• Nie Znaleziono Wyników

Excercise AS-5

N/A
N/A
Protected

Academic year: 2021

Share "Excercise AS-5"

Copied!
19
0
0

Pełen tekst

(1)

Automation Systems laboratory

Excercise AS-5

"Single loop control system of level in tank with free outflow of liquid”

Autors : PhD. Eng. Danuta Holejko, PhD. Eng. Jakub Możaryn,

BSc. Eng. Michał Bezler.

Warsaw 2016

(2)

Automation Systems

2

Single loop control system of level in tank with free outflow of liquid

The aim of the exercise is to execute, study static and dynamic properties, and then assess the quality of single loop control system of level in tank with free outflow of liquid. Quality will be rated based on the values of indices of transient response of a system caused by step change in the setpoint or disturbance. The aim of the research is to determine the effect of the type of control algorithm and on values of parameters (controller ettings) on the quality of the system.

Identification of controlled system carried out in laboratory excerciseAS-4 enables the selection of parameters (settings) PID controller implemented in the used SIMATIC S7-1200 PLC controller. Analysis of obtained indicators will allow the assessment of the accuracy of the compensation of the disturbances acting on the object and the precision of PV following the changing setpoint SP.

(3)

Automation Systems

3

1. DESCRIPTION OF THE PROCESS / LABORATORY STAND

Experiments were conducted on laboratory stand presented in Fig. 1.

Controlled process is a change of liquid level in connected tanks Z1, Z2. Fig.5 presents installation diagram. Depending on the configuration of the valves V2 and V4 and the use of specially constructed elastic tube there can be realized process with various properties (see excercise AS-4).

Figure 1. Installation scheme of the laboratory stand for designing the control system of the liquid level in a tank.

Description : Z1, Z2 – tanks,

V1, V3 - manual outflow valves

V2 - manual valve connecting tanks Z1 and Z2, V4 - threeway valve ,

W- elastic tube,

T0 - transport delay introduced by elastic tube,

VE1- electromagnetic valve to cut-off the outflow from tank Z1.

VE2 - electromagnetic valve to cutt-off the water outflow at the pump plunging.

H1 , H2 - height of the liquid column in tank Z1, Z2, PV – output signal from the liquid level sensor, LT1, LT2 – liquid level sensors in tanks Z1, Z2,

Q - output signal from the flow sensor QT (Venturi flowmeter),

(4)

Automation Systems

4 P- variable displacement pump,

CV - pump control signal (output signal from PLC controller),

P1, P2 - manual switches of electromagnetic valves to introduce disturbances.

Components of the stand (Fig. 1) are: tanks Z1 and Z2, a pump P is controlled by standard current signal that corresponds to a change of the pump capacity 0 - 6.5 [l / min], LT1, LT2 are pressure transducers (measuring range 0-500 mmH20) for measuring a liquid level in each of tanks (H1, H2). W is the elastic tube, through which the liquid can flow into the tank Z1 (it introduces the transport delay to the object). V1, V2, V3, V4 are manually operated valves, which are used to change the way that liquid flows. There are also two electromechanical valves (VE1, VE2), used to introduce disturbances into the process. By ZK1

we denote leakage from the tank Z1 (opening the valve VE1), and by ZK2 we denote leakage at pump outlet (opening the valve VE2).

Connection of the tanks is realized by using of shut-off valve V2. The controlled variable is the height of the column of liquid in the tank Z1 (H1) or tank Z2 (H2). Requirement for a system is to regulate it to keep at a preset constant value the height of water column despite the disturbances acting on the object.

Disturbances are changes of the flow at the inlet or outlet of the tanks. These disturbances are carried out by remote-controlled shut-off magnetoelectric valves VE1, VE2. Opening / closinf of valves is realized using the P1 and P2 buttons located on the desktop stand. The valve VE1 induces a step change in flow at the outlet from the tank Z1. It is the fault VE1.

The valve VE2 induces a step change in flow at the inlet to the tank Z1 (ie. liquid drop from the pump). It is the fault VE2.

