• Nie Znaleziono Wyników

Stan równowagi jonowej niektórych gatunków roślin naturalnych siedlisk Puszczy Piskiej

N/A
N/A
Protected

Academic year: 2021

Share "Stan równowagi jonowej niektórych gatunków roślin naturalnych siedlisk Puszczy Piskiej"

Copied!
7
0
0

Pełen tekst

(1)

http://www.degruyter.com/view/j/ssa (Read content)

Vol. 64 No. 4/2013: 151–157

*email: malgorzata_przybysz@sggw.pl ** email: danuta_czepinska_kaminska@sggw.pl DOI: 10.2478/ssa-2013-0024

INTRODUCTION

Research on ionic balance (cations-anions) dates back to the mid-twentieth century. It has predomi-nantly concerned the dependence of yield of plants on their ionic state (among others Crooke and Knight 1962; De Wit et al. 1963; Van Tuil et al. 1964; Van Tuil 1965; Dijkshoorn et al. 1968; Kirkby 1968; Mat-tson 1966; Brogowski and Kusiñska 1976; Ostrow-ska 1990; OstrowOstrow-ska and PorêbOstrow-ska 2002; Weremko 1985; Brogowski and Traczyk 1978; Janowska 2006). The regulation of the ionic state and ionic balance of cultivated plants is possible through appropriate fertilisation. Sustainable fertilisation permits obta-ining maximum yields with the application of not necessarily high doses of fertiliser (De Wit et al. 1963). On the other hand, analyses of plants growing in natural areas unaffected by anthropopressure per-mit the determination of the impact of the environ-ment on the chemical composition of wild plants (Ostrowska and Porêbska 2002).

The objective of this paper was an attempt to esti-mate the impact of variable habitat conditions on the ionic state and ionic balance of selected species of plants occurring in an environment with scarce anth-ropogenic pressure in the Piska Primeval Forest, north-eastern Poland.

MATERIALS AND METHODS

The plants were collected in the Piska Primeval Forest in June and July by a team of ecologists from

the Institute of Ecology of the Polish Academy of Sciences in Dziekanów Leœny under the supervision of Prof. T. Traczyk. Similar soils (predominantly ru-sty soils – Brunic Arenosols), developed from the flu-vioglacial sands of the last Vistula Glaciation, occur-red over the entire area of the Forest.

As far as possible, plants of the same species were collected from various plant communities or assem-blages. These were the following habitats: A – forest meadows, B – Sphagno-girgensohni-Picetum com-munity, C – Pino-Quercetum comcom-munity, D – Tilio-Carpinetum community, and E – forest clearings.

The plant material analyses were performed fol-lowing the method by De Wit et al. (1963) and Van Tuil et al. (1964). The plants were dried at a tempera-ture of 70–80oC, and ground. A 1 g sample of the

plants was roasted at a temperature of 500–520oC to

full incineration. The ash was weighed and dissolved in 25 cm3 of 0.2M HCl, and placed in flasks rinsed

and filled up with distilled water to the volume of 100 cm3. The contents of the flasks were shaken

eve-ry day until the ash was fully dissolved (approxima-tely 7 days). Subsequently, the solution was filtered through filters with average density. In the filtrate, the following was determined: Ca2+, Mg2+, K+, and

Na+ by means of the AAS method; and phosphorus

colorometrically with ammonium molybdate, zinc chloride, and metol (monomethyl-p-aminophenol). The coloration of the resulting molybdate phosphate is permanent even over a period of several months (Brogowski 1966). Total organic acids were determi-ned by means of methyl red titration of a 20 cm3

sam-ZYGMUNT BROGOWSKI*, DANUTA CZÊPIÑSKA-KAMIÑSKA**

Warsaw University of Life Sciences, Department of Soil Environment Sciences, Nowoursynowska str. 159, 02-776 Warsaw

The state of ionic balance in selected plant species from natural

habitats of the Piska Primeval Forest (NE Poland)

