• Nie Znaleziono Wyników

British Chemical Abstracts. A. Pure Chemistry, March

N/A
N/A
Protected

Academic year: 2022

Share "British Chemical Abstracts. A. Pure Chemistry, March"

Copied!
128
0
0

Pełen tekst

(1)

BRITISH CHEMICAL ABSTRACTS

A . - P U R E CHEM ISTRY

MARCH, 1931.

G en era l, P h y s ic a l, an d I n o r g a n ic C h em istry .

H y p e r f in e s t r u c t u r e fo rm u la e f o r o n e - e le c tro n s p e c t r a . G. B r u i t (Physical R ev ., 1931, [ii], 37, 51— 5 2 ; cf. H argreaves, A ., 1930, 832; F erm i, ibid., 393).— M athem atical. T h e energy level sep aratio n s cau sed b y a n u clear m agnetic m o m en t in a one- electron sp ectru m are derived b y a sh o rt a n d rigorous

m eth o d . N . M. B l ig h .

V a r ia tio n of s p a r k p o t e n t i a l w i t h t e m p e r a t u r e i n g a s e s . H . G. B o w k e r (Proc. P h y sical Soc., 1931, 4 3 , 96— 112).—T h e effect of tem p e ra tu re on th e sp ark p o te n tia l in hyd ro g en a n d n itro g en a t o rd in a ry p re s­

sures h a s been in v estig a ted u p to 860°. T he sp a rk p o te n tia l depends on th e d e n sity of th e gas, b u t is in d e p en d en t of te m p e ra tu re a n d pressure for a given

d ensity. A. J . M e e .

C o n tin u o u s s p e c t r a of a t o m i c a n d m o l e c u l a r h y d r o g e n . D . C h a l o n g e a n d N . T. Z e (J. P hys.

R ad iu m , 1930, jyii], 1, 416— 425).— W hen a n u n co n ­ densed discharge is passed th ro u g h hy d ro g en a t a p ressure of a few m m . th e seco n d ary sp ectru m a n d a continuous sp ectru m of m olecular origin are em itted . T he energy cu rv e of th e la tte r has a m axim um a t 2350

A.

W ith sufficiently condensed discharges th e secondary sp e ctru m disappears, th e B alm cr lines becom e m ore intense, a n d th e continuous sp ectru m becom es p u rely atom ic, consisting of tw o sp ectra con­

nected w ith th e B alm er a n d P asch en series. T he form er is m ore intense th a n th e la tte r, th e energy in each case being evenlv d istrib u te d th ro u g h th e spec­

tru m . C. W . G ib b y.

I n t e n s i t i e s o f B a l m e r lin e s . I I . L. S. O rn - STEijf a n d H . L ix d e m a n (Z. P h y sik , 1931, 6 7 , 16).

—A rep ly to th e criticism s raised b y K o p ferm an n and L ad en b u rg (cf. A., 1930, 1487) on th e a u th o rs ’ earlier w ork (ibid., 1073). R . W . L e n t .

In flu e n c e of t r a c e s of h y d r o g e n o n th e s p a r k i n g p o te n tia l of h e liu m . A. G u n t h e r - S c h u l t z e an d P. K e l l e r (Z. P h y sik , .1930, 66, 219— 223).— E x p e ri­

m ents w ith com m ercial ty p e s of low -voltage rectifiers consisting of iro n electrodes in a helium atm osphere a t 20 mm. are described. Spectroscopic ex am in atio n of th e arc u n d e r n o rm a l a n d overload conditions has shown t h a t th e fo rm e r is associated w ith th e d is­

appearance of tra c e s of hydrogen w hich are evolved rap id ly u n d e r overload conditions. R . W . Lu n t.

F in e s t r u c t u r e of h y d r o g e n - lik e a t o m s i n a n in h o m o g e n e o u s e le c tr ic fie ld . S. G u p ta (Z.

P h y sik ; 1930, 6 6 , 246—256).—T heoretical. T he D a r­

w in m odification of D ira c ’s e q u atio n is U sed to cal-

tr 2"

c u late th e S ta rk effect in a n inhom ogeneous electric field; th e field gives rise to a q u a d ra tic as w ell as a lin ear te rm in th e p o te n tia l energy, a n d th e effect of th e q u a d ra tic te rm is calculated.

A. B. D . C a s s ie . E x te n s io n of s im p le s p e c t r a . F . P a s c h e x (Sitszungsber. P reuss. A kad. W iss. B erlin, 1930, 32.

7 p p .).— T he sim ple sp ectra due to th e e x c itatio n of a single-valency electron are ex ten d ed if m ore th a n one valen cy electron is p rese n t, a n d th e se are sim ul­

ta n eo u sly excited. T he tw o-electron sp e c tra of helium , beryllium , m agnesium , a n d A1 n are d is­

cussed. A. J . MeE.

H y p e r f m e s t r u c t u r e of S a n d P t e r m s of tw o - e le c tr o n a t o m s , w i t h s p e c ia l r e f e r e n c e t o Li+. G.

B r e i t a n d F . W . D o e r m a x x (P hysical R ev ., 1930, [ii], 3 6 , 1732— 1751; cf. G oudsm it a n d B acher, A., 1930, 265).— M ainly m a th e m a tic a l. A n expression is deduced for th e in te ra c tio n energy betw een th e nuclear m agnetic m o m en t a n d th e electronic system of a m an y -electro n ato m . R e su lts are ap p lied to th e L i+ 5485

A.

line a n d to th e calcu latio n of th e m agnetic

m o m e n t of Li. N . M. B l ig h .

L a r g e d i s p la c e m e n ts i n th e s p e c t r a of io n is e d n it r o g e n . K . A s a g o e (Sci. R ep . T okyo B unrika D aig ak u , 1930, 1, 47— 62).— T he sp e c tra of N n an d N i n w ere stu d ie d b y a m e th o d sim ilar to t h a t e m ­ ployed in th e s tu d y of th e b roadening a n d displace­

m e n t of th e halogen sp e ctra (A., 1927, 2, 602).

A.

J . M ee.

E x c ita tio n of t h e n e g a tiv e n i t r o g e n b a n d b y e le c tr o n c o llis io n s . A. E . L i x d h (Z. Physik, 1931, 67, 67— 74)1— T he in ten sities of th e lines of th e R bran ch of th e n eg ativ e nitro g en b a n d hav e been m easured for exciting electrons of 150 a n d 175 volts energy a n d a t tw o different c u rre n t densities.

M easurem ents hav e also been m adę of th e effective ta r g e t a re a of th e n itro g en m olecule for th e ex citatio n of th e above b a n d in th e ra n g e ,50— 350 volts. T he values o b tain ed arc m uch lov er t h a n th o se of R am - sau er a n d B rode. R . W . Lu>tt .

E m i s s i o n h a n d s of s u l p h u r . R. K . A s u n d i (N atu re, 1931, 127, 93— 94).— S pectrogram s of th e b an d s of su lp h u r e m itte d in a discharge tu b e co n ­ ta in in g su lp h u r v a p o u r a n d argon u n d er pressure in d icate t h a t argon ten d s to a rre st th e : predissociation of th e su lp h u r m olecule. N ew bands degraded to w ard s th e sh o rte r .w ave-lengths have been p h o to ­ graphed in th e Tegion 2100

A.

L. S. T h e o b a ld .

/ D

(2)

Spectrum of singly-ionised chlorine (Cl il). K.

M u r a k a w a (Sci. P ap ers In st. P h y s. Chem. R es.

T okyo, 1930,

15,

41— 67).— T he first sp a rk sp ectru m of chlorine w as o b tain ed b y a condensed discharge th ro u g h a narrow Geissler tu b e w ith tu n g ste n elec­

trodes, one co ntaining a sm all q u a n tity of sodium chloride. T he ground te rm is given as 3p3P 2, an d th e ionisation p o te n tia l as 23-115 volts.

A. B . D. C a ssie .

Spectra of doubly-ionised argon, krypton, and xenon.

S. C. D e b a n d A. K. P u t t (Z. P hysik, 1931, 67, 13S— 146).—T h e sp e c tra of A ++, K r ++, an d X e ++ hav e been classified, a n d tab les of th e m u ltip lets of these sp ectra are given. T he values of th e ionis­

a tio n p o ten tials are 36-75, 31-23, a n d 2S-51 volts, resp ectiv ely (cf. D éjardin, A., 1924, ii, 284, 709).

W . R , A n g u s.