The control value of the object is a standard signal 4 - 20 mA from the controller Simatic PLC S7-1200 (Siemens). This signal is converted by a electronic circuit to the voltage signal 0 - 10 V and operate the pump, the output of which varies in the range: 0 - 6.5 l / min at the inlet to the tank Z1. This pump acts as an actuator in the control system. In addition, a flow measurement is carried out using a Venturi flowmeter. The flow changes from 0 to 6.5 L / min causes a pressure difference across the Venturi flowmeter in the range from 0 to 500 mm H2O. Applied differential pressure transducer converts the pressure difference across the orifice to a standard signal range of 4 - 20 mA.

Information on the current value of the controlled variable (height H1 or H2 of the liquid column) is provided by electrical transducers with the range of 0 - 500 mm H2O and the output signal 4 - 20 mA (measuring the height of the liquid column is carried out using the indirect method by measuring hydrostatic pressure).

(5)

Automation Systems

5

Figure 2. Electrical scheme of the control system of the liquid level in a tank.

The laboratory stand include:

 tanks connected in series,

 SIMATIC S7-1200 PLC (Programmable Logic Controller) with the analog inputs / outputs module and power supply 24V,

 HMI display with a color touch screen,

 desktop PC with TIA Portal software.

(6)

Automation Systems

6

2. Selection of the controllers settings

Continuous controllers used in industrial practice are universal devices. Their parameters (settings) can be changed (adjusted) within a wide range, so they can work properly with objects of different dynamics. Depending on the set requirements for control quality, following settings should be adjusted:

 kp – magnitude of proportionalm part [unitless],

 Ti – time constant of derivative part [s]

 Td – time constant of integral part [s].

Abovementioned PID cotroller settings are ususally selected depending on requirements posed by the quality of controll according to different procedures (selection of settings).

Based on theoretical considerations, modelling research and experience from system expolitation there were developed many rules for PID parameters choice depending on the specific model of the controlled process, type and location of disturbances, adopted criterion of quality and control algorithm. The most widely accepted criterion of control quality is transient response characteristics of the control system.

There are usually taken into consideratino following types of transient responses:

1. aperiodic transient response with overshoot 05% and minimal control time tr, that provides a minimum of integral index

et dt

0 )

( , this is the criterion described as IAE (Integral of the Absolute value of Error).

2. oscillatory transient response with overshoot  20% and minimal control time tr, that provides a minimum of integral index

te t dt

0 )

( ; this is the criterion described as ITAE (Integral of the Time weighted Absolute Error),

3. transient response that provides a minimum of integral index

0

2( dtt) min

e , with

overshoot  45%; this is the criterion described as ISE (Integral of Square of the Error).

When selecting settings for static processes, the important parameter is the ratio of delay time to substitute first order lag time constant T0/Tz that characterizes susceptibility of the process to control action. When the ratio exceeds 0.3 the quality control with the best-chosen PID controller settings PID worsens significantly.

In the exercise there will be applied the following methods of tuning:

a) tabular method of tuning based on the experimental identification of the object (AS-4), b) The experimental method of Ziegler - Nichols.

(7)

Automation Systems

7 2.1. Tabular method of controller tuning

This method requires knowledge of the parameters of process mathematical model. For the static model the parameters are kob, T0, Tz. If we do not have theoretical description of the model, then we use tables or nomograms that require the prior identification of the process, eg. using step response on the basis of which one can determine the required parameters of the model. Knowing these parameters the controller settings are defined to ensure the required quality of control, eg. requirement oscillatory or aperiodic nature of the transient response of the control system.

Tab. 1 summarizes the sample equations that define the set of regulators parameters for static processes. These formulas take into account the point of entry of disturbances. One set of parameters for provides a fixed set point control and as quickly as possible compensates the influence of disturbances, while the other should be chosen when the same system is to operate as a set point following system ensuring proper reproduction of the setpoint (SP) changes.