Abstract: The objective of this paper was an attempt to estimate the impact of variable habitat conditions on the ionic state and ionic balance of selected species of plants occurring in an environment with scarce anthropogenic pressure in the Piska Primeval Forest, north-eastern Poland. The analysed mono- and dicotyledonous plants showed very high amounts of total nitrogen, exceeding sum of alkaline cations (Ca2+, Mg2+, K+, Na+), particularly at poor natural habitats (Sphagno-girgensohni-Picetum and

Pino-Quer-cetum communities). Lack of alkaline cations is probably compensated by nitrogen in the form of NH4+, therefore maintaining the

ionic balance of cations and anions in plants. Plants inhabiting habitats such as the Tilio-Carpinetum community show very high amounts of potassium. Some potassium radioactivity is probably indispensable for the physiological processes in plants instead of solar radiation.

(2)

ple of 0.05 M NaOH (Van Tuil 1965). Nitrogen was determined by means of the Kjeldahl’s method. The total content of sulphates and chlorides was calcula-ted based on the following difference: (Ca2+, Mg2+,

K+, Na+) – (R-COO– + H

2PO4– + NO3–) = (SO42+ + Cl–).

No nitrates were found in the plants analysed. The performed analyses showed negative results.

RESULTS AND DISCUSSION

The ionic composition (Ca2+, Mg2+, K+, Na+, N,

H2PO4–, SO

42–, Cl–, R-COO–) of forest plants from

na-tural habitats shows a somewhat different proportion of mineral components than that of plants of open are-as – fields and meadows. This results from varying thermal conditions in those areas, substantially affec-ting the chemical composition (ionic state) of plants.

Cations (Ca

2+

, Mg

2+

, K

+

, Na

+

)

The content of cations in the analysed plants from the Piska Primeval Forest, expressed in chemically equivalent units (Table 1 and 2), corresponds to ha-bitats to a higher or lower degree, both in the group of monocotyledonous and dicotyledonous (herbace-ous) plants. The total amount of cations is substan-tially varied in plants from particular plant commu-nities (Table 1 and 2).

Alkaline cations are the most abundant in herba-ceous plants collected from forest meadows and the Tilio-Carpinetum habitat, and the least abundant in those from habitats with Sphagno-girgensohni-Pice-tum and Pino-QuerceSphagno-girgensohni-Pice-tum communities. The differen-ces are relatively high, because in the sphagnum and Pino-Quercetum habitats, dicotyledonous plants con-tain the average of approximately 50% less alkaline cations (Ca2+, Mg2+, K+, Na+) in comparison to the

remaining habitats (Table 1).

In the group of monocotyledonous plants, plants from the Tilio-Carpinetum community contain the highest amounts of alkaline cations. The total con-tent of cations is approximately twice as high as in monocotyledonous plants from the remaining habi-tats (Table 2). In the conditions of that habitat, plants absorb high amounts of potassium.

The analysed monocotyledonous plants of the Pi-ska Primeval Forest use the average of approximate-ly 40% less cations for the production of a biomass unit in relation to dicotyledonous plants, including 88% less calcium and 18% less magnesium. Accor-ding to the mean data, potassium is absorbed in simi-lar amounts by both of the groups of plants, and so-dium in trace amounts.

The quantitative state of cations in dicotyledono-us plants is substantially varied. In plants from habi-tats with Sphagno-girgensohni-Picetum and Pino-Quercetum communities, the total content of cations (Ca2+, Mg2+, K+, Na+) is approximately 50% lower

than that in the plants from the remaining habitats (Table 1, Fig. 1). This results from a substantial cal-cium deficiency of approximately 75% in relation to the plants of forest meadows, forest clearings, and Tilio-Carpinetum community.

The herbaceous vegetation of forest meadows shows the following decreasing series of contents of particular cations according to mean data: Ca>K>Mg >Na; in numbers: 78.2>55.6>23.5>2.5 me/100 g.

In plants from the habitat with the Sphagno-gir-gensohni-Picetum community, the series is different, namely: K>Mg>Ca>Na; in numbers: 32.3>22.8>18.4 >2.0 me/100 g.

The calcium content in plants from the habitat is several times lower than that in forest meadows.

