

1 0 −47 0 0 1 137 0

0 0 0 1

0 0 0 0

⎥⎥

⎥⎥

Sheet 11. Systems of Linear Equations

Exercise 11.1. Solve the following systems:

(a) by means of Cramer’s Rule, (b) by means of elementary operations.

a)

⎧⎪

⎪⎩ x1= 1 x2= 0 x3= −1

, b)

⎧⎪

⎪⎩ x1= 1 x2= 12 x3= −2

, c)

⎧⎪

⎪⎩

x1= 0 x2= 0 x3= 0

, d)

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎩ x1= 0 x2= 138 x3= 0 x4= −132

, e)

⎧⎪

⎪⎩ x = 2 y = −1 z = −3

, f)

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎩ t = 1 x = 4 y = −2 z = 0

, g)

⎧⎪

⎪⎩

x1= −1 x2= 1 x3= 2

,

h)

⎧⎪

⎪⎩ x1= 0 x2= 1 x3= −1

, i)

⎧⎪

⎪⎩ x1= 3 x2= 2 x3= 1

, j)

⎧⎪

⎪⎩

x1= −1 x2= 0 x3= 1 Exercise 11.2. Solve the following systems:

a)

⎧⎪

⎪⎩

x1= x3+1831 x2= x3311 x3∈ R

, b)

⎧⎪

⎪⎩

x1= −x3 x2= 2x3 x3∈ R

, c)

⎧⎪

⎪⎩

x1= −277

x2= −149 x3= −187

, d) inconsistent (no solutions)

Exercise 11.3. Find the general solutions of the following systems. Indicate two distinct particular solutions:

a)

⎧⎪

⎪⎪

⎪⎨

⎪⎪

x1= −25x3+15x4 x2= 15x335x4

x3∈ R

⎧⎪

⎪⎪

⎪⎨

⎪⎪

x1= 0 x2= 0 x3= 0

⎧⎪

⎪⎪

⎪⎨

⎪⎪

x1= −15

x2= −25

x3= 1 , b)

⎧⎪

⎪⎪

⎪⎨

⎪⎪

x1= −73x3 x2= 53x3

x3∈ R

⎧⎪

⎪⎪

⎪⎨

⎪⎪

x1= −73

x2=53 x3= 1

⎧⎪

⎪⎪

⎪⎨

⎪⎪

x1= −7 x2= 5 x3= 3

(9)

c)

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

x1= −2x3− 2x4 x2= −x4 x3∈ R x4∈ R

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

x1= −2 x2= 0 x3= 1 x4= 0

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

x1= −2 x2= −1 x3= 0 x4= 1

, d)

⎧⎪

⎪⎩

x1= −3x3− 5 x2= −x3

x3∈ R

⎧⎪

⎪⎩

x1= −5 x2= 0 x3= 0

⎧⎪

⎪⎩

x1= −8 x2= −1 x3= 1

Exercise 11.4. Find one of the basis solutions of the following systems:

a)

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

x1= 43 x2= 73 x3= 0 x4= 0

, b)

⎧⎪

⎪⎩ x1= 0 x2= −12 x3= 0

, c)

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎩ x1= 1 x2= 1 x3= 0 x4= 0

, d)

⎧⎪

⎪⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎪⎪

x1=127 x2=97 x3=117 x4= 0 x5= 0 Exercise 11.5. Find all basis solutions of the systems:

a)

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎩ x1= 0 x2= 0 x3=73 x4=23

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎩ x1= 0 x2=12 x3= 0 x4= 1

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎩ x1= 0 x2= −1 x3= 7 x4= 0

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

x1= −1 x2= 0 x3= 0 x4= 1

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎩ x1= 2 x2= 0 x3= 7 x4= 0

, b)

⎧⎪

⎪⎩

x1=34 x2=14 x3= 0

⎧⎪

⎪⎩ x1=45 x2= 0 x3=15

⎧⎪

⎪⎩ x1= 0 x2= −72 x3= −3

,

c)

⎧⎪

⎪⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎪⎪

x1= −115

x2= −35 x3=295 x4=335 x5= 0

⎧⎪

⎪⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎪⎪

x1= 112 x2= 12 x3= −3 x4= 0 x5= 112

⎧⎪

⎪⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎪⎪

x1=238 x2=18 x3= 0 x4=94 x5=298

⎧⎪

⎪⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎪⎪

⎩ x1= 2 x2= 0 x3= 1 x4= 3 x5= 3

⎧⎪

⎪⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎪⎪

⎩ x1= 0 x2= −27 x3=237 x4=337 x5=117

, d)

⎧⎪

⎪⎩

x1= 34 x2= 94 x3= 0

⎧⎪

⎪⎩ x1= 0 x2= 32 x3= −3

⎧⎪

⎪⎩

x1=103 x2= 0 x3= −95

Exercise 11.6. Solve the system of equations by means of elementary operations on rows. What are the basis variables and the free variables of the found general solution? Indicate two distinct particular solutions of the system, one of them should be the basis solution. Find the conditions for the general solution to be nonnegative

a)

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

t = −x − 1 x ∈ R y = 1 z = 0

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

t = −1 x = 0 y = 1 z = 0

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎩ t = 0 x = −1 y = 1 z = 0

the system has not nonnegative solution,

b)

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

t = z + 1 x = −2z + 6 y = z + 2 z ∈ R

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎩ t = 1 x = 6 y = 2 z = 0

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

t = −1 x = 10 y = 0 z = −2

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎩ t ≥ 0 x ≥ 0 y ≥ 0 z ≥ 0

⇔ z ∈ [0, 3]

Exercise 11.7. (a)

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

x1= 23x323x4 x2= 1 − x3+ x4

x3∈ R x4∈ R

, (b) impossible, (c)

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

x1∈ R x2= 1 −32x1

x3= 32x1+ x4

x4∈ R

Cytaty

Powiązane dokumenty

The following two open problems cannot be stated formally as they refer to intuitive meanings of mathematical formulae and the current mathematical knowledge.. Open

Sequences and Their Limits.

Nowicki, Factorials and binomial coefficiens (in Polish), Podr´ o˙ze po Imperium Liczb, vol.11, Second Edition, Wydawnictwo OWSIiZ, Toru´ n, Olsztyn, 2013..

The program co-operates with experimental chamber (figure 4b) in order to create optimal hybridisation parameters for a given hybrid type, and then, on the basis of the

Recent mathematical, theoretical and numerical studies have introduced new concepts on peritoneal transport and yielded a better description of particular processes such as pure

On the theory and applications of new nonstandard finite difference methods for the solution of initial value problems in ordinary differential equations, Advances in Natural

[r]

[r]