Table 1. A list of formulas for setting controllers for the process

1

0

 

zs T e sT kob ob s

G ( ) Type of the

response

Type of the

controller kob kp T0 /Tz Ti / T0 Td / T0

Z(t)=1(t)

 = 0 % min tr

P 0.3 - -

PI 0.6 0.8 + 0.5 Tz /T0 -

PID 0.95 2.4 0.4

 = 20 % min tr

P 0.7 - -

PI 0.7 1 + 0.3 Tz /T0 -

PID 1.2 2.0 0.4

Change of the setpoint SP

 = 0 % min tr

P 0.3 - -

PI 0.35 1.17 Tz /T0 -

PID 0.6 Tz /T0 0.5

 = 20 % min tr

P 0.7 - -

PI 0.6 Tz /T0 -

PID 0.95 1.36 Tz /T0 0.64

(8)

Automation Systems

8 2.2. Experimental Ziegler-Nichols method

The method of tuning controllers developed in 1942 by Ziegler and Nichols is one of the most commonly used and widespread methods of experimental tuning of the PID controllers. This method is used when the controller and other elements of the actual control system are already installed, their functioning is tested (in manual control mode), and one should only choose the controller parameters. The method of Ziegler - Nichols (abbreviated Z-N) can be encountered in two variants:

1) the controller settings are selected on the basis of the parameters of the closed control system moved to the border of stability (using excitation system),

2) the controller settings are selected based on parameters defined the characteristics of the transient response of the control object due to the step input signal change (static processes only).

In the exercise there will be applied Z-N method using excitation system. Within this method, the choice of the parameters is conducted based on the following steps:

 Step 1: In the manual mode (M) by changing control variable (CV), adjust the process variable (PV) to a state in which it is equal with the required setpoint (SP).

 Step 2: Set the controller to the proportional action (switch off integral and derivative actions), set the operation point control value of the controller equal to the setting obtained in the Step 1 and set the initial value of the controller gain kp 0.

 Step 3: Switch the system to automatic control (A) and if the system maintains equilibrium, by changing SP produce an impulse with some amplitude and pulse duration depending on the expected dynamics of the process; observe or record the change in the controlled variable. It is recommended to use a pulse with amplitude of 10 % of the process value changes (PV) and pulse duration of about 10% of the estimated value of the time constant of the controlled process.

 Step 4: If the transient response is underdamped, set higher values of the proportional gain (Steps 1-3) until a system be on the border of stability (constant oscillations) - fig.

3c.

Step 5: From the steady oscillations read 'critical' proportional gain pkrytk and oscillation period oscT .

 Step 6: Set the controller patameters according to the table of formulas developed by Ziegler-Nichols (Tab. 2).

During the experiments there should be monitored if the control signal CV does not reach the limit values. If this happens, reduce the SP pulse parameters.

The controller parameters are calculated on the basis of read values of pkrytk and oscT , using the formulas given in Tab. 2.

(9)

Automation Systems

9

a) b) c)

Figure 3. Changes of the process variable (PV) obtained during Ziegler – Nichols experiment Similar methods, based on experimental procedure, are implemented in modern microprocessor controllers or PLCs as the so-called autotuning.

Table 2. Settings of the PID controllers according to Ziegler – Nichols method Controller

algorithm

Z-N settings

kp Ti Td

P 0.5 kpkryt - -

PI 0,45 kpkryt 0.85Tosc -

PID 0.6 kpkryt 0.5 Tosc 0.12 Tosc

(10)

Automation Systems

10

3.Visualization

During the exercise the student communicates with the PLC via the operator diplay (SIMATIC HMI KPT600).

On the Home screen, select an object tank (Zbiornik) and the single close-loop structure of a control system (Jednoobwodowy). After pressing the "Start" button, user go to the object visualization pressing the buttom "Tank" (Zbiornik) (Fig.4).

Figure 4. Start screen (HMI KTP 600)

Once the configuration is set, press button "Start" and go to the screen that shows the general structure of the system under study (Fig. 5).

Figure 5. Structure of the single feedback loop control system.

(11)

Automation Systems

11

Icons under the controller block indicate the current operating mode (Auto / Manual, Normal / Reverse, and Error acknowledge). After pressing controller block, one can go to the controller screenr (Fig. 6).