In plants from the habitats of the Pino-Quercetum community and forest clearings, the decreasing se-ries of cation contents is similar: K>Mg>Ca>Na; in numbers: 48.3>20.9>18.2>0.8 me/100 g.

The herbaceous vegetation of the Tilio-Carpine-tum habitat differs from the previous ones in its qu-antitative series, namely: K>Ca>Mg>Na; in numbers: 90.5>47.9>21.5>1.5 me/100 g.

In this habitat with the least access of solar energy to the forest floor, potassium considerably dominates in quantitative terms over the total of the remaining cations (Table 1).

The presented data document the substantial im-pact of the habitats on the quantitative state of cations in dicotyledonous plants. This is also suggested by the varied values of ratios of univalent to bivalent cations varying from 0.35 to 4.14, with a mean value from four habitats analysed amounting to 1.03 (Table 1).

In open, well insolated areas (fields and meadows), 90% of dicotyledonous plants show the dominance of bivalent cations (Ca, Mg) over univalent ones (K, Na). The same group of plants in certain strongly shaded forest habitats such as Pino-Quercetum and Tilio-Car-pinetum communities, shows the dominance of univa-lent cations, and particularly potassium (Table 1).

In the analysed monocotyledonous plants of the Piska Primeval Forest, entirely different proportions of cations occur than in dicotyledonous ones. Dico-tyledonous plants contain, approximately, twice as much, calcium as magnesium, contrary to monocoty-ledonous plants, containing much more magnesium than calcium. Calcium in monocotyledonous plants constitutes only 11.8% of the amount of calcium oc-curring in dicotyledonous plants (Table 1, 2).

(3)

TABLE 1. The ionic state (cations) of dicotyledonous plants from the Piska Primeval Forest s ei c e p s t n al P Habtiat* meq/100g (Ca+Mg)/(K+Na) a C 2+ Mg2+ K+ Na+ Total m u e c a r e l o m u i s r i C e l a v i r m u e G a t a l o e c n a l o g a t n a l P r e c a s u l u c n u n a R a c i o i d a c it r U s y r d e a m a h c a c i n o r e V A 142.5 2 . 8 5 8 . 6 5 4 . 5 4 2 . 1 4 1 4 . 5 2 8 . 6 1 8 . 6 3 2 . 6 1 8 . 4 1 5 . 3 4 6 . 2 1 0 . 5 6 4 . 2 6 9 . 8 6 0 . 0 4 9 . 0 4 2 . 6 5 8 . 2 4 . 1 7 . 1 5 . 4 7 . 3 2 . 1 1 . 7 2 2 8 . 8 5 1 3 . 3 4 1 7 . 4 0 1 3 . 9 2 2 4 . 5 9 5 3 . 2 6 3 . 1 3 0 . 1 5 3 . 1 4 1 . 4 6 6 . 0 n a e M A 78.3 23.5 55.6 2.5 158.9 1.82 s i v a s u d o n a it o e N a ll e s s o t e c a s il a x O a e p o r u e s il a t n e i r T s y r d e a m a h c a c i n o r e V B 6.2 2 . 8 1 0 . 9 0 . 0 4 0 . 0 1 5 . 0 2 0 . 5 3 9 . 5 2 5 . 3 4 5 . 1 3 7 . 0 3 5 . 3 2 3 . 2 1 . 1 9 . 1 5 . 2 0 . 2 6 3 . 1 7 6 . 6 7 9 . 1 9 5 3 . 0 9 1 . 1 5 3 . 1 3 5 . 2 n a e M B 18.4 22.8 32.3 2.0 75.5 1.36 a e p o r u e s il a t n e i r T s y r d e a m a h c a c i n o r e V C 141..80 1223..78 4523..89 00..79 7773..51 00..6444 n a e M C 7.9 18.25 48.35 0.8 75.3 0.54 s il i b o n a c it a p e H a ll e s s o t e c a s il a x O s u o n i g n o l s u l u c n u n a R a c i o i d a c it r U y r d e a m a h c a c i n o r e V s D 49.0 8 . 6 3 5 . 8 4 0 . 7 5 0 . 8 4 3 . 7 1 4 . 1 2 8 . 9 1 . 1 3 3 . 8 2 6 . 7 7 6 . 2 7 6 . 0 1 1 6 . 2 0 1 6 . 8 8 3 . 1 3 . 1 7 . 1 5 . 1 5 . 1 2 . 5 4 1 1 . 2 3 1 6 . 0 7 1 2 . 2 9 1 4 . 6 6 1 4 8 . 0 9 7 . 0 2 5 . 0 8 7 . 0 5 8 . 0 n a e M D 47.9 21.5 90.5 1.5 161.4 0.76 a c i o i d a c it r U s y r d e a m a h c a c i n o r e V E 4153..29 2247..74 6432..54 11..72 18336..37 10..1836 n a e M E 29.6 26.0 53.0 1.5 110.1 1.00 n a e m l a t o T A-E 43.2 22.0 58.5 1.7 125.4 1.17

