• Nie Znaleziono Wyników

Algorithm for rigorous integration of Delay Differential Equations and the computer-assisted proof of periodic orbits in the Mackey-Glass equation

N/A
N/A
Protected

Academic year: 2022

Share "Algorithm for rigorous integration of Delay Differential Equations and the computer-assisted proof of periodic orbits in the Mackey-Glass equation"

Copied!
34
0
0

Pełen tekst

(1)

Found Com put M ath (2018) 18:1299-1332

https://doi.org/10.1007/s10208-017-9369-5

FOUNDATIONS o f

COMPUTATIONAL MATHEMATICS

The Journal of the Society for the Foundations of Computational Mathematics CrossMark

Algorithm for Rigorous Integration of Delay Differential Equations and the Computer-Assisted Proof of Periodic Orbits in the M ackey-Glass Equation

R o b e r t S z c z e lin a1 • P i o t r Z g lic z y iis k i2

Received: 4 July 2016 / Revised: 4 September 2017 / Accepted: 7 September 2017 / Published online: 30 October 2017

© The Author(s) 2017. This article is an open access publication

A b s t r a c t W e p re s e n t an a lg o rith m fo r th e rig o ro u s in te g ra tio n o f d e la y d iffe re n tia l e q u a tio n s (D D E s) o f th e fo rm x ' ( t ) = f ( x ( t — t), x ( t )). A s an a p p lic a tio n , w e g iv e a c o m p u te r-a s s is te d p r o o f o f th e e x is te n c e o f tw o a ttra c tin g p e rio d ic o rb its (b e fo re an d a fte r th e first p e rio d -d o u b lin g b ifu rc a tio n ) in th e M a c k e y - G la s s e q u a tio n .

K e y w o r d s C o m p u te r-a s s is te d p ro o fs ■ D e la y d iffe re n tia l e q u a tio n s ■ P e rio d ic o rb it ■ T o p o lo g ic a l m e th o d s ■ In te rv a l arith m e tic

M a t h e m a t i c s S u b je c t C la s s if ic a tio n 3 4 K 1 3 ■ 6 5 G 3 0 ■ 6 5 Q 2 0

1 Introduction

T h e g o a l o f th is p a p e r is to p re s e n t an a lg o rith m fo r th e rig o ro u s in te g ra tio n o f d e la y d iffe re n tia l e q u a tio n s (D D E s) o f th e fo rm

Communicated by Hans Munthe-Kaas.

B Robert Szczelina robert.szczelina@uj.edu.pl Piotr Zgliczynski zgliczyn@ii.uj.edu.pl

1 Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-374 Krakow, Poland

2 Institute of Computer Science and Computational Mathematics, Jagiellonian University, Lojasiewicza 6, 30-348 Krakow, Poland

X ( t ) = f ( x ( t — t), x ( t ) ) , x e R (1)

<1 Springer u L ip j

(2)

w h e re 0 < t e R .

D e s p ite its a p p a re n t sim p licity , E q . ( 1) g e n e ra te s all k in d s o f p o s s ib le d y n a m ic a l b e h a v io rs : fro m sim p le sta tio n a ry so lu tio n s to c h a o tic a ttra c to rs. F o r e x a m p le , th is h a p p e n s fo r th e w e ll-k n o w n M a c k e y - G la s s e q u a tio n :

x (t — t)

x ( t ) = p ■---y ■ x ( t ), x e R , (2) 1 + x n (t — t)

fo r w h ic h n u m e ric a l e x p e rim e n ts sh o w th e e x is te n c e o f a series o f p e rio d -d o u b lin g b ifu rc a tio n s w h ic h le a d to th e c re a tio n o f an a p p a re n t c h a o tic a ttra c to r [ 16, 17]. L a te r in th e p a p e r, w e w ill a p p ly o u r rig o ro u s in te g ra to r to th is e q u a tio n .

T h e re are m a n y im p o rta n t w o rk s th a t e sta b lish th e e x is te n c e an d th e s h a p e o f a (g lo b a l) a ttra c to r u n d e r v a rio u s a ss u m p tio n s on f in E q . ( 1) . M u c h is k n o w n a b o u t sy ste m s o f th e fo rm x = —^ x ( t ) + f ( x ( t — 1)) w h e n f is stric tly m o n o ­ to n ic , e ith e r p o s itiv e o r n e g a tiv e [9 ]. L e t u s m e n tio n h e re a few d e v e lo p m e n ts in th is d ire c tio n . M a lle t-P a re t a n d S e ll u s e d d is c re te L y a p u n o v fu n c tio n a ls to p ro v e a P o in c a r e -B e n d ix s o n -ty p e th e o re m fo r sp e c ia l k in d o f m o n o to n e sy s te m s [ 19].

K ris z tin e t al. h a v e c o n d u c te d a th o ro u g h stu d y on sy ste m s h a v in g a m o n o to n e p o s ­ itiv e fe e d b a c k , in c lu d in g stu d ie s on th e c o n d itio n s n e e d e d to o b ta in th e s h a p e o f a g lo b a l a ttra c to r; se e [11] an d re fe re n c e s th e re in . In th e c a s e o f a m o n o to n ic p o sitiv e fe e d b a c k f a n d u n d e r so m e a ss u m p tio n s on th e sta tio n a ry so lu tio n s, K ris z tin a n d Vas p ro v e d th a t th e re e x is t la rg e a m p litu d e slo w ly o s c illa to ry p e rio d ic so lu tio n s (L S O P s) w h ic h re v o lv e a ro u n d m o re th an o n e s ta tio n a ry so lu tio n . T o g e th e r w ith th e ir u n s ta b le m a n ifo ld s, c o n n e c tin g th e m w ith th e c la s sic a l sp in d le -lik e stru c tu re , th e y c o n s titu te th e fu ll g lo b a l a ttra c to r fo r th e sy s te m [ 10]. In a re c e n t w o rk , V as sh o w e d th a t f m ay b e c h o se n su ch th a t th e stru c tu re o f th e g lo b a l a ttra c to r m a y b e a rb itra rily c o m p lic a te d (c o n ta in in g an a rb itra ry n u m b e r o f u n s ta b le L S O P s ) [3 0 ].

L a n i-W a y d a a n d W a lth e r w e re a b le to c o n s tru c t sy ste m s o f th e fo rm x = f ( x ( t — 1)) fo r w h ic h th e y p ro v e d th e e x is te n c e o f tra n sv e rs a l h o m o c lin ic tr a je c ­ tory, a n d a h y p e rb o lic se t on w h ic h th e d y n a m ic s are c h a o tic [ 13].

S rz e d n ic k i a n d L a n i-W a y d a p ro v e d , b y th e u s e o f th e g e n e ra liz e d L e fs h e tz fixed p o in t th e o re m , th e e x is te n c e o f m u ltip le p e rio d ic o rb its an d th e e x is te n c e o f c h a o s for so m e p e rio d ic , to o th -s h a p e d (p ie c e w ise lin e a r) f [ 12].

T h e re s u lts fro m [ 10, 12, 13, 3 0 ], w h ile im p re ss iv e , are e s ta b lis h e d fo r fu n c tio n s w h ic h are c lo s e to p ie c e w is e affin e o n es. T h e a u th o rs o f th e s e w o rk s c o n s tru c t e q u a ­ tio n s w h e re an in te re stin g b e h a v io r a p p e a rs ; h o w ev er, it is n o t c le a r h o w to a p p ly th e ir te c h n iq u e s fo r so m e w e ll-k n o w n e q u a tio n s.

In re c e n t y e a rs , th e re a p p e a re d m a n y c o m p u te r-a s s is te d p ro o fs o f v a rio u s d y n a m ­ ic a l p ro p e rtie s fo r o rd in a ry d iffe re n tia l e q u a tio n s an d (d issip a tiv e ) p a rtia l d iffe re n tia l e q u a tio n s b y an a p p lic a tio n o f a rg u m e n ts fro m th e g e o m e tric th e o ry o f d y n a m ic a l sy s te m s p lu s th e rig o ro u s in te g ra tio n ; see, fo r e x a m p le , [2 , 7 , 2 0 , 2 9 , 3 2 , 3 6 ] a n d r e f ­ e re n c e s th e re in . B y th e c o m p u te r-a s s is te d p ro o f, w e u n d e rs ta n d a c o m p u te r p ro g ra m w h ic h rig o ro u s ly c h e c k s a ss u m p tio n s o f a b s tra c t th e o re m s. T h is p a p e r is an a tte m p t to e x te n d th is a p p ro a c h to th e c a s e o f D D E s b y c re a tin g a rig o ro u s fo rw a rd -in -tim e in te g ra tio n s c h e m e fo r E q . ( 1) . B y th e rig o ro u s in te g ra tio n w e u n d e rs ta n d a c o m p u te r p ro c e d u r e w h ic h p ro d u c e s rig o ro u s b o u n d s fo r th e tru e so lu tio n . In th e c a s e o f D D E s,

F0C71

1

Springer

u

(3)

Found Com put M ath (2018) 18:1299-1332 1301

th e in te g ra to r sh o u ld re fle c t th e fa c t th at, a fte r th e in te g ra tio n tim e lo n g e r th a n the d e la y t , th e so lu tio n b e c o m e s sm o o th er, w h ic h g iv es th e c o m p a c tn e ss o f th e ev o lu tio n o p e ra to r. H a v in g an in te g ra to r, o n e sh o u ld b e a b le to d ire c tly a p p ly sta n d a rd to o ls fro m d y n a m ic s su c h as P o in c a re m a p s, v a rio u s fix ed p o in t th e o re m . In th is p ap er, as an a p p lic a tio n , w e p re s e n t c o m p u te r-a s s is te d p ro o fs o f th e e x is te n c e o f tw o stab le p e rio d ic o rb its fo r M a c k e y - G la s s e q u a tio n ; h o w ev er, w e d o n o t p ro v e th a t th e s e o rb its a re a ttra c tin g .