Zeeman effect for quadrupole lines.

E . S e g r é (Z. P h ysik, 1930, 66, 827— 829).— The p o ta ss­

ium lines 2S m —2Î ) 5/a a n d 2S m —2D 3/2, a t 4642-17 an d 4641-58 A., respectively, m a y be q u adrupole tr a n s i­

tions, or m a y be due to th e influence of a n inhom o- geneous electric field. P h o to g ra p h s of th e inverse Zeem an c an d ~ com ponents of these lines, duo to a field of 12,700 gauss, show th a t th e tra n sitio n s agree w ith th e assu m p tio n of a quad ru p o le electric m om ent.

A. B . D. C a ssie .

Interferom etric m easurem ents in the arc spectrum of iron.

C. V . J a c k s o n (Proc. R oy. Soc., 1931,

A, 130,

395

410).

T en lines in th e sp ectru m of th e iro n arc

in

a ir in th e region 4000—4400 Â.

hav e been m easured b y m eans of th e u su al in terfero ­ m etric m eth o d a n d found to be in alm o st perfect agreem ent w ith th e values a d o p ted b y th e I. .U . in 1928, th e m ean sy stem atic difference being only -f-0-0003 A. a n d th e m ean accid en tal difference

¿ 0 -0 0 0 6 A. S ixty-eight lines in th e region 2300—

3100 A. have also been m easured interferom etrically.

L. L . B ir c u m sh a w .

Spectrum of doubly-ionised arsenic. K. R. R

ao (Proc. P hysical Soc., 1931, 43, OS— '71).— T he do u b let system of doubly-ionised arsenic (As h i) is considered in d etail, a n d th e w ork of L ang (A., 1929, 112) is am ended. I t is now possible to ev a lu a te a t r u s t ­ w o rth y schem e of term s of As h i b y assum ing a probable value for th e 5g2G term . T he value used is 39,500 c m r 1 A te rm tab le is given. A. J . M e e .

Spectrum of singly-ionised ziconrium .

C. C.

K ie s s a n d H . K . K ie s s (B ur. S ta n d . J . R es., 1930,

5,

1205— 1241).— M ost of th e lines observed in th e sp a rk sp ectru m of zirconium hav e been classified as com binations betw een term s of th e q u a d ru p le t an d d o u b le t sy stem of Zr n . T h e te rm s w hich hav e been found a re in all cases those req u ired th e o retically for a n a to m w ith th ree o u ter electrons.

W . E . D o w n e y .

Intensity anom alies in the m ultiplets of silver and gold.

S. S a m b u r s k y (Proc. K . A kad. W etensch.

A m sterd am , 1930,

33,

1025— 1027 ; cf. A., 1930, 831).

— T he ra tio 2 : 1 has been o b ta in e d for th e relativ e in ten sities of th e silver lines a t 3382-8 an d 3280-6 A.

a n d 2-4 :1 fo r those of th e second d o u b let of th e p rin cip al series (X=2069-S a n d 2061-2 A.). W h en F e rm i’s th e o ry (A., 1930, 388) is a p p lied to these

re su lts th e ra tio of th e tr a n s itio n p ro b ab ilities of th e 2P a n d 3 P levels to th e g ro u n d s ta te ( / 2/ / 3) is found to be 20, w hereas th e e q u iv a le n t ra tio s for th e alkali m etals lie betw een 100 a n d 200. T he intensity, ra tio of th e gold lines 32£ —22P 3 2 a n d & S - 2P m (x=4241-8 a n d 3650-7 A.) is also th e n o rm al value of 2 : 1. T he diffuse series 22P —32D in b o th silver a n d gold a n d th e 2 - P —4-D series in silver show m a rk e d d e p artu res from th e th eoretical ra tio . T h is is ex p lain ed b y assum ing th e existence of a low 2D te rm . J . W . S m ith .

Spectrum of doubly-ionised iodine.

J . B.

S e t h (N ature, 1931, 127, 165).— M any of th e stro n g lines in th e visible a n d id tra -v io le t regions originate in term s of 20 2P V 20 2P 2, a n d 20 2P 3 electronic con­

figurations ; all th e q u a d ru p le t term s for these hav e been recognised. The 2 0 2 ( P - ^ ---- P 2) a n d 20., (P.,4---- P 3) lines are grouped a b o u t 3900 A. a n d 3100 A.,

respectively. L. S. T h e o b a ld .

Spectrum of trebly-ionised cerium (Ce iv).

J . S. B ad am i (Proc. P h y sical Soc., 1 9 3 1 ,4 3 ,5 3 — 58).—

T he spectrum of th e condensed sp a rk of cerium has been stu d ied in th e ultra-v io let. T h e sp ectru m is simple, being sim ilar in electronic stru c tu re to th e spectra of Ca I, B a n , a n d L a h i. A ta b le of term values an d ionisation p o te n tia ls of L a i n a n d Ce iv is

given. A. J . M e e .

Influence of pressure and tem perature on the absorption of excited m ercury atom s in a neon atmosphere.

0 . M a s a k i (Z. P h y sik , 1930, 66, 229— 240).— T he ab so rp tio n of lig h t corresponding w ith th e tra n sitio n s 23P 0i1>2—23£ 1 of ex cited m ercury v ap o u r in th e presence of a n excess of neon has been exam ined b y m eans of a K ö n ig -M arten s sp e c tro ­ photom eter. T he m echanism s suggested in ex p la n ­ atio n of th e p h enom ena observed are discussed a t

length. R . W . L u n t .

Optical m easurem ents on the m ercury atom.

M. SciiErN (H elv. phvs. A cta, 1930,2, Supp. 1 ,3 — 1 1 1 ; Chem. Z entr., 1930,\ 3009).— As a sensitive m ethod for m easuring sm all spectroscopic w ave-length differ­

ences th e a b so rp tio n of a m onochrom atic ra y is em ployed in a m onochrom atic absorbing m edium w ith th e light a n d ab so rp tio n frequencies co n tin u ally o u t of phase. T he m eth o d succeeds w ith m ercu ry reson­

ance fluorescence absorbed in m ercu ry v ap o u r, and has been applied to d eterm ine th e S ta rk a n d D oppler

effects. L. S. T h e o b a ld .

Mercury band system in the neighbourhood of the resonance line.

(L o r d ) R a y l e i g h (N ature, 1931, 1 2 7 , 125).— A dditional b an d s betw een t h a t a t 2540 A. a n d th e resonance line 2536-52 hav e been m easu red ; th e b an d s are sh ad ed from th e re d an d th e w ave-lengths are 2540-37, 2538-44, a n d 2537-32 A.

Two bands shaded from th e re d hav e also been m easured a t 2535-82 a n d 2535-35 A.

L . S. T h e o b a ld .

High-frequency discharges in m ercury, helium , and neon.

C. J . B r a s e f i e l d (Physical R ev ., 1931, [ii], 3 7 , 82— 8 6 ; cf. A., 1930, 837).—

M easurem ents of th e p o te n tia l d ro p a t th e electrodes a n d th e electric force in th e positive colum n of high- freq u en cy discharges in m ercury, helium , a n d neon for a range of gas pressures a n d oscillation frequencies

(3)

G E N E R A L , p h y s i c a l, a n d i n o r g a n i c c h e m i s t r y.

of 1-25— 22-5 m egacycles show ed th a t, in general, th e m ag n itu d e of th e electric force w as insufficient to produce electrons of velocity necessary to ionise or

excite th e gas. N . M. B l i g h .

Intensity determ inations w ith the m ultiplets of m ercury and neon by excitation of the lines by electron collision.

W . E n d e (Z. P hysik, 1931, 67, 292— 293; cf. A., 1929,1119).—-The in te n sity re la tio n ­ ships given in th e form er p a p e r are corrected.

A. J . Me e.

Intensity distribution in the m ercury triplet 2S’31—

2

3P

0j1j2

and the m ean glow period of the triplet com ponents.

R . F r i s c h a n d P . P r in g s - heem (Z. Physik, 1931,

67,

169— 178).— B y irra d i­

atio n of th e lines 5461 a n d 4047

A.

th e fluorescence em ission of th e visible m ercu ry tr ip le t 23<SX—23P 0iJi2 was obtained. The relativ e in te n sity of th e th re e lines is in d ep en d en t of w h eth er th e green or th e violet com ponent is used for th e excitation. I t is concluded t h a t th e in e q u a lity observed b y R an d all (A., 1930, 970) in th e life period of th e th re e lines c a n n o t be cleared u p b y consideration of hyperfine stru c tu re (cf. R ich ter, th is vol., 8). A. J . M e e.