* Plant communities: A – forest meadows, B – Sphagno-girgensohni-Picetum, C – Pino-Quercetum, D – Tilio-Carpinetum, E – forest clearing.

FIGURE 1. Share in percent of calcium and potasium in cations sum (Ca+Mg+K+Na w meq=100%) in dicotyledonous plants from Piska Forest          & LUV LX P D OH UD FH XP * HX P UL YD OH 3 OD QW DJ R OD QF HR OD WD 5 DQ XQ FX OX V DF HU 8 UWL FD G LR LF D 9 HU RQ LF D FK DP DH GU \V 1 HR WLD Q RG XV D YL V 2 [D OLV D FH WR VV HO OD 7U LH QW DO LV H XU RS HD 9 HU RQ LF D FK DP DH GU \V 7U LH QW DO LV H XU RS HD 9 HU RQ LF D FK DP DH GU \V + HS DW LF D QR EL OLV 2 [D OLV D FH WR VV HO OD 5 DQ XQ FX OX V OR QJ LQ RX V 8 UWL FD G LR LF D 9 HU RQ LF D FK DP DH GU \V 8 UWL FD G LR LF D 9 HU RQ LF D FK DP DH GU \V )RUHVWPHDGRZ 6SKDJQRJLUJHQVRKQL

3LFHHWXP 4XHUFHWXP3LQR 7LOLR&DUSLQHWXP FOHDULQJ)RUHVW

 <

(4)

The decreasing series of cation contents in mono-cotyledonous plants is as follows: K>Mg>Ca>Na; in numbers according to mean values: 55.3>12.7>5.2 >1.1 me/100 g.

The ratio of bivalent to univalent cations in the group of analysed monocotyledonous plants avera-ges 0.26, varying from 0.1 to 0.71 in particular spe-cies (Table 2).

In the analysed monocotyledonous plants from the Tilio-Carpinetum habitat, similarly as in dicotyledo-nous plants from the habitat, the potassium content, is more than twice higher than in the remaining habi-tats (Table 2).

In the conditions of limited access of solar energy, plants absorb much more potassium at the expense of the remaining components, and particularly calcium (Fig. 1 and 2) or magnesium. Due to its (beta)radioac-tivity, potassium supplements the deficit of energy ne-cessary for the physiological processes in plants, per-haps including photosynthesis. In their textbook enti-tled “Geochemistry”, Polañski and Smulikowski (1969) state that radioactive potassium has an approximately 15% contribution in the production of radiogenic heat (11×1018 cal annually) in soils. Therefore, the same plant

species occurring in habitats with varied access of so-lar energy can show different ionic composition.

Anions (H

2

PO

4–

, SO

42–

, Cl

–

, R-COO

–

)

The total content of mineral (H2PO4–, SO

42–, Cl–)

and organic anions (R-COO–) balances the total

con-tent of cations (Ca2+ + Mg2+ + K+ + Na+) in plants

(Van Tuil et al. 1964; De Wit et al. 1963). The contri-butions of mineral anions in the analysed both mono-and dicotyledonous plants have a similar value. On the average, they constitute 20.4 and 20.5% of total anions assumed to equal 100% (Table 3 and 4). The rema-ining part comprises organic anions. In the scope of this study, no nitrates were determined in the plants. This may result from a strong inhibition of nitrifica-tion processes in the strongly acidic environment of forest soils. The variations in the contents of mineral anions in both of the groups of plants are relatively high within particular forest habitats (Table 3 and 4).