T h e re are se v e ra l p a p e rs th a t d e a l w ith c o m p u te r-a s s is te d p ro o fs o f p e rio d ic s o lu ­ tio n s to D D E s [8 , 14, 3 3 ], b u t th e a p p ro a c h u s e d th e re is v e ry d iffe re n t fro m o u r m eth o d . T h e s e w o rk s tra n s fo rm th e q u e stio n o f th e e x is te n c e o f p e rio d ic o rb its in to a b o u n d a ry v a lu e p ro b le m (B V P ), w h ic h is th e n so lv e d b y u s in g th e N e w to n -K a n to ro v ic h th e o re m [8 , 14] or th e lo c a l B ro u w e r d e g re e [3 3 ]. It is c le a r th a t th e rig o ro u s in te g ra tio n m ay b e u s e d to o b ta in m o re d iv e rse sp e c tru m o f re s u lts . T h e re are a lso sev eral in te re stin g re s u lts th a t a p p ly rig o ro u s n u m e ric a l c o m p u ta tio n s to so lv e p ro b le m s fo r D D E s [3 , 4 ], b u t th ey d o n o t re ly on th e rig o ro u s, fo rw a rd -in -tim e in te g ra tio n o f D D E s.

T h e re s t o f th e p a p e r is o rg a n iz e d as fo llo w s. S e c tio n 2 d e sc rib e s th e th e o ry and a lg o rith m s fo r th e in te g ra tio n o f E q . ( 1) . S e c tio n 3 d efin es th e n o tio n o f th e P o in c a re m a p a n d d is c u s s e s c o m p u ta tio n o f th e P o in c a re m ap u s in g th e rig o ro u s in teg rato r.

S e c tio n 4 p re s e n ts an a p p lic a tio n o f th e m e th o d to p ro v e th e e x is te n c e o f tw o sta b le p e rio d ic o rb its in th e M a c k e y - G la s s e q u a tio n (E q. (2 ) ). H e re , w e in v e s tig a te c a s e for n = 6 (b e fo re th e first p e rio d -d o u b lin g b ifu rc a tio n ) a n d fo r n = 8 (a fte r th e first p e rio d -d o u b lin g b ifu rc a tio n ). To th e b e s t o f o u r k n o w le d g e , th e s e are th e first rig o ro u s p ro o fs o f th e e x is te n c e o f th e s e o rb its. T h e p re s e n te d m e th o d h a s b e e n a lso su c c e s sfu lly u s e d b y th e first a u th o r to p ro v e th e e x is te n c e o f m u ltip le p e rio d ic o rb its in so m e o th er n o n lin e a r D D E s [2 5 ].

1.1 N o ta tio n

W e u s e th e fo llo w in g n o ta tio n . F o r a fu n c tio n f : R ^ R , b y f (k), w e d e n o te the k t h d e riv a tiv e o f f . B y f [k], w e d e n o te th e te rm 1 ■ f (k). In th e c o n te x t o f p ie c e w ise sm o o th m a p s b y f (k)( t - ) an d f (k)( t + ) , w e d e n o te th e o n e -s id e d d e riv ativ es f w .r.t.

t .

F o r F : R m ^ R n b y D F ( z ) , w e d e n o te th e m a trix ( ( z ) ) .

\ dxj ) i e [1,...,n}, j

F o r a g iv en se t A , b y cl (A ) an d in t (A ), w e d e n o te th e c lo s u re a n d in te rio r o f A, re s p e c tiv e ly (in a g iv en to p o lo g y , e.g ., d e fin e d b y th e n o rm in th e c o n s id e re d B a n a c h sp ace).

L e t A = n n = l [ai, b i ] fo r a i < b i , a i , bi e R . T h e n , w e c a ll A a n in t e r v a l set (a p ro d u c t o f c lo s e d in te rv a ls in R n ). F o r a n y A c R n , w e d e n o te b y h u l l ( A ) a m in im a l in te rv a l set, su ch th a t A c h u l l ( A ) . I f A c R is b o u n d e d th e n h u l l ( A ) = [in f(A ), su p (A )]. F o r sets A c R , B c R , a e R an d fo r so m e b in a ry o p e ra tio n o : R x R ^ R w e d e f in e A o B = [a o b : a e A , b e B } a n d a o A = A o a = [a } « A . A n a lo g o u sly , fo r g : R ^ R an d a se t A e R w e d e fin e g ( A ) = { g ( a ) | a e A}.

F o r v e R n b y n i v fo r i e [1 , 2 , . . . , n } , w e d e n o te th e p ro je c tio n o f v o n to the i th c o o rd in a te . F o r v e c to rs u , v e R n b y u ■ v, w e d e n o te th e sta n d a rd sc a la r p ro d u ct:

u ■ v = J 2 n= 1 n i v ■ n i u

FoCTI

1

Springer u

(4)

W e d e n o te b y C r (D , R ) th e sp a c e o f all fu n c tio n s o f c la s s C r o v er a c o m p a c t set D c R , e q u ip p e d w ith th e s u p re m u m C r n o rm : ||g || = Y ,r = 0 su p x eD |g (l\ x ) |. In c a s e D = [—t, 0 ], w h e n t is k n o w n fro m th e c o n te x t, w e w ill w rite C k in s te a d o f C k ( [ -t, 0 ], R ).

F o r a g iv en fu n c tio n x : [ —1, a ) ^ R , a e R + U ( c ^ j fo r an y t e [0, a ) w e d e n o te b y x t a fu n c tio n su ch th a t x t (s ) = x ( t + s ) fo r all s e [- 1 , 0].

W e w ill o ften u s e a sy m b o l in s q u a re b ra c k e ts, e .g ., [r], to d e n o te a se t in R m . U s u a lly it w ill h a p p e n in fo rm u la s u s e d in a lg o rith m s, w h e n w e w o u ld lik e to stress th e fa c t th a t a g iv en v a ria b le re p re s e n ts a set. I f b o th v a ria b le s r a n d [r] are u se d s im u lta n e o u sly , th e n u s u a lly r re p re s e n ts a v a lu e in [r]; h o w ev er, th is is n o t im p lie d b y d e fa u lt an d it w ill b e alw ay s sta te d e x p lic itly . P le a s e n o te th a t th e n o ta tio n [r] does n o t im p o s e th a t th e set [r] is o f an y p a rtic u la r sh ap e, e .g ., an in te rv a l b o x . W e w ill a lw a y s e x p lic itly sta te i f th e se t is an in te rv a l b o x .

F o r an y se t X b y m i d ( X ), w e d e n o te th e m id p o in t o f h u l l ( X ) a n d b y d i a m ( X ) the d ia m e te r o f h u l l ( X ).

1 .2 B a s ic P r o p e r t i e s o f S o lu tio n s to D D E s

F o r th e c o n v e n ie n c e o f th e re a d e r, w e re c a ll (w ith o u t p ro o f s ) sev eral c la s sic a l re s u lts fo r D D E s [5 ].

W e d e fin e th e s e m if lo w y a ss o c ia te d w ith E q . ( 1) by:

y : R + x C 0 ( [ —t, 0 ], R ) 9 ( t , f ) ^ x f e C 0 ( [ —t, 0 ], R ) . (3)

w h e re x f : [—t, a f ) ^ R is a so lu tio n to a C a u c h y p ro b le m :

(4) I x = f ( x ( t - t), x ( t ) ) , t > 0,

| x ( t ) = f ( t ), t e [ —t , 0],

fo r a m a x im a l a f e R + U ( c » j su ch th a t th e so lu tio n e x is ts fo r all t < a f .

L e m m a 1 [C o n tin u o u s (lo c a l) sem iflo w ] I f f is (locally) L ipshitz, th e n y is a (local) c o n ti n u o u s s e m if lo w o n C0( [ —t, 0 ], R ).

L e m m a 2 [S m o o th in g p ro p e rty ] A s s u m e f is o f c la s s C m, m > 0. L e t n e N b e g iv e n a n d l e t t > n ■ t. I f x 0 e C0 t h e n x t = y ( t , x 0) is o f c la s s a t le a s t C min(m+1,n).

T h e sm o o th in g o f so lu tio n s g iv es ris e to so m e in te re stin g o b je c ts in D D E s [3 1 ].

A s s u m e fo r a w h ile th a t f e C “ . T h e n fo r an y n > 0, th e re e x is ts a se t (in fa c t a m a n ifo ld ) M n c C n , su c h th a t M n is fo rw a rd in v a ria n t u n d e r y .

It is e a s y to se e th a t fo r n = 1 w e have:

M 1 : = { x e C1 | x '(0—) = f ( x ( —t), x (0) ) } ,

a n d th e c o n d itio n s fo r M n w ith n > 1 c a n b e sim p ly o b ta in e d b y d iffe re n tia tin g b o th sid es o f ( 1) . W e fo llo w [3 1 ] a n d w e c a ll M n a C n s o l u ti o n m an ifo ld .