Polarisation of the continuous X-rays from single electron im pacts.

B. D a s a n n a c h a r y a (Physical R ev ., 1930, [ii],

36,

1675— 1679).— P o la ris­

a tio n increased exp o n en tially w ith decreasing th ic k ­ ness of alum inium ta rg e ts, in dicating n e a rly com plete polarisation a t 6 x 10‘8 cm . thickness, a n d dim inished w ith increasing v elocity of th e exciting electrons.

R esults are in agreem ent w ith S u g iu ra’s th e o ry of th e p o larisatio n of continuous X -ra y s (cf. A., 1930, 4).

N . M. B l ig h .

Scattering of short X-rays by m olecular hydrogen.

H . S. W . M a s s e y (Proc. Camb. Phil.

Soc., 1931, 27, 77— 8 5 ; cf. D ebye, A., 1930, 843).—

M athem atical. F ro m th e fo rm u la deduced b y W aller (cf. A., 1929, 746) th e in ten sities of sh o rt X -ray s sc attered from m olecular hydrogen are calculated.

N . M. B l i g h .

Spectrum of the radiation from a high potential X-ray tube.

C. C. L a u r i t s e n (Physical Rev., 1930, [ii], 3 6 , 1680— 1684; cf. ibid., 988).—

Using a Seem an ty p e spectrograph, a spectrogram w ith th e tu b e a t 600 kilovolts shows a continuous spectrum w ith a m ax im u m in te n sity a t a b o u t 200 kilovolts, a n d a sh o rt w ave-length lim it a t a b o u t 600 kilovolts, th e range covered being 100

20

A.

N . M. B l ig h .

Origin of L-absorption edges of heavier elements.

A. S a n d s t r o m (Z. P h y sik , 1930, 66, 784— 789).— T he know n A -absorption a n d em ission spectra for th e elem ents tu n g ste n to u ra n iu m in d icate th a t A edges a re d ue to a tra n sitio n from th e A level to th e first incom plete group or sub-group of ex tra- nuclear electrons. A. B. D. C a ssie .

Accuracy of interference determ inations w ith m olecules w ith

X -

and cathode rays.

L. Bewi- l o g d a (Physikal. Z., 1931, 3 2 ,1 1 4 — 117).— T he a c cu r­

a c y a tta in a b le b y th e use of X -ray s , a n d of cath o d e ra y s in d eterm in atio n s based on interference is d is­

cussed. X -R a y s provide a m ore a cc u ra te re s u lt th a n

ca th o d e ray s, alth o u g h th e la tte r possess th e a d v a n ­ tag e of req u irin g sh o rter exposure tim e.

A. J . M e e.

Discontinuous absorption of X-radiation.

B. B. R a y (Z. P h y sik , 1930, 66, 261— 268).— X -R ad i- a tio n sc a tte re d in a direction inclined to a p rim ary beam suffers a change in w ave-length depending on th e v ecto r change in m om entum , i.e., th e change in w ave-length is due to th e C om pton effect, a n d broadens th e sp e ctral line in th e direction of longer w av e­

lengths. A ny R a m a n line is therefore obscured.

R ad iatio n sc a tte re d in th e direction of th e p rim ary beam shows no C om pton m odification in w ave-length, b u t m ig h t show a n an ti-S to k es R a m a n line du e to atom s excited b y C om pton collisions. CuKa, NiA’x, N iX p, WAx, a n d FcA'p ra d ia tio n s sc a tte re d b y carbon, nitrogen, a n d oxygen were exam ined, an d an ti-S to k es lines corresponding w ith CKa, N X a , an d O X a were

found. A. B. D. C a ssie .

Angular intensity distribution of the con­

tinuous X-ray spectrum .

Y. S u g iu r a (Sci. P apers In s t. P h y s. Cheip. Res. T o k ju , 1930, 15, 37— 39).—

M athem atical. A. B. D. C a ssie .

Change of wave-length of A'-rays on traversing an absorbing m edium .

J . M. C o r k (Compt.

ren d ., 1931,

192,

153— 155).— T h e new lines sta te d b y R a y (cf. A ., 1930, 972) to be produced on passing copper K a ra d ia tio n th ro u g h carb o n etc. were n o t o b ta in e d w hen his ex p erim en t w as rep ea ted , nor could a n y such effect be o b tain ed w ith boron.

C. A. S i l b e r r a d .

Vacuum spectrograph for precise m easure­

m ents of X-rays of long wave-length.

C. E . H o w e (R ev. Sci. In s tr., 1930, [ii], 1 , 749757).A plane g ratin g sp ectro g rap h a n d special featu res of design fo r securing high precision are described.

N . M. B l ig h .

M ultiple scattering in the Compton effect.

J . W . M. D u m on d (Physical R ev., 1930, [ii],

36,

1685— 1701).— T heoretical. Possible errors due to th e neglect of m ultiple sc a tte rin g in a s tu d y of th e sp ectral d istrib u tio n of X -ra d ia tio n sc a tte re d b y lig h t elem ents

are review ed. N . M. B l ig h .

Double-crystal spectrom eter.

J . W . M.

D u m on d a n d A. H o y t (P hysical R ev ., 1930, [ii],

36,

1702— 1720).— T he uses, th e o ry , design, a n d technique of op eratio n of th e doub le-cry stal sp ectro m eter are

described. N . M. B l i g h .

Infra-red absorption bands in the spectra of the greater planets.

R . W i l d t (N aturw is3., 1931,

19,

109— 110).— T he sp ectra of N ep tu n e a n d J u p ite r were p h o to g rap h ed u p to 8600

A.

an d com pared w ith th e sp e c tra of th e su n a n d Capella o b ta in ed in th e

sam e w ay. W . R . A n g u s.

Photo-electric and therm ionic properties of

rhodium.

E . H . D i x o n (Physical R ev ., 1931, [ii],

37,

60— 69).— A th in rib b o n of p u re rh o d iu m was s u b m itte d to rigorous h e a t tre a tm e n t in a p y rex tu b e a t 950— 1450° fo r 1050 hrs. in a vacuum . D uring h eatin g , th e long-w ave lim it sh ifted from 2530 to 3150 a n d back to 2509 A . ; th e photo-electric cu rre n t, m easured b y a C om pton electrom eter, increased a b o u t 130% for th e tem p e ra tu re ran g e 25— 950°, w ith a

(4)

su d d en increase a t 240°. T he therm ionic c u rre n t curve show ed a n irre g u la rity a t 1100°.

N . M. B l ig h . P h o to - e le c tr ic ity . J . W e r n e r (Z. Pliysik, 1931,

67,

207— 226).— M etals a n d sa lts show, in a high vacuum , a n increase in th e photo-electric em ission w ith tim e, w hich is in d ep en d en t of th e rad iatio n . T he cause of th is increased sen sitiv ity , show n only by th e u n s a tu ra te d em ission, is th e rem oval or d im in u ­ tio n of th e layer of gas adsorbed on th e m e ta l or salt.

A. J . Mb s. C o n n e x io n b e tw e e n t h e e f f e c t of n i t r o g e n - o x y g e n c o m p o u n d s a n d t h a t of t h e i r c o m p o n e n ts o n t h e p h o to - e le c tr ic s e n s itiv ity of p o t a s s i u m . R . F l e i s c h e r a n d H . T e ic h m a n n (Z. P h y sik , 1931,

67,

184— 191; cf. A ., 1930, 391).—A n ex am in atio n of th e effect of nitro g en dioxide, n itric oxide, nitrogen, a n d oxygen on th e se n sitiv ity of th e potassium cell shows t h a t th e change in p o sition of th e selective m axim um from 334 to 365 m u is due to th e fo rm atio n

of n itro g en dioxide. A. J . M e e.

T e m p e r a t u r e r e l a t i o n s h i p of t h e u n i d i r e c t i o n a l l a y e r p h o to -e ffe c t. H . T e ic h m a n n (Z. P hysik, 1931, 67, 192— 193; cf. th is vol., 9).— I n th e te m ­ p e ra tu re range dow n to — 1S0°, em ission of th e c o p p e r- copper oxide cell reaches a m axim um betw een —80°

a n d - 1 1 0 ° . A. J . M e e.