Figure 6. Screen of the controller.

Controller screen allows to change:

- Algorithm of a controller by typing the appropriate setting, or selecting a mode in the "Type of control".

- Switching of the controller mode: Auto / Manual.

- Swiching the controller direction: Normal / Reverse.

- Tuning procedures.

- Reset of the controller parameters.

In the right part of the screen are displays indicating the status of the controller.

If the box "Error" is lit, the controller is in an inactive state. The most common cause of error is temporary opening in the measurement circuit. In this case, just replace the damaged cable and reset the controller by pressing the "Reset" button.

Visualisation, in the form of plots the changes of the input and output values, is carried out on a PC using software TIA PORTAL. The home screen of this visualisation is shown in Fig. 7.

(12)

Automation Systems

12

Figure 7. Start screen in TIA Portal simulation (HMI KTP 1200).

The start screen (Fig. 7) contains information about the entered structure. When pressing "Regulator główny" button, user will be send to the screen with monitoring of the input and output variables (Fig. 8).

Figure 8. Screen with monitoring of the input and output variables Over plots there is a graph showing the active disturbances in the form of a bar chart:

 Red rolor - valve VE1,

 Orange color - valve VE2,

(13)

Automation Systems

13

 Green color - "SP step function".

1. Start / Stop button allow user to stop or resume monitoring of the input / output values.

2. The „Zwiększ przedział czasu” ("Increase the time interval") and ("Decrease time interval") buttons allow user to modify the currently displayed time interval ranging from 15sec to 16min

3. The fields below the text „Oś” ("Axis") allow scaling of the Y-axis of the graph.

Increasing the scope is performed immediately. In the case of reducing the scope of the scale the changes will be visible after some time.

4. . The "skok SP" ("SP step") button allows user to generate the step function of a setpoint, together with the monitoring of it in the upper graph.

5. The text next to the "Cofnij" ("Undo") button allows user to enter the value of the SP later activated the "Skok SP" ("SP step") button. After entering any of the values, do not change the value of this field before resetting the value by pressing "Cofnij"

(""Undo") button.

6. The "Cofnij" ("Undo") button resets the step function activated by "skok SP" ("SP step") button.

To print the chart, the course of the changing values should be stopped by START / STOP button, the user should press the button on a computer keyboard PrtSc and then paste saved screen into graphical editor.

(14)

Automation Systems

14

4. Course of the excercise

In the the exercise the controlled variable is the height H1 of the water column in the tank Z1 (represented by the value of the PV). Control signal CV generated by the SIMATIC S7-1200 Siemens is induced by:

a. step change in flow at the inlet to the tank Z1 realized the opening of the valve VE2 (switch P1),

b. a step change in flow at the outlet from the tank Z1 realized the opening of the valve VE1 (switch P2).

Process properties were identified in out in the exercise AS-4. The control system pameters should be selected according to the quality requirements in accordance with the tuning procedure.

4.1. Tabular method of controller tuning

Based on the results of the identification of the object carried out in the exercise AS-4 specify the parameters of the object identified with the tangent or secant methods (acc. to TA):

kob = ..., T0 = ..., Tz = ...

Using Table 1, calculate the settings of P/PI/PID controllers for transient response with overshoot 0% or 20% (as instructed by the TA) and write them into Table 3.

Table 3. Calculated parameters of controllers.

Controller  = 0 %  = 20 %

type Td [s] Tkp i [s] Td [s] Ti Tkp i [s] Td [s]

P PI PID

5.2. Starting the instalation

Starting real plant control systems is usually carried out manually. The installed controller is switched by the operator to manual mode (MANUAL). Then the operator sets the controller algorithm, primary presets and planned for the installation setpoint SP, then, changing the control signal manual controls the process as long as the controlled variable PV reaches a permanent state established at a level corresponding to the desired setpoint SP. If all the devices included in the system are working properly and reached steady state is stable corresponding to a zero error, the operator switches the system from manual control to automatic control (AUTO). If the significant , abrupt changes are not observed and they are not beyond the certain limits of errors, then controller parameters shall be accepted as safe and start-up of the installation shall be considered completed.