FoCJI

1

Springer

u

(5)

Found Com put M ath (2018) 18:1299-1332 1303

N o tic e th a t M n c M k fo r k < n a n d ^ ( Kt, ■) : M n ^ M n+ k.

2 Rigorous Integration of DDEs

T h is se c tio n is a re o rg a n iz e d e x c e rp t fro m th e P h .D . d is se rta tio n o f th e first au th o r (R o b e rt S z c z e lin a ). A d e ta ile d a n a ly sis o f re s u lts fro m n u m e ric a l e x p e rim e n ts w ith th e p ro p o s e d m e th o d s, m o re e la b o ra te d e s c rip tio n o f th e a lg o rith m s, a n d d e ta ile d p s e u d o -c o d e s o f th e ro u tin e s c a n b e fo u n d in th e o rig in a l d is s e rta tio n [2 4 ].

2 .1 F in i te R e p r e s e n t a ti o n o f “ S u ff ic ie n tly S m o o th ” F u n c ti o n s

H e re , w e w o u ld lik e to p re s e n t th e b a sic b lo c k s u s e d in th e a lg o rith m fo r th e rig o ro u s in te g ra tio n o f E q . ( 1) . T h e id e a is to im p le m e n t th e T ay lo r m e th o d fo r E q . ( 1) b a se d on th e p ie c e w is e p o ly n o m ia l re p re s e n ta tio n o f th e so lu tio n s p lu s a re m a in d e r term . W e w ill w o rk on th e e q u a lly sp a c e d g rid an d w e w ill fix th e step siz e o f th e T ay lo r m e th o d to m a tc h th e s e le c te d g rid .

R e m a r k 1 In th is se c tio n , fo r th e sa k e o f s im p lic ity o f p re s e n ta tio n , w e a ss u m e th at

t = 1. A ll c o m p u ta tio n s c a n b e e a sily re d o n e fo r an y d e la y t .

W e also a ss u m e th a t r.h .s. f o f E q . ( 1) is “ su ffic ie n tly sm o o th ” fo r v a rio u s e x p re s ­ sio n s to m a k e sen se. T h e class o f f in ( 1) re s tric ts th e p o s s ib le o rd e r o f th e T ay lo r m e th o d th a t c a n b e u s e d in o u r a lg o rith m s, th a t is, i f f is o f class C n , th e n w e can u se T a y lo r m e th o d o f o rd e r a t m o s t n . T h e re fo re , th o ro u g h th e p a p e r it c a n b e a ss u m e d th a t f e C “ . T h is is a re a s o n a b le a s s u m p tio n in th e c a se o f a p p lic a tio n s o f c o m p u te r- a ss is te d p ro o fs w h e re r.h .s. o f e q u a tio n s are u s u a lly p re s e n te d as a c o m p o s itio n o f e le m e n ta ry fu n c tio n s. T h e M a c k e y - G la s s e q u a tio n (2 ) is a g o o d e x a m p le (a w a y fro m x = - 1).

W e fix tw o in te g e rs n > 0 a n d p > 0 a n d w e se t h = p .

D e f in itio n 1 B y C np , w e d e n o te th e se t o f all fu n c tio n s g : [ —1, 0 ] ^ R su ch th at, fo r i e {1, . . . , p } , w e have:

• g is (n + 1) -tim es d iffe re n tia b le on ( —i ■ h , —i ■ h + h ) ,

• g (k) ( —i ■ h + ) e x is ts fo r all k e { 0 , . . . , n + 1} a n d lim g (k)( —i ■ h + %) =

£ ^0+ g (k)( —i ■ h + ) ,

• g^(n+ 1') is c o n tin u o u s an d b o u n d e d on ( —i ■ h , —i ■ h + h ) .

F ro m n o w on, w e w ill a b u se th e n o ta tio n an d w e w ill d e n o te th e rig h t d eriv ativ e g (k)( —i ■ h + ) b y g (k)( —i ■ h ) u n le s s e x p lic itly sta te d o th e rw ise . T h e sa m e h o ld s for g [k]( —i ■ h + ) . U n d e r th is n o ta tio n , it is c le a r th a t w e ca n re p re s e n t g e C np b y a p i e c e w i s e T aylor e x p a n sio n on e a c h in te rv a l [—i ■ h , —i ■ h + h ) . F o r t = —i ■ h + £

a n d 1 < i < p , 0 < £ < h w e c a n w rite:

n

g ( t ) =

J 2

g [k]( —i ■ h ) ■ £k + g [n+ 1] ( —i ■ h + £ ( £ ) ) ■ £n+ 1, (5) k=0

FoCTI u

< 1 S p rin g e r

(6)

w ith %(e) e [0, h ].

In o u r a p p ro a c h , w e sto re th e p ie c e w ise T a y lo r e x p a n sio n as a fin ite c o lle c tio n o f c o e ffic ie n ts g [k]( - i ■ h ) an d in te rv a l b o u n d s on g [n+1](-) o v er th e w h o le in terv al [—i ■ h , - i ■ h + h ] fo r i e { 1 , . . . , p } . O u r a lg o rith m fo r th e rig o ro u s in te g ra tio n o f ( 1) w ill th e n p ro d u c e rig o ro u s b o u n d s on th e so lu tio n s to (1) fo r in itia l fu n c tio n s d efin ed b y su c h p ie c e w is e T ay lo r e x p a n sio n .

P le a s e n o te th a t w e are u s in g h e re a w o rd f u n c t i o n s in s te a d o f a sin g le f u n c t i o n , as, b e c a u s e o f th e b o u n d s on g [n+ 1] ov er in te rv a ls [—i ■ h , —i ■ h + h], th e fin ite p ie c e w ise T a y lo r e x p a n sio n d e sc rib e s an in fin ite se t o f fu n c tio n s in g e n e ra l. T h is m o tiv a te s the fo llo w in g d e fin itio n s.

D e f in itio n 2 L e t g e C p an d le t I : { 1 , . . . , p } x { 0 , . . . , n } ^ { 1 , . . . , p ■ (n + 1)}

b e an y b ije c tio n .

A m i n i m a l (p , n ) - r e p r e s e n t a ti o n o f g is a p a ir g = (a, B ) su c h th a t

a e '■(«+i)+ib c R p is an in te rv a l set

n \ a = g ( 0 ) n i B =

K1+ m ,k)a = g [k]( —i h + ) for 1 < i < p , 0 < k < n

in f g [n+ 1] ( —i h + %), su p g [n+ 1] ( —i h + %)

%e(0,h) %e(0,h)

P le a s e n o te , th a t th e in d e x fu n c tio n I sh o u ld b e sim p ly u n d e rs to o d as an o rd e rin g in w h ic h , d u rin g c o m p u ta tio n s , w e sto re c o e ffic ie n ts in a fin ite -d im e n sio n a l v e c to r— its p re c is e d e fin itio n is o n ly im p o rta n t fro m th e p ro g ra m m in g p o in t o f view , se e S ect. 2.4 fo r a p a rtic u la r e x a m p le o f I . S o, in th is p a p e r fo r th e o re tic a l c o n s id e ra tio n s, w e w o u ld lik e to u s e th e fo llo w in g g n o ta tio n in stead :

• g°,[°] : = n1a ,

• g i,[k] := n 1+i(i,k)a,

• gi,[n+1] := n B

W e c a ll g 1' ^ th e (i,k)th c oeffic ient o f th e r e p r e se n ta tio n an d g I,[” + 1] th e ith r e m a in d e r o f th e repr esen ta tio n . T h e in te rv a l set B is c a lle d th e r e m a i n d e r o f th e representa tio n.

W e w ill c a ll th e c o n sta n t m = p ■ (n + 2) + 1 th e size o f th e (p , n ) - re p re se n ta tio n . W h e n p a ra m e te rs n an d p are k n o w n fro m th e c o n te x t, w e w ill o m it th e m an d w e w ill c a ll g th e m i n i m a l r e p r e se n ta tio n o f g .

D e f in itio n 3 W e sa y th a t G c C np is a (p , n ) - f - s e t (o r (p , n )- fu n c tio n s set) i f th e re e x ists b o u n d e d se t [g] = (A , C ) c Rp ' (n+ 1 )+ 1 x R p = R m su ch th a t

G = | f e Cp | f c [ g ] fo r th e m in im a l (p , n ) -re p re se n ta tio n f o f f J .

A s th e se t [g] c o n ta in s th e m in im a l re p re s e n ta tio n o f f fo r an y f e G , w e w ill also say th a t [g] is a ( p , n ) - re p re s e n ta tio n o f G . W e w ill also u s e G an d [g] in te rc h a n g e a b ly a n d w e w ill w rite f e [g] fo r sh o rt, i f th e c o n te x t is clear.

F

0

C

71

u

<1 Springer

(7)

Found Com put M ath (2018) 18:1299-1332 1305

P le a s e n o te th a t th e m in im a l (p , n ) -re p re se n ta tio n g o f g d e fin e s (p , n ) - f - s e t G c C np , w h ic h , in g e n e ra l, c o n ta in s m o re th a n th e so le fu n c tio n g . A ls o , in g e n e ra l, fo r any ( p , n ) - f - s e t G th e re a re fu n c tio n s g e G w h ic h are d is c o n tin u o u s a t g rid p o in ts —i ■ h (s e e (5 )). S o m e tim e s, w e w ill n e e d to a ss u m e h ig h e r re g u la rity , th e re fo re w e define:

D e f in itio n 4 L e t G = [g] b e a (p , n )- f-s e t. T he C k - s u p p o r t o f G is d e fin e d as:

S u p p (k)([g]) := S u p p (k)( G ) : = G n C k .