A v o id a n c e of a n in f in ite s i n g u l a r i t y a t th e e le c tr o n . W . A n d e r s o n (Z. P h ysik, 1930, 66, 712—720).—A m b arzu m ian a n d Iv an en k o concluded (cf. A ., 1930, 1335) th a t electrons in cry stal fo rm atio n could n o t ap p ro ach closer th a n 6-34e2/»i()c2, a n d th is is precisely th e m inim um d ia m eter possible fo r elec­

tro n s w hen considered as gas of com pressible electric p articles (cf. A ., 1929, 1137). N o ex p lan atio n of th is coincidence could be found. A. B. D. C a s s i e .

N e w m e t h o d f o r r e c o r d i n g e le c tr o n s . P . H . C a r r (Rev. Sci. Iristr., 1930. [ii], 1, 711—743).—The use of photographic p lates fo r recording electrons is reviewed. U sing a slightly m odified a p p a ra tu s, th e experim ents of Cole (cf. A., 1926,1189) were repeated, an d it was found th a t photographic p lates are rendered m ore sensitive to electrons by th e application of sm all am o u n ts of c e rtain oils, pro v id ed th e electrons strike th e plate a t speeds n o t less th a n 25 e q u iv a le n t volts.

The. sen sitiv ity is m ainly due to cathodo-lum inescence of th e oil, a n d th e failure a t low speeds is due to th e high electrical resistance of th e photographic em ulsion.

T he regions of m etal surfaces bom barded b y electrons re a c t differently from th e u n b o m b a rd ed regions to w ard s c e rtain vapours, th e effect being observed for electron speeds dow n to 12 equ iv alen t volts. E x ­ p erim ental d etails ai'e given for gold and silver, for w luch m ercu ry an d iodine vapours, respectively, were found th e m ost satisfacto ry developers. T he effect w as also in v estig ated for o th er m etals, an d possible explanations are discussed. T he ad v an tag es an d scope of th e tw o m ethods are com pared.

N .M . B l ig h . L o n g itu d in a l d i s t r i b u t i o n of p h o to - e le c tr o n s . L. Sim on s (N ature, 1931,

127,

91— 92).— A ssum ing th e w ave-m echanical principle of interference P(0) cc sin2!) a n d th a t in d ep en d en t groups of p h o to ­ electrons originate from a sm all, plane circular area of

rad iu s b norm al to th e ray , a n d a sm all spherical volum e, rad iu s a, th e p ro b a b ility P(0)d0 cc (Abro2-)- B 1- ^ cos O) sin3 OdO, w here A 1 a n d B 1 are in d ep en d en t of 0, is obtained. This expression m u st be regarded as u n ilateral and integrable only betw een th e lim its 0 to -12. E x p erim en t has confirm ed th e existence of longitudinal sym m etry. L. S. T h e o b a ld .

E le c tr o n d if f r a c tio n a t o x y g e n a d s o r b e d o n tu n g s te n . W . Boas an d E . R u r r (Ann. P h ysik, 1930, [v], 1, 983— 1000).—A n a p p a ra tu s for stu d y in g th e diffraction of electrons of 100—2000 volts energy a t surfaces th e tem p e ra tu re of w hich could be raised to 3000°, is described, an d th e possible errors are discussed. R esu lts are given for p m e tu n g ste n a n d for tu n g ste n "with a n adsorbed lay er of oxygen.

A. B. D. C a ssie . C a p tu r e of e le c tr o n s b y p r o to n s . K . W o l f (Ann. P hysik, 1930, [v],

7,

937— 946).— A n a p p a ra tu s which brings p ro to n s an d electrons of variable relativ e velocity in to th e sam e stream is described. T h e stream is subseq u en tly analysed in to electrons, protons, a n d hydrogen atom s. According to D avis a n d B arn es’ results, for a-particles (A., 1929, 971), n e u tra l hydrogen ato m s should ap p ear a t definite relativ e velocities. N o such phenom enon w as o b ­

served. A. B . D. C a ssie .

A n g u la r s c a t t e r i n g of e le c tr o n s i n g a s e s . F . L . A r n o t (Proc. Camb. Phil. Soc., 1931,

27,

73—7 6 ; cf.

A., 1930, 1493).—T he erro r in tro d u ced in to experi­

m ents on th e a n g u lar scatte rin g of electrons in gases b y th e p o te n tia l g rad ien t betw een th e electron beam an d a p o in t outside i t resulting from th e slig h t difference in co n cen tratio n betw een th e positive ions an d electrons due to th e g re a te r m obility of th e form er

is discussed. N . M. B l i g h .

D i a m a g n e t i s m of th e f r e e e le c tr o n . C. G.

D a r w in (Proc. Cam b. Phil. Soc., 1931,

27,

86— 90).—

M athem atical. L an d au , in his calculation of th e diam agnetic effect d ue to th e m otion of electrons in a m agnetic field (cf. A., 1930, 1355), m ade a n allow ance for bou n d ary considerations. A special case is con­

sidered, ad m ittin g of ex act solution, in w hich th e bou n d ary is replaced b y a w eak field of force. T h e resu lt reduces to L a n d a u ’s form ula, an d shows B o h r’s arg u m en t of th e creeping of th e electron ro u n d th e

b oundary wall. N . M. B l ig h .

D if f r a c tio n of a n e le c tr o n w a v e a t a s in g le la y e r of a to m s . M. v o n L a u e (Physical R ev ., 1931, [ii],

37,

53— 59).—A m ath em atical exam ination of th e tre a tm e n t b y Morse of th e incidence an d reflexion of electrons a t th e surface of a space la ttic e (cf. A., 1930, 976), N i M. B l i g h .

E ffe c t of r e s o lv in g p o w e r o n m e a s u r e m e n t s of t h e a b s o r p t i o n c o e ffic ie n t of e le c tr o n s i n g a s e s . R . R . P a lm e r (Physical R ev., 1931, [ii],

3 7 ,

70— 81).—

Using a M ayer ty p e a p p a ra tu s w ith a n opening of variab le a p e rtu re a t th e end of th e scatterin g cham ber, th e ab so rp tio n coefficient of electrons in helium an d m ercu ry v ap o u r for th e ran g e 20— 135 v o lt electrons w as stu d ied as a fun ctio n of th e aper- a tu re for 2— 11°. N . M . B l ig h .

P h o t o g r a p h i c d e te c tio n of a s y m m e t r i c a l a n g u l a r d i s t r i b u t i o n of d o u b ly - r e f le c te d e le c -

(5)

G E N E R A L , P H Y S IC A L , A N D IN O R G A N IC C H E M IS T R Y . 279

trons. E. R

upp(N aturw iss., 1931,

1 9 ,

109).—U sing a

n o n -ro tatin g analyser a n asy m m etry has been observed in th e a n g u lar d istrib u tio n of doubly-reflected electrons.

A pencil of electrons w as reflected b y gold foil of a fibrous s tru c tu re inclined a t 45° to th e in cid en t pencil.

U sing 220-kilovolt electrons diffraction p a tte rn s h av e been o b tain ed showing definite asym m etrical in te n sity d istrib u tio n of th e doubly-reflected electrons, th e in te n sity being g re a te st in th e plane of th e incident a n d reflected pencils a n d tow ards th e side of th e electron source. T he intensities a t rig h t angles to th is plane were equal. T his asy m m e try was n o t due to th e fibrous stru c tu re of th e foil, since th e sam e effect w as observed w ith th e foil tu rn e d th ro u g h 90°. T he effect is n o t observable w hen alum inium foil is s u b stitu te d for gold. J . W . S m ith .

Discrete range groups of JT-particles expelled from alum inium . II. Dependence of sharing and energy of //-particles on the angle between the prim ary and secondary rays.

H . P o s e (Z.

P h y sik , 1931, 6 7 , 194— 206 ; cf. A ., 1930, 1086, 1232).

— I t is shown th a t th e b ackw ard sharing is a b o u t 30% sm aller th a n t h a t in th e forw ard direction.

T he velocities of th e //-p a rtic le s calculated from th e ranges decrease as th e angle betw een th e p rim a ry a n d secondary ra y increases. A . J . M e e.

Recoil atom s

i n

gases.

L . G o l d s t e i n (Compt.

rend., 1930,

191,

1450— 1452 ; cf. A ., 1929, 1358).—

T he curve show ing th e relatio n of yield of a c tiv a tio n to pressure shows a ra p id rise to a m axim um of 50%

for a pressure of a b o u t 2 cm . m ercury, followed b y an asy m p to tic decline to a b o u t 26% fo r pressures in excess of 45 cm. I t is suggested th a t th e m axim um occurs w hen th e field is ju s t stro n g enough to bring all recoil atom s on to th e electrode, th e subsequent decline being caused b y increased ionic d en sity d ue to increased pressure resulting in m ore com plete u tilis­

atio n (in ionisation) of th e a-particles.