(15)

Automation Systems

15

In the controlled installation the operating point is the level of H1 ≈ 25 cm (PV ≈ 60%),, which corresponds to the control signal CV ≈ 50%.

To bring the system to the point of operation the following steps shall be performed:

Step 1: Set up the system according to the diagram (Fig. 2).

Step 2: Check the position of the switches P1 (fault VE1) and P2 (fault VE2), there shuld be no disturbance.

Step 3: Set controller into MANUAL mode: MAN.

Step 4: Set the panel CV (CV_man) = 50%.

Step 5: Wait until the level in the tank will stabilize.

Step 6: Set the setpoint SP = PV.

Step 7: Enter the controller settings.

Step 8: Set controller into AUTO mode: AUTO.

If, when changing the mode of the controller to the AUTO mode, there will be quite significant changes in the control signal CV and the resulting changes in PV, switch controller in MANUAL mode. Then set the safe control value CV and repeat the starting procedure after finding the cause of a malfunction of the system, eg. wrong controller settings.

5.3. Badanie układu regulacji z regulatorem o algorytmie P i nastawach wg metody tablicowej

5.3.1. Badanie skuteczności kompensacji wpływu zakłócenia VE1 Procedura badawcza jest następująca:

a) Na wizualizacji komputerowej wybrać obserwację PV i SP.

b) W trybie MAN ustawić wartość CV_man = 50%.

c) Po ustaleniu się poziomu wody, wprowadzić SP=PV i ustawić tryb AUTO d) Przełącznikiem P1 otworzyć zawór VE1 (wprowadzić zakłócenie VE1) e) Odczekać, aż ustali się wartość mierzona PV

f) Na wizualizacji komputerowej przyciskiem Pauza zatrzymać trendy

g) Zapisać na komputerze przebiegi PV i SP z zaznaczonym momentem wystąpienia zakłócenia.

h) Przełączyć się na wyświetlanie wartości sterującej CV i zapisać przebieg.

i) Przełącznikiem P1 zamknąć zawór VE1 (wyłączyć zakłócenie VE1) j) Przełączyć na tryb MAN ustawić wartość CV_man = 50%.

5.3.2. Badanie skuteczności kompensacji wpływu zakłócenia VE2 Procedura badawcza jest następująca:

a) Na wizualizacji komputerowej wybrać obserwację PV i SP.

b) W trybie MAN ustawić wartość CV_man = 50%.

c) Po ustaleniu się poziomu wody, wprowadzić SP=PV i ustawić tryb AUTO d) Przełącznikiem P2 otworzyć zawór VE2 (wprowadzić zakłócenie VE2) e) Odczekać, aż ustali się wartość mierzona PV

f) Na wizualizacji komputerowej przyciskiem Pauza zatrzymać trendy

g) Zapisać na komputerze przebiegi PV i SP z zaznaczonym momentem wystąpienia zakłócenia.

(16)

Automation Systems

16

h) Przełączyć się na wyświetlanie wartości sterującej CV i zapisać przebieg.

i) Przełącznikiem P2 zamknąć zawór VE2 (wyłączyć zakłócenie VE2) j) Przełączyć na tryb MAN ustawić wartość CV_man = 50%.

5.3.3. Badanie skuteczności nadążania wielkości regulowanej PV za zmianami wielkości zadanej SP

Procedura badawcza jest następująca:

a) Na wizualizacji komputerowej wybrać obserwację PV i SP.

b) W trybie MAN ustawić wartość CV_man = 50%.

c) Po ustaleniu się poziomu wody, wprowadzić SP=PV i ustawić tryb AUTO d) Zmienić wartość zadaną SP za pomocą przycisku "Skok SP

e) Odczekać, aż ustali się wartość mierzona PV.

f) Na wizualizacji komputerowej przyciskiem Pauza zatrzymać wizualizację przebiegów.

g) Zapisać na komputerze przebiegi PV i SP.

h) Przełączyć się na wyświetlanie wartości sterującej CV i zapisać przebieg.

j) Przełączyć na tryb MAN ustawić wartość CV_man = 50%.

k) Zresetować zakłócenie przyciskiem "Cofnij"

5.4. Badanie układu regulacji z regulatorem o algorytmie PI i nastawach wg metody tablicowej

Wykorzystując procedurę opisaną w punkcie 5.3. wprowadzić nastawy regulatora PI z tablicy3, a następnie powtórzyć badania z podpunktów 5.3.1, 5.3.2, 5.3.3.