F o r c o n v e n ie n c e w e also set:

S u p p ( [ g ] ) := S u p p ( G ) : = G.

P le a s e n o te th at, in g e n e ra l, C np d S u p p ( G ) = S u p p (0)( G ) c C0. It m a y also h a p p e n th a t S u p p (k)( G ) = 0 fo r n o n -e m p ty G even fo r k = 0.

N o w w e p re s e n t th re e sim p le facts a b o u t th e co n v e x ity o f th e su p p o rt sets. T h e se p ro p e rtie s w ill b e im p o rta n t in th e c o n te x t o f th e c o m p u te r-a ssiste d p ro o fs an d in an a p p lic a tio n o f T h e o re m 11 to ( p , n ) -f-se ts in S ect. 4 .

L e m m a 3 F or (p , n ) - r e p r e s e n t a ti o n s [j>], [ f ] c R m, m = p ( n + 2 ) + 1 , th e f o l l o w i n g s t a t e m e n t s h o l d tr u e :

- I f [g] c [ f ] , t h e n S u p p ( [ g ] ) c S u p p ( [ f ] ) .

- I f [g] is a c o n v e x s e t in R m, th e n S u p p ( [ g ] ) is a c o n v e x se t in C np .

- I f [g ] is a c o n v e x s e t in R m, th e n S u p p ( [ g ] ) n C k is a c o n v e x s e t f o r a n y k > 0.

W e o m it th e e a sy p ro o f.

To e x tra c t in fo rm a tio n on g [k] ^ — p + e ^ fo r an y i a n d k h a v in g o n ly in fo rm a tio n s to re d in a (p , n ) -re p re se n ta tio n , w e in tro d u c e th e fo llo w in g d efin itio n .

D e f in itio n 5 L e t ( p , n )- re p re s e n ta tio n g b e g iv en . W e d efin e

c f k](e) = W k ) ■ e l—k ■ g i,[l\

l=k ' '

fo r 0 < e < 1 , 1 < i < p a n d 0 < k < n + 1.

W e w ill o m it su b s c rip t g in c g [k] (e ) i f it is c le a r fro m th e co n te x t. T h e fo llo w in g le m m a fo llo w s im m e d ia te ly fro m th e T a y lo r fo rm u la , so w e sk ip th e p ro o f:

L e m m a 4 A s s u m e g e C np a n d its (p , n ) - r e p r e s e n t a ti o n g are giv en. T h e n f o r 0 <

e < p , 1 < i < p a n d 0 < k < n + 1

g M L + e ^ e c l' [k (e)

holds.

FoCTI u

<1 Springer

(8)

B e fo re p ro c e e d in g to th e p re s e n ta tio n o f th e in te g ra tio n p ro c e d u re , w e w o u ld lik e to d is c u ss th e p ro b le m o f o b ta in in g T a y lo r c o e ffic ie n ts o f a so lu tio n x to E q . ( 1) at a g iv en tim e t (w h e n e v e r th e y e x ist). F ro m E q . ( 1), w e h a v e (w e re m in d th at, at g rid p o in ts , b y th e d e riv a tiv e w e m e a n th e r ig h t d eriv ativ e):

d k —1

x (k)( t ) = d t k - 1 f ( x ( t — 1) ’ x ( t ))■

F o r e x a m p le , in c a s e o f k = 1, w e o b v io u s ly have:

x (1)( t ) = f ( x ( t — 1), x ( t ) ) ,

a n d in c a s e k = 2, b y a p p ly in g th e c h a in ru le , w e get:

x {2)( t ) = d - ( x ( t — 1), x ( t )) ■ x (1)(— 1) d z1

+ d - ( x ( t — 1), x ( t )) ■ x (1)(0) d z2

I f w e d e fin e a fu n c tio n F (i) : R4 ^ R as

d f d f

F (1) ( z 1 , z 2 ’ z 3 ’ z4) = — ( z 1 , z3) ■ z 2 + — ( z 1 , z3) ■ z4,

dz1 dz3

th e n w e se e th a t

x (2>( t ) = F(t) ( x ( t — 1), x (1)(t — 1), x ( t ), x (1) (t) ^ .

N ow , b y a re c u rs iv e a p p lic a tio n o f th e c h a in ru le , w e ca n o b ta in a fa m ily o f fu n c tio n s F f = {F(k) : R 2'(k+ 1) ^ R }keN su c h that:

x (k+ 1)( t ) = F (k) ( x ( — 1 + t ) , . . . ’ x (k)( — 1 + 1), x ( t ) , . . . ’ x (k)( t ) ) .

B y settin g

F [ k ] ( z 1 ,. . . ’ z2(k+1)) = k j F(k) (0! ■ z 1 , . . . ’ k !■ zk+1, 0! ■ zk+2 , . . . , k !■ z2-(k+1)), (6) w e c a n w rite sim ila r id e n tity in te rm s o f th e T a y lo r c o e ffic ie n ts x [k]:

x [k+ 1]( t ) = — ^ ■ F[k] ( x [0] ( —1 + 1) , . . . ’ x [k]( —1 + t ), x [0]( t ) , . . . ’ x [k]( t ) ) . (7)

k + 1 ^ /

A s w e are u sin g th e T ay lo r c o e ffic ie n ts in s te a d o f d e riv ativ es to re p re s e n t o u r ( p , n )- f-sets, th is n o ta tio n w o u ld b e m o re su ita b le to d e s c rib e c o m p u te r a lg o rith m s. F ro m n o w on, w e w ill also slig h tly a b u se th e n o ta tio n an d w e w ill d e n o te F[k] b y F [k]

FoCTI

<1 Springer

u

(9)

Found Com put M ath (2018) 18:1299-1332 1307

a n d F(k ) b y F (k). T h is is re a s o n a b le , sin ce, fo r a fu n c tio n F : R ^ R d e fin e d b y F ( t ) : = f ( x ( t — 1), x ( t )), w e have:

F (k)( t ) = F(k) ( x (0)( —1 + t ) , . . . , x (k)( —1 + 1), x (0) ( t ) , . . . , x (k)]( t ) ) , a n d

F [k]( t ) = F[k] ( x [0]( —1 + t ) , . . . , x [k]( —1 + t ), x [0] ( t ) , . . . , x [k\ t ) ) .

R e m a r k 2 T h e ta s k o f o b ta in in g fa m ily F f b y d ire c tly a n d a n a ly tic a lly a p p ly in g the c h a in ru le m a y s e e m q u ite te d io u s, esp e c ia lly , i f o n e w ill b e re q u ire d to su p p ly th is fa m ily as im p le m e n ta tio n s o f c o m p u te r p ro c e d u re s . It tu rn s o ut, th a t th is is n o t th e case fo r a w id e cla s s o f fu n c tio n s. In fact, o n ly th e r.h .s. o f E q . ( 1) n e e d s to b e im p le m e n te d a n d th e d eriv ativ es m a y b e o b ta in e d b y th e m e a n s o f th e au to m a tic d iffe re n tia tio n (A D ) [2 1 , 2 6 ]. W e u s e T ay lo r c o e ffic ie n ts x [k] to fo llo w th e n o ta tio n an d im p le m e n ta tio n o f A D in th e C A P D lib ra ry [ 1] w h ic h p ro v id e a se t o f rig o ro u s in te rv a l a rith m e tic ro u tin e s u s e d in o u r p ro g ra m s.

2 .2 O n e S te p o f th e I n t e g r a t i o n w ith F ix e d - S iz e S te p h = p

W e a re g iv e n (p , n ) - f - s e t x0 an d th e ta s k is to o b ta in x h— a ( p , n ) - f - s e t su c h th a t y ( h , x0) C x.h . W e w ill d e n o te th e p ro c e d u re o f c o m p u tin g x h b y I h , th a t is:

xh = Ih ( x0 ).

F irs t o f all, w e c o n s id e r h o w x0 a n d x h = I h (x 0) r e la te to e a c h other. T h e ir m u tu al a lig n m e n t is sh o w n in F ig . 1.

W e see th a t x ^ o v erlap w ith x0—1,[k], so th e y ca n b e sim p ly s h i f t e d to th e n ew re p re s e n ta tio n — w e c a ll th is p ro c e d u r e th e shi f t p a r t . O th e r c o e ffic ie n ts n e e d to b e e s tim a te d u s in g th e d y n a m ic s g e n e ra te d b y E q . ( 1) . W e c a ll th is p ro c e d u re th e f o r w a r d p a r t . T h is p ro c e d u re w ill b e d iv id e d in to th re e su b ro u tin es:

1. c o m p u tin g c o e ffic ie n ts x l ’[k fo r k e {1, . . . , n},

2. c o m p u tin g th e re m a in d e r x l ’[n + 1 ,

3. c o m p u tin g th e e s tim a te fo r x h (0) (s to re d in x ° ,[0]).