C. A. SlLBERRAD.

Method of ion counting in the free atmosphere.

Y. I t i w a r a (Physikal. Z., 1931, 3 2 , 97— 106).—The use of th e ion counting tu b e for determ ining th e num ber of ions in th e free atm osphere is discussed.

I t is show n t h a t if i t is used b y th e charge m ethod, i.e., the o uter electrode of th e cylindrical condenser is raised to

a

co n sta n t po ten tial, th e n th e charge on th e inner electrode w hich w as originally e a rth ed m easures only a fractio n of th e to ta l nu m b er of ions. The counting tu b e of Gocltel, as used b y H ess, co u n ts only the large ions, an d if a suitable correction is applied to his figures, th e y agree m ore closely w ith those of

other observers. A . J . M ëe.

[Method of ion counting in the atm o­

sphere. ] Y.

P . H e s s (P hysikal. Z.,

1931, 32,106).— .

D oubt is c a st on th e q u a n tita tiv e v alue of th e w ork of Itiw ara (cf. preceding ab stra c t). T he experim ents of Itiw a ra in no w ay to u ch th e w ork of H ess on th e ionis­

ation balance of air over la n d an d open sea.

À. J . M e e .

Form ation of negative ions in gases.

W. H e y an d A. L e ip u n sk y (Z. P hysik, 1930, 66, 669—685).— E xperim ents to determ ine th e p ro b ab ility of th e form ation of n egative ions in argon, m ercury, an d iodine vapours as

a

function of th e electron velocity are

described in w hich care has been ta k e n to elim inate th e sources of error to w hich are a ttrib u te d th e discrepancies in th e d a ta of o th er w orkers. T he p ro b ­ ab ility in all cases is of th e order of lCk5 in th e range 0—20 electron volts. Iodine v a p o u r ex h ib its a well- defined m axim um in th e neighbourhood of 2-5 volts a n d th e re a fter th e p ro b ab ility a tta in s a n ap p ro x im ately c o n sta n t value. Below 10 volts th e p ro b a b ility in argon a n d m ercu ry v a p o u r is very sm all an d rises ra p id ly in th e range of 10— 20 volts. R . W . L u n t .

Production of high-speed canal rays without the use of high voltages.

E . O. L a w r e n c e an d D. H , S l o a n (Proc. N a t. Acad. Sci., 19 3 1 ,1 7 , 64— 70).

Value of

M [ tn . W . N . B o n d (N atu re, 1931, 1 2 7 , 164).—Evidence, a g ain st E d d in g to n ’s suggested value of 1849-6 for MJm is quoted. L . S. T h e o b a ld .

M asses of the electron, the proton, and the universe.

(S ir ) A. S. E d d i n g t o n (Proc. C am b.

P hil. Soe., 1931, 2 7 , 15— 19; cf. A., 1930, 518).— A n extension of th e th e o ry of th e value 137 fo r th e con­

s ta n t he 12ne2 is o utlined ; i t gives satisfacto ry values fo r th e m asses of th e electron, p ro to n , a n d universe.

N. M. Bligh.

Eleventh report of the German com m ission on atom ic w eights.

M. B o d e n s t e i n ,

O.

H a h n , 0 . H o n ig sc h m id , a n d R . J . M e y e r (Ber., 1931, 6 4 . [B], 1— 21).— T he re p o rt follows th e general lines of its predecessors. T h e following changes are a d o p ted : As ==74-93 in stead of 74-96; T a = 1 8 1 -3 6 in stead of 1S1-5; R e= 1 8 6 -3 1 in stead of 18S-7. H . W r e n .

Fundam ental at. w ts. IX. At. wt. of sulphur.

Synthesis of silver sulphide. O.

H o n ig s c h m id an d R . S a c h t l e b e n (Z. anorg. Chem., 1931, 1 9 5 , 207— 227; cf. A ., 1929, 370).—B y d irect com bination of silver a n d su lp h u r v a p o u r a t 250° th e value of 1-148621 h as been o b tain ed for th e ra tio Ag2S :2A g, w hich gives 32-0664 fo r th e a t. w t. of sulphur.” Silver sulphide does n o t dissociate a t 150— 300°.

R . C g t h i l l .

Revision of at. wt. of calcium . At. wt. of calcium from sylvine.

0 . H o n ig s c h m id a n d K . K e m p te r (Z. anorg. Chem., 1931, 1 9 5 , 1— 14).—

D eterm in atio n of th e ratio s CaCI2: 2 Ag an d CaCl2:2AgCl h as given th e value 40-085+0-00060 fo r th e a t. w t. of calcium . T he a t. w t. of calcium o b tain ed from sylvine is norm al, in d icatin g th e absence of a n y appreciable a m o u n t of th e calcium isotope Ca41.

R . C ut h l l l .

At. wt. of uraninite lead from Wilberforce, Ontario, Canada.

G. P . B a x t e r a n d A. D . B l i s s (J. Am er. Chem. Soc., 1930, 5 2 , 4 8 5 1 -4 8 5 3 ).—T he a t. w t. of lead e x tra c te d from u ra n in ite is fo u n d to b e 206-195 a n d on c e rta in assum ptions th e th o riu m / u ran iu m co n sta n t is com puted to be 0-27.

J . G. A. G r i f f i t h s .

At. w t. of uranium lead from Sw edish kolm .

G. P . B a x t e r an d A. D. B l i s s (J. A m er. Chem. Soc., 1930, 5 2 , 4848— 4851).—T he a t. w t. of u ra n iu m lead e x tra c te d from Swedish kolm , in w hich th o riu m could n o t be detected,

is

206-01. J . G. A. G r i f f i t h s .

Determ ination of the isotope ratio from

intensity m easurem ents of the boron m onoxide

spectrum .

A. E l l i o t t (Z. P hysik, 1931, 6 7 , 75—

(6)

88).—T he in te n sity of a spectral line depends on th e n u m b er of m olecules in th e original sta te , a n d on th e tra n sitio n probabilities. If th e curve showing th e n u m b er of m olecules w ith a given energy is selective to a ran g e of energies, as is th e case w ith boron m o n ­ oxide in a n active nitrogen discharge tu b e, th e n because of th e difference betw een th e energies of v ib ratio n of tw o isotopic molecules, th e isotope ratio m a y n o t be proportional to th e relative in ten sities of th e corresponding lines. T he erro r in assum ing th is pro p o rtio n ality for boron m onoxide isotopes is 4— 7% . T he corrected isotope ra tio is 3-63;LO-02, an d th e corresponding a t. w t. is lO - lO t^ 0-001. T he effective tem p eratu re of active nitrogen in such a discharge

tu b e is 470°. A. B. D. C a ssie .

I s o to p ic c o n s titu tio n a n d a t. w ts . of z in c , t in , c h r o m iu m , a n d m o ly b d e n u m . F . W . A s t o n (Proc, R o y . Soc., 1931, A , 130, 302— 310).—W ith th e o b ject of d eterm in in g th e re la tiv e ab u n d an ce of isotopes in a n u m b er of elem ents, a tte m p ts h av e been m ade to m easure th e p hotom etric in te n sity of m ass sp ectra lines. T h e use of cadm ium m eth y l a n d germ anium e th y l led to u n sa tisfa c to ry re su lts for these m etals. I n th e experim ents on zinc, zinc m eth y l w as used. T he p acking fractio n of Znfi4 w as fo u n d to be —9-9, th e percentage of th is isotope being 4S-0. T he a t. w t. of th e m e tal w as calcu lated to be 65-380J r 0-02, in e x a c t agreem ent w ith th e b est chem ical d e term in atio n s. T he m e th y l com pound w as also used for tin , w hich gave a packing fractio n of

—7-3 for Sn120 a n d a t. w t. 118-72±0-03. Chrom ium hexacarbonyl w as used for chrom ium , a n d fo u r iso­

topes, 50, 52, 53, a n d 54, were discovered, 52 being m uch th e stro n g est. A provisional value for th e packing fractio n of Cr52 is —10, giving a t. w t. 52-011 ± 0 - 0 0 6 .~ T he h exacarbonyl w as also used for m o ly b ­ denum a n d seven isotopes, 92, 94, 95, 96, 97, 98, a n d 100, were observed. T his group shows a sim ilarity of abun d an ce m ore strik in g th a n t h a t of a n y o th er elem ent of such com plexity. T he p acking fractions of Mo98 a n d Mo100 were fo u n d to be th e sam e, —5-5 (approx.), giving a t. w t. 95-97±0-06.