Do badania można przystąpić po sprawdzeniu czy:

a) Układ znajduje się w punkcie pracy (CV = 50%, PV≈60%) (prawidłowo przeprowadzony rozruch)

b) Wprowadzono za pomocą wizualizacji na panelu HMI nastawy, odpowiednie dla regulatora o działaniu PI

5.5. Badanie układu regulacji z regulatorem o PID, nastawy wg metody tablicowej

Wykorzystując procedurę opisaną w punkcie 5.3. wprowadzić nastawy regulatora PID z tablicy 3, a następnie powtórzyć badania z podpunktów 5.3.1, 5.3.2, 5.3.3.

Do badania można przystąpić po sprawdzeniu czy:

c) układ znajduje się w punkcie pracy (PV≈60%) (prawidłowo przeprowadzony rozruch), d) wprowadzono za pomocą wizualizacji na panelu HMI nastawy, odpowiednie dla regulatora o działaniu PID

5.6. Dobór nastaw regulatorów metodą Zieglera – Nicholsa

Dobór nastaw metodą Zieglera – Nicholsa przeprowadza się wg następującej procedury:

Przeprowadzić rozruch instalacji w trybie sterowania ręcznego (tryb MAN) (wg.5.2), ustawić CV=50 % i odczekać do stanu ustalonego PV ,

 Regulator zainstalowany na obiekcie należy ustawić na działanie P, nastawić określoną początkową wartość wzmocnienia regulatora np. kp = 6, wyłączyć pozostałe działania regulatora nastawiając Ti 99999,9,Td 0.

(17)

Automation Systems

17

Ręcznie z pulpitu HMI regulatora ustawić SP = PV.

Na wizualizacji komputerowej wybrać obserwację PV i SP,

Przełączyć regulator na tryb AUTO,

 Wprowadzić impulsową zmianę wartości zadanej np. SP = 2-3 % o czasie trwania impulsu timp (rys. 8) wystarczającym do wywołania zauważalnych zmian PV. Sygnał CVw czasie próby nie może osiągać wartości granicznych w przeciwnym przypadku , próbę należy powtórzyć.

Ocenić przebieg zmian PV i porównać go z przebiegiem z rys7.

Jeżeli przebieg PV odpowiada rys. 7c, zapisać przebieg PV w komputerze i przejść do p.11.

Jeżeli przebieg PV odpowiada rys. 7a, to należy przełączyć regulator na tryb „MAN”, ustawić CV = 50 % , zwiększyć wzmocnienie kp regulatora, odczekać do stanu ustalonego PV, skorygować wartość SP tak aby SP = PV i powtórzyć czynności od p. 5 - 7.

Jeżeli przebieg PV odpowiada rys.7b, to należy przełączyć regulator na tryb „MAN”, ustawić CV = 50% , zmniejszyć kp regulatora, odczekać do stanu ustalonego, skorygować wartość SP tak aby SP = PV i powtórzyć czynności od p. 5 - 7.

Przełączyć regulator na tryb „MAN”, ustawić CV = 50 %.

Zanotować bieżącą wartość kp=kkryt, która wywołała oscylacje, następnie odczytać z zarejestrowanego przebiegu okres oscylacji Tosc i obliczyć nastawy regulatora P/PI/PID.

Uwaga: Każdą zmianę nastaw regulatora można wprowadzać jedynie w trybie

„MAN”.