F o r w a r d P a r t : S u b r o u t i n e 1

T h is p ro c e d u re is im m e d ia te ly o b ta in e d b y a re c u rs iv e a p p lic a tio n o f E q . (7 ) :

D ,[0] _ =0,[0] ' h

= 1,[k]

= x,0

= - ■ f [k—1] x p,[0]

x' 0 , z.p,[k~1] x 1,[0]

, x' h , x lh [k—l ] \

w h e re 1 < k < n .

FoCTI u

<1 Springer

h 0

(10)

Fig. 1 A graphical presentation of the integrator scheme. We set n = 2 and p = 4.A (p, n) -representation is depicted as dots at grid points and rectangles stretching on the whole intervals between consecutive grid points. The dot is used to stress the fact that the corresponding coefficient represents the value at a given grid point. Rectangles are used to stress the fact that remainders are bounds for derivative over whole intervals.

Below the time line we have an initial (p, n)-representation. Above the time line, we see a representation after one step of size h = 1 . Black solid dots and gray rectangles represent the values we do not need to compute—this is the shift part. The forward part, i.e., the elements to be computed, are presented as empty dots and an empty rectangle. The doubly bordered dot represents the exact value of the solution at the time t = h = p (in practical rigorous computations it is an interval bound on the value). The doubly bordered empty rectangle is an enclosure for the n + 1th derivative on the interval [0, h]

F o C J l U

<1 Springer

(11)

Found Com put M ath (2018) 18:1299-1332 1309

F o r w a r d P a r t : S u b r o u t in e 2

T h is s u b ro u tin e c a n b e d e riv e d fro m th e m e a n v a lu e th e o re m . W e h a v e fo r e < h:

1 x (n +1) (e ) = ---1--- x (n+1) (0)--- + -1--- x (n+2) ( £) ■ e =

(n + 1)! W (n + 1)! W (n + 1)!

F [n] ( x ( —1) , . . . , x [n\ — 1), x ( 0 ) , . . . , x [n](0), ) (n + 1)

+ F [n+ 1] ( x ( —1 + £ ) , . . . , x [n+ 1] ( —1 + £), x ( £ ) , . . . , x [n+ 1]( £ ) ) ■ e

fo r so m e 0 < £ < e . L e t u s lo o k a t th e tw o te rm s th a t a p p e a r on th e r.h .s. o f E q . (8) . T h e q u e stio n is: C a n w e e s tim a te th e m b y h a v in g o n ly x0 an d a lre a d y c o m p u te d x ^ [k]

fro m S u b ro u tin e 1 ? L e t u s d is c u ss e a c h o f th e s e te rm s sep arately . B y L e m m a 4 , w e h a v e fo r 0 < k < n + 1:

x [k]( —1 + £) e c f0[k] ([0, h ])

M o re o v e r, b y D e fin itio n 2, w e k n o w th at:

x [k]( —1) e x p ,[k]

x [k](0) e x h1,[k]

S o th o s e te rm s c a n b e e a s ily o b ta in e d . T h e p ro b le m a p p e a rs w h e n it c o m e s to x (£) a n d x [k](£ ), fo r £ e (0, h )

A s s u m e fo r a m o m e n t th a t w e h a v e so m e a p rio ri e stim a te s fo r x ([0, h ]), i.e ., a se t Z c R su c h th a t x ([0, h ] ) C Z . W e c a ll th is se t th e ro u g h e n c lo s u re o f x on the in te rv a l [0, h ] . H a v in g ro u g h e n c lo s u re Z , w e c o u ld a p p ly E q . (7 ) (as in th e c a s e o f S u b ro u tin e 1) to o b ta in th e e stim a te s on x [k] ([0, h ] ) fo r k > 0. S o th e q u e stio n is:

h o w to find a c a n d id a te Z an d p ro v e th a t x ([0 , h ]) C Z ? T h e fo llo w in g le m m a gives a p ro c e d u r e to te s t th e later.

L e m m a 5 L e t Y c R b e a c lo s e d in te r v a l a n d le t x 0 b e a fu n c t io n d e fin e d o n [ —1, 0], A s s u m e th a t th e fo llo w in g h o ld s tr u e :

Z : = x0(0) + [0, h ] ■ f ( x0 ( [ —1, —1 + h ] ) , Y ) C i n t ( Y ). (8)

T h e n th e s o lu tio n x ( t ) o f E q, ( 1) w ith th e in itia l c o n d itio n x 0 e x is ts o n th e in te rv a l

[ 0, h ] a n d

x ([0, h ] ) C Z .

P r o o f W e c a n tre a t E q . ( 1) on th e in te rv a l [0, h ] as a n o n -a u to n o m o u s O D E o f the form :

x ' = f ( a ( t ), x ),

1

Springer

(12)

w h e re a ( t ) = x ( t ) fo r t e [—1, —1 + h] is a k n o w n fu n c tio n . N o w th e c o n c lu s io n fo llo w s fro m th e p r o o f o f th e a n a lo g o u s th e o re m fo r O D E s. T h e p r o o f c a n b e fo u n d

in [3 5 ]. □

U sin g L e m m a 5 , a h e u ris tic ite ra tiv e a lg o rith m m a y b e d e s ig n e d su c h th a t it starts b y g u e s s in g an in itia l Y , a n d th en it ap p lie s E q . (8) to o b ta in Z . In a c a s e o f fa ilu re o f th e in c lu sio n , i.e ., Z c Y , a b ig g e r Y is ta k e n in th e n e x t ite ra tio n . P le a s e n o te th a t th is ite ra tio n m a y n ev er sto p o r p ro d u c e u n a c c e p ta b ly b ig Y , e s p e c ia lly w h e n th e ste p siz e h is larg e. F in d in g a ro u g h e n c lo s u re is th e o n ly p la c e in th e a lg o rith m o f th e in te g ra to r th a t c a n in fa c t fail to p ro d u c e a n y e stim a te s. In su ch a c ase, w e a re n o t ab le to p ro c e e d w ith th e in te g ra tio n , an d w e s ig n a liz e an error.

N o w w e c a n s u m m a riz e th e a lg o rith m fo r S u b ro u tin e 2 as fo llo w s:

c [k] : = c p ,[k]([0, h ] ) , k e ( 0 , . . . , n + 1} d [0] : = Z as in E q .(8) ,

d [k] : = 1 ■ F [k—1] ( c [0], . . . , c [k—1], d [0], . . . , d [k—1]) , k e (1, a * ____ 1 F [n] ( x p,[°] x pAn} -1,[0] -1, [n]) u := (n + 1) • c ^ 0 , . . . , A 0 , Ah , . . . , Ah j b* : = F [n+1] ( c [0] , . . . , c [n+1] , d [0], . . . , d [n+1]),

x,1,[n+1] : = a* + b* ■ [0, h ]

, n + 1}

R e m a r k 3 P le a s e n o te th a t th e te rm a* is c o m p u te d th e sa m e w a y as o th e r co efficien ts in S u b ro u tin e 1 an d th e ro u g h e n c lo s u re d o n o t in flu e n c e th is term . In fa c t th is is th e n + 1th d e riv a tiv e o f th e flow w .r.t. tim e . It is p o s s ib le to k e e p tra c k o f th o se c o e ffic ie n ts d u rin g th e in te g ra tio n an d a fte r p step s (fu ll d e la y ) th o s e c o e ffic ie n ts m a y b e u s e d to b u ild a (p , n + 1)-re p re s e n ta tio n o f th e s o lu tio n s— th is is a d ire c t re fle c tio n o f c o n se q u e n c e s o f L e m m a 2 .

T h is fa c t is also im p o rta n t fo r th e co m p a c tn e ss o f th e e v o lu tio n o p e ra to r— an e s s e n ­ tia l p ro p e rty th a t allo w s fo r an a p p lic a tio n o f th e to p o lo g ic a l fixed p o in t th e o re m s in in fin ite -d im e n s io n a l sp aces.

F o r w a r d P a r t : S u b r o u t i n e 3

T h e la s t s u b ro u tin e o f th e fo rw a rd p a rt ca n b e sim p ly o b ta in e d b y u sin g D e fin itio n 2 a n d E q . (5 ) :

n

x h° ,[0] : = £ x1' ^ h k + x f :n+1] - h n+ 1. k =0

N o tic e th a t th e p o s s ib le in flu e n c e o f th e u s u a lly o v e re s tim a te d ro u g h e n c lo s u re Z is p re s e n t o n ly in th e la s t te rm o f th e o rd e r h n+ 1 , so fo r sm a ll h (la rg e e n o u g h p ), it sh o u ld n o t b e a p ro b le m .

T h e I n t e g r a t o r : A lto g e t h e r

S tric tly sp e a k in g , th e m a p p in g Ih d o e s n o t p ro d u c e a ( p , n ) -f-s e t w h ic h e x a c tly re p re s e n ts x h = y ( h , x0). In ste a d , it re tu rn s so m e b ig g e r se t [xh] su ch th a t x h is c o n ta in e d in it. O f c o u rse , w e a re in te re s te d in o b ta in in g a re s u lt as c lo s e as p o s s ib le to

F

0

C

71

u

<1 Springer

(13)

Found Com put M ath (2018) 18:1299-1332 1311

th e se t o f tru e so lu tio n s re p re s e n te d b y p ( h , x0). S o, fo r te c h n ic a l re a s o n s w h ic h w ill b e a p p a re n t in S ect. 2 .3 , w e d e c o m p o s e I h in to I h = @ + R su ch th a t @ : R m ^ R m a n d R : P (R m) ^ P (R m ). L e t @ ( x ) = $ a n d pu t:

$ i,[k] : = x i — 1,[k], i e {2,

$ 1-[0] := x 0,[0],

4> 1-[k] ; = I . F [k—1] (x p, [0]

k V

n

$ 0,[0]

s

w

II

k= 0

, x p ,[k—1] $ 1,[0] • 1,[k —1]

, k e {1, (9) (1 0) , n},

(1 1) (1 2)

L e t R ( x ) = r a n d pu t:

r i,[n+1] r 1, [p+1] r0,[0]

x i —1, [n+1]

= a

i e {2, [0, h ],

, p } ,

= h ■ (a* + b* ■ [0, h ] ) .