L. L. B ir c u m sh a w . C o n s titu tio n of o s m i u m a n d r u t h e n i u m . F . W . A s t o n (N ature, 1 9 3 1 ,1 2 7 , 233).— T he m ass sp ectru m of osm ium tetro x id e indicates t h a t th e m e ta l has fo u r stro n g a n d tw o w eak isotopes, one of th e la tte r being isotopic w ith tu n g sten , W 18G. T he m ass n u m ­ bers a n d % relativ e abundances (provisional) a re 186 a n d 1-0, 187 an d 0-6, 18S a n d 13-5, 189 an d 17-3, 190 an d 25-1, a n d 192 a n d 42-6, respectively. T he p a c k ­ ing fra c tio n is —1 -0 ^ 2 -0 a n d th e deduced a t. w t. is 190-31d;0-06, suggesting t h a t th e accepted value of 190-9 is to o high. T he b ehaviour of ru th e n iu m tetro x id e in th e discharge m akes th e following d a ta u n certain , b u t six isotopes, w ith possibly a fa in t sev en th , ap p e a r to be p resen t. T he m ass num bers an d p ercentage ab u n d an ces are 96 an d 5, (98) a n d — , 99 a n d 12, 100 an d 14, 101 an d 22, 102 a n d 30, a n d 104 a n d 17, respectively. A ssum ing a p acking fra c ­ tio n of ap p ro x im ately —6, these give an a t. w t. of 101-1, b u t th e divergence from th e accepted value of 101-7 can be p a rtly explained in th is case.

L. S. Th e o b a l d.

I s o to p e s a n d liv in g o r g a n i s m s . W . V e r n a d ­ s k y (Com pt. ren d ., 1931, 1 9 2 , 131— 133).—To d e te r­

m ine w h eth er living organism s hav e th e pow er of sep aratin g isotopes, com pounds of potassium , iron, m agnesium , zinc, calcium , silicon, a n d su lp h u r have been p rep ared from th em an d th e a t. w ts. are to be determ ined (cf. Low ry, th is vol., 141).

C. A. SlLBERRAD.

R e m o v a l of r a d o n f r o m a n e m a n a t i o n c h a m b e r a f t e r u s e . C. L. U t t e r b a c k a n d D . D e v a p u t r a (R ev. Sci. In s tr., 1931, [ii], 2 , 53—54).—A n a p p a ra tu s an d m ethod a re described for th e ra p id rem oval of ra d o n a fte r w ork on solutions co ntaining rad iu m u p to 10~7 g.

p e r litre, b y a lte rn a te ev acu atio n of th e em an atio n cham ber an d sweeping o u t w ith specially d ried air.

N. M. B l ig h . M a g n e tic s p e c t r a of a - r a y s . S. R o s e n b ltjm (J.

P hys. R adium , 1930, [vii], 1, 438—444).—Tw o pieces of a p p a ra tu s are described. I t is show n t h a t all th e a-rays from th o riu m -C do n o t tra v e l w ith identical speeds, b u t in groups. C. W . G ib b y.

A n o m a lo u s s c a t t e r i n g of a-p a r tic le s b y l i g h t n u c le i. E . Gu t ii a n d T. S e x l (Z. Physik, 1930, 66, 577—580).— A m eth o d is in d icated fo r th e e x a c t cal­

culation of anom alous scatterin g of a-particles by a G am ow -G urney-C ondon p o te n tia l field, in stead of by th e usual successive ap p ro x im atio n m ethod.

A. B. D. C a ssie . C a p tu r e of e le c tr o n s b y a - p a r tic le s . H . C.

W e b s t e r (Proc. C am b. P h il. Soc., 1931, 2 7 , 116—

130).— T he c a p tu re of one an d tw o electrons b y sw ift a-particles, rep o rte d b y D avis an d B arnes (cf. A., 1929, 971; 1930, 393), w as in v estig ated , using a n electrical co u n ter in stead of a scin tillatio n screen, w ith com pletely n eg ativ e resu lts. D etailed considerations of v ario u s aspects of th e ex p e rim e n ta l conditions an d in te rp re ta tio n of d a ta show no possibility of reco n ­ ciliation w ith th e re p o rte d effect. N . M. B l i g h .

S c a t t e r i n g of s lo w a - p a r tic le s b y h e liu m . P . M. S. B l a c k e t t a n d F . C. C ham pion (Proc. R oy.

Soc., 1931, A , 1 3 0 ,3 8 0388).—M o tt has show n (A., 1930, 269), from consideration of th e sy m m etry of th e w ave functions, th a t th e sc a tte rin g of p articles b y a n inverse sq u are field is q u ite different from th a t of th e classical th e o ry w hen th e sc a tte rin g a n d s c a t­

te re d p articles are identical. B y using a n a u to m atic W ilson cham b er containing a m ix tu re of helium an d oxygen, th e sc atterin g of a-particles b y helium has been followed dow n to a velocity of 108 cm. p e r sec., corresponding w ith a range of 0-5 m m . in air a t

N .T .P . L. L. B ir c u m sh a w .

A t t e m p t t o d e m o n s t r a t e t h e e x is te n c e of s h o r t - r a n g e a - p a r tic le s f r o m r a d iu m - C . G. H . H e n d e r s o n a n d J . L. N ic k e r s o n (Proc. N o v a Scotia I n s t. Sci., 1 9 3 0 ,1 7 , 256— 258).— A n a tte m p t to d e tect sh o rt-ran g e p articles from ra d iu m -C b y th e W ilson ch am b er m eth o d show ed th a t no group of p articles of definite ran g e could be d ete c te d above th e general

background. H . B u r t o n .

A b s o r b a b le r a d i a t i o n a c c o m p a n y in g a - r a y s f r o m p o lo n iu m . (Mme.) I. C u r ie a n d F . J o l i o t (J. P h y s. R ad iu m , 1931, [vii], 2, 20— 28).— A m ore d etailed acco u n t of w ork a lread y n o ted (A., 1930, 130).

(7)

G E N E R A L , P H Y S I C A L , A N D IN O R G A N IC C H E M IS T R Y . 2S1

Loss of energy by (3-particles, and its distri­

bution between different kinds of collisions.

E . J . W ill ia m s (Proc. R oy. Soc., 1931, A , 130, 328—

316).— T heoretical. T he req u irem en ts of th e classical and q u a n tu m theories are com pared, an d i t is show n th a t th e q u a n tu m th e o ry is in general agreem ent w ith e x p erim en t an d provides an ex p lan atio n of several p re v io u s ^ obscure effects, p a rtic u la rly in con­

nexion w ith p rim a ry ionisation.

L. L. B ircu m sh a'w . R a t e of lo s s of e n e r g y b y p - p a r tic le s i n p a s s i n g t h r o u g h m a t t e r . E . J . W illia m s (Proc. R oy.

Soc., 1931, A , 130, 310— 327).—M ost of th e previous ex p erim en tal w ork w hich h a s been carried o u t on P-particles is v itia te d b y th e effects due to sc atterin g a n d straggling. E x p e rim e n ta l values w hich are p ra c ­ tica lly free from these effects are now given for th e ra te of loss of energy b y p-particles w ith velocities ranging from a b o u t 0-1 to 0-97c.

L. L. B ir o u m sh a w . P h o t o g r a p h i c e ffe c ts of y - r a y s . J . S. R o g e r s (Proc. P h y s. Soc., 1931, 4 3 , 59— 67).— A lthough slow, a p h o to g rap h ic m eth o d can be used for m easuring intensities of y -ray s, ev en w hen v e ry sm all. T he p hotographic action of y -ray s from rad iu m an d ra d o n in equilibrium w ith th e ir short-lived p ro d u cts has been in v estig ated . T he v ariatio n of photographic d en sity w ith tim e of exposure (using co n sta n t in te n s­

ity) a n d th e v a ria tio n of d en sity w ith in te n sity (con­

s ta n t tim e) w ere exam ined for. y-ray s filtered th ro u g h lead screens of different thicknesses. T he index in th e Schw arzschild re la tio n is u n ity fo r all lead filters.