Tablica 4. Wyniki doświadczenia i nastawy regulatora wg metody Z-N

Wyniki eksperymentu Z-N Nastawy regulatora

kp Ti Td

kkkryt Tosc P

PI PID

5.7. Badanie układu regulacji z regulatorem o algorytmie P, PI, PID nastawy wg Zieglera-Nicholsa

Wprowadzając nastawy regulatora z tablicy 4 powtórzyć badania opisane w punktach 5.3, 5.4, 5.5 .

Do badania można przystąpić po sprawdzeniu czy:

a) Układ znajduje się w punkcie pracy (CV= 50%)

b) Wprowadzono za pomocą wizualizacji na panelu HMI nastawy, odpowiednie dla regulatora P, PI, PID.

(18)

Automation Systems

18

6. SPRAWOZDANIE Z ĆWICZENIA

Sprawozdanie winno zawierać takie elementy jak: opis przebiegu ćwiczenia , schematy, zarejestrowane przebiegi z naniesioną obróbką danych, wykresy wykonane na podstawie pomiarów itp. oraz odpowiedzi na pytania poniżej:

1) Narysować schematy blokowe badanego układu regulacji

2) Narysować spodziewany przebieg zmian wielkości regulowanej PV i sterowania CV wywołany zakłóceniem VE1 po zastosowaniu regulatora o algorytmie P z działaniem normalnym Normal.

3) Załączyć i opisać wyniki eksperymentu Zieglera – Nicholsa.

4) Porównać przebiegi przejściowe układu regulacji i ocenić jego jakość statyczną i dynamiczną. Jakość statyczną i dynamiczną ocenić na podstawie odczytanych z wykresów wartości następujących wskaźników : e1 , e2 , est , em , tr ,  ( przeregulowanie). Wyniki podać w zaproponowanej tabeli.

5) Porównać wyniki badań otrzymane dla nastaw regulatora wg tablic i wg metody Zieglera – Nicholsa.

6) Obliczyć wartości odchyłek statycznych na podstawie transmitancji obiektu i transmitancji regulatora i porównać je z wartościami otrzymanymi z badań.

7) Obliczyć na podstawie transmitancji obiektu i transmitancji regulatora wartości kpkryt i Tosc i porównać je z wartościami otrzymanymi z eksperymentu Z-N.

8) Jak z przebiegu przejściowego układu wywołanego zmianą skokową wartości zadanej SP odczytać nastawioną wartość wzmocnienia kp regulatora.

(19)

Automation Systems

19

7. LITERATURA

1.Kościelny W.J.: Materiały pomocnicze do nauczania podstaw automatyki dla studiów wieczorowych, WPW, 1997, 2001.

2. Węgrzyn S.: Podstawy automatyki. PWN 1980 3. Żelazny M.: Podstawy automatyki . PWN, 1976

Cytaty

Powiązane dokumenty

Thus, the contribution of this paper consists in the application of the active fault tolerant control scheme to the well- known benchmark, in order to highlight the computa- tional

period of the saw tooth. Depending on the dimensions of the saw tooth it is possible to confine the electrons throughout the whole thickness of the detector. Another

We discuss the design of these initiatives in terms of conceptual frameworks based on the next industrial revolution, referring to the abil­ ity of establishing a vision

Z wynikÛw ankiety wyraünie wynika, øe zarzπdzaniu zasobami ludzkimi we wstÍpnej fazie fuzji wciπø poúwiÍca siÍ zbyt ma≥o uwagi, co moøna wyt≥umaczyÊ niewiedzπ

As already indicated, although it is reasonable for a textbook to focus predominantly on one variety of English as a model for production, it needs to expose students to a number

Step 2: Check the position of the switches P1 (fault VE1) and P2 (fault VE2), there shuld be no disturbance. Step 3: Set controller into MANUAL mode: MAN. Step 5: Wait until the

An integrated daily hydrological model was developed to systematically simulate the hydrograph, runoff separation (glacier and non-glacier runoff), the glacier mass balance (GMB),

gated from the right atrium (positive (+) P wave) or the left atrium (negative (‐) P wave). All of the above details are summarized in Figure 6. Step 2 – Assessment of the electric