T h e m a p @ is c a lle d th e T aylo r p a r t , w h ile th e m a p R is c a lle d the R e m a i n d e r p a r t . T h is d e c o m p o s itio n is im p o rta n t fo r an effic ie n t re d u c tio n o f n e g a tiv e e ffe c ts c a u se d b y u s in g in te rv a l a rith m e tic , p rim a rily th e w ra p p in g effect, b u t also th e d e p e n d e n c y p ro b le m to so m e e x ten t.

b*

2 .3 R e d u c i n g t h e W r a p p i n g E f f e c t

A re p re s e n ta tio n o f o b je c ts in c o m p u ta tio n s as th e in te rv a l sets h a s its d ra w b a c k s.

P o s s ib ly th e m o s t se v e re o f th e m are th e p h e n o m e n a c a lle d th e w r a p p i n g effect a n d the d e p e n d e n c y p r o b l e m . T h e ir in flu e n c e is so d o m in a n t th a t th e y a re d is c u s s e d in v irtu a lly e v ery p a p e r in th e field o f rig o ro u s c o m p u ta tio n s (see [3 5 ] a n d re fe re n c e s th e re in ).

T h e d e p e n d e n c y p ro b le m a rises in in te rv a l a rith m e tic w h e n tw o v a lu e s th e o re tic a lly re p re s e n tin g th e sa m e (o r d e p e n d e n t) v a lu e are c o m b in e d . T h e m o s t triv ia l e x a m p le is an o p e ra tio n x x w h ic h is a lw a y s 0, b u t it is n o t th e c a s e fo r in te rv a ls. F o r e x a m p le , a p p ly in g th e o p e ra tio n to th e in te rv a l x = [ — 1, 1] g iv es as th e re s u lt the in te rv a l [ — 2, 2] w h ic h c o n ta in s 0, b u t it is far b ig g e r th a n w e w o u ld lik e it to be.

T h e w ra p p in g e ffe c t arise s w h e n o n e in te n d s to re p r e s e n t a re s u lt o f so m e e v alu a tio n on sets as a sim p le in te rv a l set. F ig u re 2 illu s tra te s th is w h e n w e c o n s id e r th e ro ta tio n o f th e sq u are.

O n e o f th e m o s tly u s e d an d e ffic ie n t m e th o d s fo r re d u c in g th e im p a c t o f th e w ra p ­ p in g e ffe c t a n d th e d e p e n d e n c y p ro b le m w as p ro p o s e d b y L o h n e r [ 15]. In th e c o n te x t o f th e ite ra tio n o f m a p s a n d th e in te g ra tio n o f O D E s, h e p ro p o s e d to re p re s e n t sets b y p a ra lle lo g ra m s , i.e., in te rv a l sets in o th e r c o o rd in a te sy ste m s. In th e seq u el, w e fo llo w [3 5 ], an d w e sk e tc h th e L o h n e r m e th o d s briefly.

B y J w e d e n o te a c o m p u ta tio n o f I h (■) u s in g p o in t-w is e e v a lu a tio n o f th e T aylor p a rt, i.e.,

FoCTI u

< 1 S p rin g e r

(14)

Fig. 2 An illustration of the wrapping effect problem for a classical, idealized mathematical pendulum ODE x = —x . The picture shows a set of solutions in a phase space (x, x ). The gray boxes present points of initial box moved by the flow. The colored boxes present the wrapping effect occurring at each step when we want to enclose the moving points in a product of intervals in the basic coordinate system. For example, the blue square on the left encloses the image of the first iteration. Its image is then presented with blue rhombus which is enclosed again by an orange square. Then the process goes on (Color figure online)

J ([ x ]) : = I U ® ( x ) I + R ( [ x ]).

\xe[x] )

L e t u s c o n s id e r an ite ra tio n :

[xk] = J ([xk—1] ) , k e N

w ith in itia l set [x0].

L e t u s d e n o te x k = m i d ( [ x k ]) a n d [rk] = [xk] — x k . B y a sim p le a rg u m e n t b a se d on th e m e a n v a lu e th e o re m [3 5 ], it c a n b e sh o w n that:

[x k +1] C @ ( x k ) + [D 0 ([xk])] ■ [rk] + R ( [ x k ]).

W e c a n re f o rm u la te th e p ro b le m o f c o m p u tin g [xk+ i ] to th e fo llo w in g sy s te m o f e q u a tio n s:

[A k] = [ D 0 ( [ X k ] ) ] , (13)

xk+ 1 = m i d ( [ 0 ( x k ) + R ( [ X k ] ) ] ) , (14)

[Zk+1] = @([xk ]) + R ( [ x k ]) — xk+1, (15)

[rk+1] = [A k] ■ [rk] + [Zk+1]. (16)

N o w th e re d u c tio n in th e w ra p p in g e ffe c t c o u ld b e o b ta in e d b y c h o o sin g su ita b le re p re s e n ta tio n s o f sets [rk] an d a c a re fu l e v a lu a tio n o f E q . ( 16) . T h e te rm in o lo g y u se d fo r th is in [3 5 ] is t he r e a r r a n g e m e n t c o mp u t a t i o n s . W e w ill b rie fly d is c u ss p o s s ib le m e th o d s o f h a n d lin g E q . ( 16) .

F0C71

<1 Springer

u

(15)

Found Com put M ath (2018) 18:1299-1332 1313

M e t h o d 0 (In te rv a l S et): R e p re s e n ta tio n o f [rk] b y an in te rv a l b o x a n d th e d ire c t e v a lu a tio n o f ( 16) is e q u iv a le n t to d ire c tly c o m p u tin g I h ([xk+ 1]). T h is m e th o d is c a lle d a n in te r v a l s e t an d is th e le a s t effectiv e.

M e t h o d 1 (P a ra lle le p ip e d ): w e re q u ire th a t [rk] = B k ■ [rk ] fo r [rk ] b e in g an in terv al b o x a n d B k b e in g an in v e rtib le m a trix . T h e n ( 16) b e c o m e s:

[rk+1] = Bk+1 ^ B—+ 1 [A k ] Bk+1 ' [rk ] + B—_ \[zk+1]) .

S in c e it is d iffic u lt to o b ta in th e e x a c t m a trix in v e rse in c o m p u te r c a lc u la tio n s, w e w ill u s e in te rv a l m a tric e s [B k ] a n d [B—1] th a t c o n ta in B k an d B—1, re sp e c tiv e ly . T h u s th e e q u a tio n on [r] b e c o m e s:

[r:k+1] = ( [ Bk+ \] [ A k ] [ B k + 1 ^ ■ [rk] + [B k +1] 1[Zk+1].

I f [B k ] ’s a re w e ll-c h o se n , th e n th e fo rm u la in b ra c k e ts c a n b e e v a lu a te d to p ro d u c e a m a trix c lo s e to id e n tity w ith v e ry sm a ll d ia m e te r, th u s th e w ra p p in g e ffe c t re d u c tio n is a c h ie v e d . T h e P a ra lle le p ip e d m e th o d is o b ta in e d w h e n B k+ 1 is c h o se n su ch th at Bk+ 1 e [A k] [ Bk+ 1]. T h is a p p ro a c h is o f lim ite d u s e b e c a u s e o f th e n e e d to c o m p u te th e m a trix in v e rse o f a g e n e ra l m a trix B k+1, w h ic h m a y fail o r p ro d u c e u n a c c e p ta b le re s u lts i f Bk+ 1 is ill-c o n d itio n e d .

M e t h o d 2 (C u b o id ): th is is a m o d ific a tio n o f M e th o d 1. In th is m e th o d , w e c h o o se U e [A k ] [ Bk+ 1], an d w e d o th e flo a tin g p o in t a p p ro x im a te Q R d e c o m p o s itio n o f U = Q ■ R , w h e re Q is c lo s e to an o rth o g o n a l m a trix . N e x t w e o b ta in m a trix [ Q ] b y a p p ly in g th e in te rv a l (rig o ro u s ) G r a m - S c h m id t m e th o d to Q , so th e re ex is t o rth o g o n a l m a trix Q e [Q ] a n d Q —1 = Q T e [Q ] T .W e se t B k +1 = [Q ], B— = [ Q ] T .