A p h otographic m eth o d has been developed for th e determ in atio n of ab so rp tio n coefficients. T he ab so rp ­ tion coefficient of lead for y -ray s is 0-533 cm .-1- for thicknesses of lead from 1 to 7 cm. T his is th e sam e value as w as fo u n d b y Ivohlrausch for th e h a rd e r ray s from radium -C , b u t is som ew hat less th a n th a t obtained b y A hm ad w ith a filter of lead 1 cm . th ick .

A. J . M ee.

A b s o r p tio n c o e f fic ie n ts of y - r a d i a t i o n f r o m r a d i u m - / ) a n d -E , a n d th e n u m b e r of e m i t t e d q u a n ta . (M iss) S. B r a m s o n (Z. P hysik, 1930, 66, 721— 740).— A bsolute m easurem ents h av e been made of ionisation c u rre n ts d ue to y -ra d ia tio n from radium -D a n d -E, a fte r passage th ro u g h alum inium and copper. R a d iu m -/) show ed ab so rp tio n coeffi­

cients corresponding w ith th e w ave-length 2-G

x

10~°

cm., an d ra d iu m -// th e w ave-lengths 1-55 a n d 0-5

x

10-9 cm. T h e longer rad iu m -/? w ave-length is a Ka.

radiation from polonium , b u t th e sh o rte r p ro b a b ly arises in th e rad iu m -D nucleus. T he m ag n itu d e of ionisation c u rre n ts show ed th a t ev ery 100 d is­

integrating rad iu m -D ato m s e m itte d 3-1 ± 1 -2 , a n d every 100 d isin teg ratin g radium -D ato m s e m itte d O-SiO-25 y-qU antum . T he in te rn a l ab so rp tio n coeffi­

cient is know n for radium -D , a n d in d icates th a t ev ery d isintegrating rad iu m -D nucleus em its one y -q n an tu m .

A . B . D . C a ssie . N u m b e r of y - q u a n ta e m i t t e d f r o m r a d iu m - D . E. S t a h e l a n d G. J . S izoo (Z. P h ysik, 1930, 66, 741— 747).— T he n u m b er of y -q u a n ta e m itte d from radium -D due to d isin teg ratio n w as d eterm in ed b y m eans of a n ionisation cham ber containing m e th y l iodide. D -R adiation from excited ato m s was a b ­

sorbed b y 1 m m . of alum inium a n d (3-radiation w as deflected b y a m agnetic field. E n erg y absorbed by th e m e th y l iodide t h a t does n o t co n trib u te to ionis­

a tio n w as allow ed for. E v e ry 100 d isin teg ratin g rad iu m -D ato m s e m it 2-4fl; 0-7 y -q u a n ta .

A. B. D. C a ssie . M e th o d s of in v e s t i g a t i n g t b e in t e n s i t i e s of y - r a y s . C. D. E l l i s a n d D. S k o b e l t z y n (N ature, 1931, 127, 125).—T he m ethods of Skobelzyn (A., 1930, 8) a n d of E llis a n d A ston {ibid., 1339) for m easurem ents of th e in ten sities of th e y-ray s of radium -D a n d - 0 are discussed in re la tio n to each o th e r a n d are show n to be com plem entary. Con­

fidence in th e values of th e ind iv id u al in ten sities of th e y-ray s m easured b y th e photo-electric m eth o d is also given b y th is agreem ent. L. S. T h e o b a ld .

P h o to - e le c tr ic a b s o r p t i o n of y - r a y s . L. H . G r a y (Proc. C am b. P h il. Soc., 1931, 27, 103— 112).—

A vailable d a ta for th e d e riv atio n of a fo rm u la for th e photo-electric ab so rp tio n coefficient of X -ra y s a n d y-rays are review ed. N. M. B l ig h .

A b s o r p tio n la w f o r s h o r t w a v e - le n g th y - r a y s . L. M e i t n e r an d H . H . H u p f e l d (Z. P h y sik , 1931, 67, 147— 168).— T he abso lu te sc a tte rin g coefficient of y-rays of w ave-length 4-7 X from th o riu m -6 '", filtered th ro u g h 4 cm . of lead, w as d eterm in ed fo r different sub stan ces a n d w as found to correspond w ith th a t calcu lated from th e form ula of K lein an d N ish in a (A., 1929, 373) for carb o n o n ly ; in general, ae in ­ creases w ith increasing nuclear charge. F o r y-rays fo r radium -C th e scatterin g coefficients for alum inium an d carb o n are id en tical an d accord w ith th e theory.

A. J . M e e . T h e o r y of a to m ic d is in t e g r a t i o n . I I . G. B e c k (Z. P h y sik , 1931, 67, 227— 239; cf. A ., 1930, 1233;

th is vol., 16).— The case of a h e a v y nucleus is co n ­ sidered w here th e in cid en t a-rays c a n n o t p e n e tra te far, an d th e ex citatio n of a nucleus b y d irect collision w ith a-rays is discussed. A. J . M e e .

P r e s e n t s t a t u s of t h e o r y a n d e x p e r i m e n t a s to a to m ic d i s i n t e g r a t i o n a n d a to m ic s y n th e s is . R . A. M i l l i k a n (Science, 1931, 73, 1— 5).— An

address. L. S. T h e o b a ld .

M i c r o c a l o r i m e t r i c m e a s u r e m e n t s of a t h e r m i c e ffe c t v a r y i n g w i t h tim e . A. D o r a b i a l s k a (Rocz.

Chem., 1931, 1 1 , 35— 39).— T he increase in h e a t p ro ­ d u ctio n of 2-2 m g. of ra d iu m sep a ra te d from e m an ­ atio n a n d from slowly d isin te g ratin g p ro d u c ts can be m easured b y m eans of a n ad ia b a tic m icrocalorim eter., a n d is a m easure of th e accu m u latio n of em an atio n .

R . Tr u sz k o w sk i. R a d i a t i o n a n d m o l e c u l a r p r o p e r t i e s . R . D . K le e m a n (Z. anorg. Chem ., 1931, 1 9 5 , 164172). T heoretical. I t is show n t h a t th e a u th o r ’s th e o ry of a sta tic ato m is capable of affording a com prehensive e x p la n a tio n of th e p h enom ena of p h o to ch e m istry (cf.

A., 1930, 1340). I t also yields a satisfa c to ry physical in te rp re ta tio n of ra d ia tio n a n d ionisation p o ten tials.

R . C u t h i l l . Q u a n tu m - m e c h a n ic a l m o tio n of f r e e e le c tr o n s i n e l e c tr o m a g n e tic fie ld s . E . H . K e n n a r d (Proc.

N a t. A cad. Sci., 1931, 17, 58— 63).

(8)

T r a n s f e r of e n e r g y b e tw e e n a t o m s o n c o llis io n . 0 . N . R ic e (Proc. N a t. A cad. Sci., 1931.1 7 , 34— 39).—

M athem atical. A n outline is given of a m odification of B o rn ’s tr e a tm e n t of th e q uestion of energy exchange b etw een a to m s or molecules w hich ta k e s in to acco u n t th e re la tiv e tra n sla tio n a l energy a n d also m eets th e objections raised by K allm an n a n d L ondon (A., 1930, 395) to F re n k e l’s view t h a t B o rn ’s m e th o d m a y be ap p lied d ire ctly (ibid., 132). T he m eth o d yields in a n y given case a n u p p e r lim it for th e ra d iu s of ac tio n w hich is considerably sm aller th a n t h a t fo u n d b y K allm an n a n d L ondon (A., 1929, 487).

H . F . Gil i/b e. A b s o r p tio n c o e ffic ie n t of e a r t h r a d i a t i o n i n a ir . G. A. Su ck sto rff (N aturw iss., 1931, 1 9 , 87— 88).—

T he ab so rp tio n coefficient of e a r th ra d ia tio n fo r free a ir (10 m etres above gro u n d level) w as found to be 3-4 x lO -5 cm .-1 ; for a ir in a n iron tow er 10 m e tres high tho v alu e w as 4-5 X lO -5 cm .-1 Tlio a b so rp tio n curve in free air can be rep resen ted b y th e a d d itio n of th re e ab so rp tio n curves w ith coefficients, 4'6, 3-2, a n d 2-6 X lO -5 cm .-1, w hich correspond w ith th e io n is­

ing influences of rad iu m , th o riu m -C ", a n d potassium ,

respectively. W . R . A r g o s .

T r a n s f o r m a t i o n of l i g h t in to h e a t i n s o lid s . I.

J . F r e n k e l (P hysical R ev., 1931, [ii], 3 7 , 17—4 4 ; of. A., 1930,126, 132).— M ainly m ath em a tic al. F ro m th e analogy betw een a c ry sta l a n d a m olecule th e electronic e x c ita tio n form ing th o first stop in th e process of lig h t ab so rp tio n is d istrib u te d am ong th e a to m s in th e form of “ e x c itatio n w aves,” sim ilar to sound w aves, w hich are used to describe th e h e a t m otion in th e sam e cry stal. N . M. B l i g h .

B u ild in g u p of e le m e n ts i n s t a r s . W . A n d e r ­ s o n (Z. Pliysik, 1931, 67, 294— 295).— T he s ta te m e n t of A tk in so n a n d H o u te rm a n s (A., 1929, 738) t h a t th e te m p e ra tu re of sta rs is of th e o rd er of 4 x 107°

an d t h a t th o d e n sity is a b o u t 10 g. p e r c.c. does n o t agree w ith M ilne’s v alue of 10u °. A. J . M e e .

V a n d e r W a a ls f o r c e s f o r h y d r o g e n a n d h e l i u m a t l a r g e i n t e r - a t o m i c d is ta n c e s . H . R . H a s s e (Proc. C am b. P h il. Soc., 1931, 27, 60—7 2 ; cf. E isen- schitz, A ., 1930, 525; L en n ard -Jo n e s, th is vol., 17).—

M athem atical. T he inte rato m ic force a t large d is­

tan ces is calculated from th e principle of m inim um energy b y a m e th o d based on t h a t used fo r th e p o larisab ilitv of helium (cf. th is vol., 14).

N . M. B l i g h . S e p a r a t i o n of th e tw o t y p e s of io d in e m o le c u le a n d t h e p h o to c h e m ic a l r e a c t i o n of g a s e o u s io d in e w i t h h e x e n e . R . M. B a d g e r an d J . W . U r m s t o n (Proc. N a t. A cad. Sci., 1 9 3 0 ,1 6 , SOS—811).

— W ood a n d Loom is (J. F ra n k lin In s t., 1928, 2 0 5 , 481) fo u n d t h a t th e fluorescence sp ectru m of iodine ex cited b y th e green m erc u ry line (5461

A.)

contained only h alf th e n u m b e r of lines of th e fluorescence sp ectru m excited b y w hite lig h t. T h e lines ap p earin g u n d e r e x c ita tio n b y 5461

A.

are ascribed to a n

“ o rth o ” ty p e of iodine m olecule. T herefore b y irra d ia tin g iodino w ith 5461

A.

i t is possible to a c tiv a te selectively ‘ ‘ o r th o 5 ’ molecules. E x p erim en ts w ere perform ed in w hich th e a c tiv a te d “ o rth o ” m olecules re a c te d w ith hexene are discussed. I t is claim ed t h a t a fte r irra d ia tin g a m ix tu re of iodine

an d hexene w ith 5461

A.

for 24 h rs., th e residual iodine consists largely of m olecules w hich can n o t absorb th e m ercu ry green line. W . R . A n g u s.

P h o t o m e t r i c p r o p e r t i e s of g r o u n d a n d f r o s t e d g la s s . J . D o u r g n o n a n d P . W a g u e t (Com pt. rend., 1931, 192, 155— 156). C. A. S i l b e r r a d .

H i g h ly - a tte n u a te d f la m e s of a l k a l i m e t a l v a p o u r s w i t h h a lo g e n h y d r id e s . G. S c h a y (Z.

physikal. Chem., 1930, B , 1 1 , 291— 315; cf. A., 1930, 832).— R eactions betw een opposing stream s of halogen hydrides a n d vapours of sodium or p o tassiu m hav e been stu d ied b y th e m eth o d s described in earlier p apers. T he p rim a ry re a c tio n is M + H X = M X -f -H , a n d th o lum inescence observed is due to su b seq u en t rea ctio n of th e h ydrogen atom s. A p a r t of tho e m itte d lig h t is d ue to a rea ctio n H + H X = H 2-}-X a n d th e rem ain d er p ro b a b ly to com bination of h ydrogen ato m s w ith sodium adsorbed on th o walls of th e tu b e, a n d su b seq u en t reactio n of tho h y d rid e w ith atom ic hydrogen. T he lig h t e m itte d b y th e sodium flam es is t h a t of th e sodium D line, w hereas tho potassium flames give a continuous spectrum .

F . L . Us h e r. A m m o n ia d i s c h a r g e tu b e . G. I . L a v in an d J . R . B a t e s (Proc. N a t. A cad. Sci., 1930, 1 6 , 804—

808).— T he activ e p ro d u cts in th e e x it tu b e of a n am m onia discharge tu b e h av e been exam ined an d seem to consist of atom ic hydrogen a n d N H or N IL - T he c a taly tic effects of c e rtain sub stan ces a n d th e c h aracteristic lum inescences a t various surfaces hav e been ex am in ed (A., 1930, 659) a n d are discussed.

W . R . A n g u s . B a n d s p e c t r u m i n t e n s i t i e s f o r s y m m e t r i c a l d ia t o m i c m o le c u le s . I I . E . H u t c h i s s o n (P h y sicalR ev ., 1931, [ii], 3 7 ,4 5 — 50).— M athem atical.

T he ap p ro x im ate expression previously deduced (cf.

A., 1930, 1331) is ex tended, using th e S chrödinger p e rtu rb a tio n th e o ry a n d rem oving th e re stric tio n of linear oscillations. N . M. B l i g h .

T h e o r e tic a l v a lu e s of t h e q u a n t u m of e n e r g y of v i b r a t i o n of u n e x c ite d g a s e o u s a lk a li io d id e s . H . J . v a n L e e u w e n (Z. P h ysik, 1930, 66, 241— 245).

— T heoretical. B riick ’s m e th o d (A., 1929, 381) is used to calculate th e energy of in te ra c tio n of a com ­ p a ra tiv e ly sm all positive io n a n d th e électrons of a com pleted O shell, w here th e 0 shell m oves in a field of force due to a nucleus of effective charge Z.

E xam ples discussed are lith iu m , sodium , a n d ru b id iu m

iodide. A. B . D. C a ssie .

A n a ly s is a n d i n t e r p r e t a t i o n of h y d r o g e n c h lo r id e h a n d s i n t h e u ltr a - v io le t. M. K u l p (Z.

P h ysik, 1931, 6 7 , 7— 23).— T he b a n d sp ectru m o b ­ ta in e d b y a Geissler discharge in stream in g gaseous hydrogen chloride w as m easured (cf. A ., 1930, 1089 ;

th is vol., 19). W . R . A n g u s;

In flu e n c e of t h e c r y s t a l l a t t i c e o n t h e a b s o r p ­ t i o n s p e c t r u m of a c o m p o u n d . H . F e s e f e l d t (Z. P h y sik , 1931, 67, 37— 41).—A b so rp tio n spectra betw een 180 a n d 600 m g a re given fo r silver an d th a lliu m iodides a t o ne. te m p e ra tu re below th e inversion p o in t, a n d a t a n o th e r above th e inversion p o in t. V ariatio n of th e a b so rp tio n c o n s ta n t w ith te m p e ra tu re of silver iodide a t 480 m g is also given,

Cytaty

Powiązane dokumenty

The (I) excreted under the latter conditions is sufficient to play an important part in neutralising the excess of alkali, and may help to retain Ca salts in

U se of antim ony electrode in the electrom etric determ ination of j&gt;H- T. Electrodes obtained by electrolytically coating a P t rod with Sb gave gradually

Cancerous tissue and rat’s brain tissue both show an aerobic lactic acid (I) content higher than the normal.. The lessened respiration in the diseased tissue

The effect of cations is in the order calcium (greatest), magnesium, potassium. Of the anions nitrate has a positive effect, sulphate is indifferent, and

ferometer with the aid of standard reference mixtures. The combined weight of the two esters in the mixture was then found by difference, and then- individual proportions

electrodialysis. displaced by the no. of adsorbed org. compound, but is proportional to the no. It is therefore concluded that there is no sp. poisoning of the centres

321— 322° (from naphthalene and the acid chloride in presence of carbon disulphide and aluminium chloride), is treated with manganese dioxide in sulphuric acid

H. Influence of pressure on the conductivity of solutions of acids. A t constant temperature the percentage increase of conductivity, regarded as a function of