M e t h o d 3 (D o u b le to n ): th is re p re s e n ta tio n is u s e d in o u r c o m p u ta tio n s as it p ro v e d to b e th e m o s t effic ie n t in n u m e ric a l tests [2 4 ] a n d in o th e r a p p lic a tio n s; se e [3 5 ] and re fe re n c e s th e re in . T h e o rig in a l id e a b y L o h n e r is to s e p a ra te th e e rro rs in tro d u c e d d u e to th e la rg e siz e o f in itia l d a ta an d th e lo c a l e rro rs in tro d u c e d b y th e n u m e ric a l m e th o d a t e v e ry step. N a m e ly , w e set:

[rk +1] = [E k + 1 ][r0 ] + [ k +1] [rk +1] = [Ak ][rk ] + [Zk+1] [E k +1] = [Ak ][ E k ] E0 = I d

w h e re [rk ] is e v a lu a te d b y an y m e th o d 0 - 2 . To re d u c e th e p o s s ib le w ra p p in g e ffe c t in th e p ro d u c t [A k ] [ E k ], L o h n e r p ro p o s e d th e fo llo w in g :

[rk +1] = C k+1[r0] + [ k +1]

[ ^ +1] = [A k ][rk ] + [Zk+1] + ([A k]C k — C k +1) [r0] r0 = 0 C0 = I d C k +1 e [A k ]C k .

A g a in , [I1] is e v a lu a te d b y an y m e th o d 0 - 2 . P le a s e n o te th a t th e re is n o n e e d to in v e rse a m a trix in th e d o u b le to n re p re s e n ta tio n w h e n [I1] is e v a lu a te d e ith e r b y M e th o d 0 or

FoCTI u

<1 Springer

(16)

M e th o d 2, so th is a p p ro a c h is su ita b le fo r th e c a s e w h e re A k m a y b e c lo s e to sin g u lar.

In th e c o m p u te r-a ssiste d p ro o fs p re s e n te d in th is p a p e r, w e u s e M e th o d 0 to re p re s e n t [r] b e c a u s e it is less c o m p u ta tio n a lly e x p e n siv e an d , in o u r c u rre n t se ttin g , u s in g th e o th e r m e th o d s h a v e n o t im p ro v e d th e re s u lts . T h is is p u z z lin g , as it c o n tra d ic ts our e x p e rie n c e w ith O D E s w h e re M e th o d 2 is p re fe ra b le , an d th u s it m ig h t b e w o rth w h ile to in v e s tig a te th is p h e n o m e n a in so m e la te r study.

2 .4 O p tim iz a t io n E x p lo iti n g t h e B lo c k S t r u c t u r e o f D ® ( x )

In o u r se ttin g , [A k ] = D @ ( x k ), w h e re x k is th e (p , n ) - f - s e t in th e k t h step o f in te g ra tio n . A s [A k ] is m x m m a trix , w h e re m is th e siz e o f (p , n )- re p re se n ta tio n (m = p ■ (n + 2) + 1), a n d th e re fo re , i f w e d e c id e to re p re s e n t th e e rro r p a rt [r] in d o u b le to n b y in te rv a l b o x (L o h n e r M e th o d 0 ), th e n th e m a trix m u ltip lic a tio n s in v o lv ­ in g th e m a trix [A k ] ta k e th e m o s t o f th e e x e c u tio n tim e in o n e step o f in te g ra tio n in th e L o h n e r a lg o rith m , e s p e c ia lly fo r la rg e n a n d /o r p . F ro m E q s. (9- 12) , w e see th a t D @ ( x ) h a s a n ic e b lo c k stru c tu re an d c o n ta in s a la rg e n u m b e r o f ze ro e n trie s, i.e., it is a sp a rs e m a trix . T h is stru c tu re is w e ll v is ib le w h e n w e u s e th e fo llo w in g in d e x fu n c tio n I:

I( 0 , 0) = 1,

I ( i , k ) = 1 + (i — 1) ■ (n + 1) + k , 1 < i < p , 0 < k < n, I ( i , n + 1) = 1 + p ■ (n + 1) + i, 1 < i < p .

U n d e r th is in d e x fu n c tio n , [A k ] is o f th e form :

A11o 0 A 13 0

iiS

I d 0 0

0 0 0 0

w h e re A11 is n + 1 x 1 m a trix (c o lu m n v e c to r), A13 is n + 1 x n + 2, a n d I d is an id e n tity m a trix o f siz e (p — 1) ■ (n + 1 ) . T h e re fo re , w e u s e th is in d e x fu n c tio n to d efin e b lo c k s fo r all m a tric e s an d v e c to rs a p p e a rin g in all m e th o d s d is c u s s e d in S ect. 2 .3 , as, w ith su c h b lo c k re p re s e n ta tio n o f m a tric e s an d v e c to rs, w e c a n e a s ily p ro g ra m th e m u ltip lic a tio n b y a m a trix or a v e c to r so th a t all th e o p e ra tio n s on an y z e ro b lo c k are a v o id e d . W e w ill re fe r to th is as th e o p tim iz e d a lg o rith m .

I f w e h a v e an a rb itra ry m a trix C , th e n th e c o s t o f c o m p u tin g [A k] ■ C b y a s ta n ­ d a rd a lg o rith m fo r th e m a trix m u ltip lic a tio n is o f o rd e r O ( n 3 ■ p 3) in b o th th e scalar a d d itio n an d m u ltip lic a tio n o p e ra tio n s (w e re m in d , th a t p , n a re th e p a ra m e te rs o f ( p , n )- re p re s e n ta tio n ). In th e c a s e o f th e o p tim iz e d a lg o rith m , th e b lo c k stru c tu re and sp a rse n e ss o f [A k] re d u c e th e c o m p u ta tio n a l c o s t to O ( n 2 ■ p 2) in sc a la r a d d itio n s and 0 ( n 3) in sc a la r m u ltip lic a tio n s.

T h e c o m p u ta tio n tim e s fo r th e c o m p u te r-a s s is te d p ro o fs d is c u s s e d in S ect. 4 on the 2 .5 0 G H z p ro c e s s o r (se e S ect. 4 fo r a d e ta ile d sp e c ific a tio n ) a re p re s e n te d in T ab le 1.

W e se e th a t th e o p tim iz e d a lg o rith m is m u c h fa s te r th an th e d ire c t m u ltip lic a tio n , th e sp e e d -u p is e v id e n t e s p e c ia lly fo r th e la rg e r (p , n )-re p re s e n ta tio n s .

FoCTI

1

Springer

u

(17)

Found Com put M ath (2018) 18:1299-1332 1315

Table 1 A comparison of the execution times for computer-assisted proofs for standard and optimized matrix multiplication on 2.5 GHz processor (no multi-threading)

Proof (p , p) Standard multiplication Optimized multiplication

Theorem 12 (32, 4) 45 s 1 2s

Theorem 13 (128, 4) 133 min 12 min

3 Poincare Map for Delay Differential Equations

3 .1 D e fin itio n o f a P o in c a r e M a p

W e b e g in w ith th e d e fin itio n o f th e (tra n sv e rsa l) se c tio n o f th e sem iflo w p a ss o c ia te d w ith ( 1). F irst, w e w o u ld lik e to re c a ll th e O D E se ttin g w h e re , fo r a flow p : R x R m ^ R m , a (lo c a l) tra n sv e rs a l se c tio n S is u s u a lly d e fin e d as a (s u b se t o f) sm o o th m a n ifo ld M o f c o d im e n sio n o n e sa tisfy in g th e tra n s v e rs a lity co n d itio n :

d

— p ( t , x0 ) |t= 0 = f ( x0 ) e Tx0M , x0 e S, (17)

w h e re Tx M d e n o te s th e ta n g e n t b u n d le at x . I f M is a h y p e rp la n e

M = {x e R m | s ■ x = a}

fo r so m e g iv en n o rm a l v e c to r s e R m , ||s || = 0 a n d a e R , th en c o n d itio n ( 17) b e c o m e s

s ■ f ( x0 ) = 0, x0 e S.

W e w ill u s e a sim ila r a p p ro a c h in th e c o n te x t o f th e sem iflo w p a ss o c ia te d w ith ( 1) . W e w ill re s tric t o u rs e lv e s to th e lin e a r se c tio n s, an d w e w ill u s e th e fa c t th a t fro m E q . (4 ) an d L e m m a 2 , it fo llo w s

d

d t p ( t , x0) | t= t0 x t0

fo r an y t0 > t . M o re o v e r, xt0 is o f cla ss Cp1 w h e re v e r t0 > n ■ t . T h is o b se rv a tio n w ill b e c ru c ia l fo r th e d e fin itio n o f a tra n sv e rs a l se c tio n in th e D D E c o n te x t and, later, fo r th e rig o ro u s c o m p u ta tio n o f P o in c a re m ap s.

D e f in itio n 6 L e t p b e th e sem iflo w a ss o c ia te d w ith th e sy s te m ( 1) . L e t n e N , s : Cp ^ R b e a c o n tin u o u s affin e m a p p in g , i.e ., s ( x ) = l ( x ) + a, w h e re l is a b o u n d e d lin e a r fu n c tio n a l a n d a e R . W e d e fin e a g l o b a l C n -s e c tio n as a h y p e rp la n e :

S = {x e Cp | s ( x ) = 0}.

A n y c o n v e x a n d b o u n d e d su b s e t S c S is c a lle d a l o c a l C n -s e c tio n (o r sim p ly a se c tio n ).

FoCTI u

<1 Springer

(18)

A se c tio n S is sa id to b e t r a n s v e r s a l i f th e re e x is ts a c o n v e x o p en set W c C n such th a t

W n 5 = U, W = W —U U U W +, w h e re

W — = (x e W | s ( x ) < 0}, W + = (x e W | s ( x ) > 0}, c l ( U ) = cl ( S ),

s a tisfy in g th e c o n d itio n

l ( x ) > 0, Vx e W n C n+ 1. (18)

W e w ill re f e r to ( 18) as th e tr a n s v e r s a lit y conditio n.

R e m a r k 4 P le a s e n o te th a t th e re q u ire m e n t x e W n Cn + 1 in ( 18) is e s s e n tia l to g u a ra n te e th a t x a n d th u s l ( x ) in ( 18) a re w ell d efin ed , as, fo r x0 e Cn + 1 a n d t > 0, it m ig h t h a p p e n th a t y ( t , x 0) is o f c la s s C k , k < n + 1 (th e lo ss o f re g u la rity ), but L e m m a 2 states th a t w e o n ly n e e d to “lo n g e n o u g h ” in te g ra te th e in itia l fu n c tio n s to get rid o f th is p ro b le m co m p le te ly . T h e s e tw o p h e n o m e n a a re illu s tra te d in th e fo llo w in g e x am p le.

L e t x0 e W fo r W as in D e fin itio n 6. In g e n e ra l, it h a p p e n s th a t y ( e , x 0) / C n for sm a ll e > 0. T h is m a y s e e m at first to c o n tra d ic t in tu itio n fro m L e m m a 2 , b u t in fact it is n o t. C o n s id e r th e fo llo w in g r.h .s. o f E q . ( 1) :

f (Z1 , Z2 ) = Z1, V z1, Z2 e R

L e t x0 = 1 b e an in itia l fu n c tio n a n d le t x b e a so lu tio n to E q . ( 1) w ith x |[—1,0] = x0

a n d d e la y t = 1. W e see th a t x ( t ) is C “ on [—1, 0 ). H o w ev er, at t = 0, w e h a v e

0 = x ' (0—) = 1 = x ' (0+ ) = f ( x ( — 1), x ( 0 ) ) ,

so x t : [ - 1 , 0] —— R is o n ly o f class C0 fo r an y t e (0, 1). T h is is a v e ry u n d e sira b le p h e n o m e n a , b u t th e so lu tio n w ill b e s m o o th e d a fte r a fu ll d elay , a c c o rd in g to L e m m a 2 . A s x ( t ) = 1 + 1 on [0, 1], w e h a v e at t = 1:

1 = x ' ( r ) = x ' (1+ ) = f ( x (0), x (1) ) .

O n e c a n sh o w ag a in th a t x (2)(1 —) = x (2) (1 + ), th e re fo re x is o f c la s s C1 on (1, 2 ), an d th e sm o o th in g o f so lu tio n s g o e s on w ith th e in c re a s in g t .

T h is sh o w s fo r a n y x0 e C n , i f m > n ■ t, th e n w e h a v e “ o n ly ” y ( m , x 0) e C n in a g e n e ra l ca se . O n th e o th e r h a n d , “ lo n g e n o u g h ” in te g ra tio n tim e m c a n b e u se d to g u a ra n te e th a t e v e ry in itia l fu n c tio n x e C0 h a s a w e ll d efin ed im a g e in C n u n d e r m a p p in g y ( m , ■). T h is is e s s e n tia l in th e fo llo w in g c o n s tru c tio n o f a P o in c a re m ap for D D E s (T h e o re m 5 a n d D e fin itio n 7 ) .

T h e o r e m 5 A s s u m e n e N, V c C 0. L e t S be a lo c a l tr a n s v e r s a l C n - s e c t i o n f o r ( 1) a n d let W b e a s in D e fin i ti o n 6 . L e t m = (n + 1) ■ t.

FoCJI

<1 Springer

u

(19)

Found Com put M ath (2018) 18:1299-1332 1317

A s s u m e th a t th ere e x is t t 1, t2 e R , a < t1 < t2, su c h th a t th e fo llo w in g c o n d itio n s h o ld f o r a ll x e V :

p ( [ t 1, t2], x ) C W , <p(t1, x ) e W — a n d p ( t 2 , x ) e W + . (19)

Then, f o r ea ch x 0 e V , th ere e x is ts u n iq u e t S ( x 0) e ( t1, t2) su c h th a t p (tS ( x 0), x 0) e S, A lso , tS : V ^ [ t 1, t2] is co n tin u o u s,

P r o o f L e t x0 e V . B y a ss u m p tio n s, p ( t , x 0) = x t e W fo r t e [t1, t2] b u t also x t e C n+ 1, b y th e a ss u m p tio n on c o n sta n ts a , t 1, t2 (b y L e m m a 2 ). So s ( x t ) is w ell d e fin e d an d C o n d itio n ( 18) g u a ra n te e s th a t

d ( d \

— s ( p ( t , x )) = l ( — p ( t , x ) \ = l ( x t ) > 0, t e [ t1, t2].

T h e re fo re , th e fu n c tio n d e fin e d b y s ( t ) : = s ( x t ) is c o n tin u o u s a n d stric tly in c re a s ­ in g on [ t1, t2]. N ow , fro m ( 19), it fo llo w s th e re e x ists u n iq u e t0 e ( t 1, t2) su c h th at s ( p ( t 0 , x 0)) = c. T o g e th e r w ith c o n tin u ity o f p (L e m m a 1) , th is im p lie s c o n tin u ity o f

t s : V ^ ( t1, t2 ).

D e f in itio n 7 T h e s a m e a ss u m p tio n s as in T h e o re m 5 , in p a rtic u la r a ss u m e t1 > t(n + 1) = a . W e d e fin e th e tr a n s itio n m a p to th e s e c tio n S a fte r (a t lea st) a b y

P>a : V ^ S C C n , P > a (x0 ) : = p ( t s ( x 0 ), x 0 ) ,

fo r tS d e fin e d as in T h e o re m 5 . I f V c S, th e n th e m a p P>a w ill b e c a lle d th e P o in ca re re tu rn m a p o n th e s e c tio n S a fte r a .

F in a lly , w e s ta te th e la s t an d th e m o s t im p o rta n t th e o re m th a t w ill allo w u s to a p p ly to p o lo g ic a l fix ed p o in t th e o re m s to P>a .

T h e o r e m 6 C o n s id e r P o in ca re m a p (a fte r a ) P>a : S D V ^ S f o r so m e s e c tio n S u n d e r th e sa m e a ss u m p tio n s a s in T h e o re m 5, e s p e c ia lly a ss u m e (n + 1) ■ t < a <

t S ( V ) e [t1, t2],

A s s u m e a d d itio n a lly th a t p ( [ a , t2], V ) is b o u n d e d in C n ,

T h en th e m a p P>a is c o n tin u o u s a n d c o m p a c t in C n , i,e,, i f K c V is b o u n d ed , th e n c l ( P>a ( K )) is c o m p a c t in C n ,

P r o o f B y T h e o re m 5 , P>a is w e ll d e fin e d fo r a n y x0 e V sin c e t1 > a > (n + 1) ■ t

a n d P>a (x0) e C n+ 1.

T h e c o n tin u ity fo llo w s im m e d ia te ly fro m th e c o n tin u ity o f tS (T h e o re m 5 ) an d p (L e m m a 1) .

L e t D = P>a ( V ). F ro m o u r a ss u m p tio n s, it fo llo w s th a t D is b o u n d e d in C n . A k n o w n c o n s e q u e n c e o f th e A r z e la - A s c o li T h e o re m is th at, i f D C C n is c lo s e d an d b o u n d e d , x e D , x (n+ 1) e x ists, an d th e re is M su ch th a t su p t |x (n+ 1) ( t ) < M fo r all x e D , th e n D is c o m p a c t (in C n -n o rm ). T h e re fo re , to fin ish th e p ro o f, it is e n o u g h to sh o w th a t th e re is a u n ifo rm b o u n d on P>a ( x ) (n+ 1) . F o r th is, it is su ffic ie n t to h a v e a u n if o rm b o u n d on ( p ( t , x ) ) (n+ 1) fo r t e [ a , su p x e V t S ]. T h e e x is te n c e o f th is b o u n d fo llo w s fro m b o u n d e d n e s s o f d eriv ativ es u p to o rd e r n a n d fo rm u la (7 ) .

FoCTI u

< 1 S p rin g e r

Cytaty

Powiązane dokumenty

Oscillation criteria, extended Kamenev and Philos-type oscillation theorems for the nonlinear second order neutral delay differential equa- tion with and without the forced term

We take advantage of the complex structure to compute in a short way and without using any computer algebra system the Lyapunov quantities V 3 and V 5 for a general smooth

New sufficient conditions are derived for the existence of at least one solution in the space t&gt;f 0 ~l\- The proof is based on the topological degree method in the Banach space

[18] Torres P.J., Existence of one-signed periodic solution of some second-order differential equations via a Krasnosielskii fixed point theorem, J. 190

Ligęza, Periodic solutions of ordinary linear differential equations of second order in the Colombeau algebra, Different aspect of differentiability, Integral transforms and

In this section we establish sufficient conditions for the oscillation of all solutions to (1.2), and give a comparison theorem for the oscillation with the limiting delay

D i b l´ık, On existence and asymptotic behaviour of solutions of singular Cauchy problem for certain system of ordinary differential equations, Fasc. H a l e, Theory of

Smith,An existence theorem for weak solution of differential equations in Banach spaces, Nonlinear Equation in Abstract Spaces (V. Papageorgiou, Weak solutions of differential