Organic anions in the group of herbaceous plants are relatively strongly diversified in quantitative terms (Table 3). In monocotyledonous plants, the differen-tiation is low (Table 4). In the plant communities of Sphagno-girgensohni-Picetum and Pino-Quercetum, herbaceous vegetation shows a substantially lower content of organic anions (R-COO–) in comparison

to the remaining three habitats analysed. The low tent of organic anions is related to the low total con-tent of cations (Ca2+, Mg2+, K+, Na+). This may

re-sult from the low abundance of soils occurring in the habitats. Due to this, in order to maintain the state of TABLE 2. The ionic state (cations) of monocotyledonous plants from the Piska Primeval Forest

* Plant communities: B – Sphagno-girgensohni-Picetum, C – Pino-Quercetum, D – Tilio-Carpinetum, E – forest clearing.

s ei c e p s t n al P Habtiat* meq/100g (Ca+Mg)/(K+Na) a C 2+ Mg2+ K+ Na+ Total m u t a r o d o m u h t n a x o t n A a t a ti g i d x e r a C a n a i n o s r e h c s a s il y t c a D m u s u ff e m u il i M B 3.9 0 . 6 9 . 3 0 . 6 0 . 4 1 5 . 2 1 2 . 1 2 8 . 2 2 7 . 3 4 5 . 4 3 9 . 3 3 9 . 0 6 4 . 1 2 . 2 5 . 1 5 . 1 0 . 3 6 2 . 5 5 5 . 0 6 2 . 1 9 0 4 . 0 0 5 . 0 1 7 . 0 6 4 . 0 n a e M B 5.0 17.6 43.3 1.6 67.5 0.52 a t a ti g i d x e r a C a n a t n o M x e r a C s il a j a m a i r a l a v n o C m u il o fi b m u m e h t n a j a M C 2.5 0 . 4 2 . 9 2 . 6 2 . 6 0 . 6 1 5 . 2 1 6 . 2 1 4 . 6 4 1 . 4 6 3 . 9 4 4 . 9 4 7 . 0 9 . 0 8 . 0 7 . 0 8 . 5 5 0 . 5 8 8 . 1 7 9 . 8 6 8 1 . 0 1 3 . 0 3 4 . 0 7 3 . 0 n a e M C 5.5 11.8 52.3 0.8 70.4 0.32 a t a r e m o l g s il y t c a D m u s u ff e m u il i M D 55..80 174..62 19240..90 10..67 111363..35 00..2110 n a e M D 5.4 10.9 107.5 1.2 124.9 0.15 m u t a r o d o m u h t n a x o t n A a t a ti g i d x e r a C a t a r e m o l g s il y t c a D m u s u ff e m u il i M m u il o fi b m u m e h t n a j a M E 2.9 0 . 4 4 . 3 7 . 4 3 . 0 1 4 . 7 3 . 8 2 . 1 1 1 . 8 3 . 5 1 7 . 1 3 0 . 3 5 2 . 3 4 5 . 6 5 6 . 7 4 6 . 0 0 . 1 0 . 1 7 . 0 5 . 0 6 . 2 4 3 . 6 6 8 . 8 5 0 . 0 7 3 . 4 7 2 3 . 0 3 2 . 0 3 3 . 0 9 2 . 0 3 5 . 0 n a e M E 5.1 10.1 46.4 0.8 62.4 0.34 n a e m l a t o T B-E 5.2 12.7 55.3 1.1 74.3 0.36

(5)

FIGURE 2. Share in percent of calcium and potasium in cations sum (Ca+Mg+K+Na w meq=100%) in monocotyledonous plants from Piska Forest

s ei c e p s t n al P Habtiat* meq/100g N/(Ca+Mg+K+Na) O O C -R – H 2PO4– SO42–+Cl– N m u e c a r e l a m u i s ri C e l a v i r m u e G a t a l o e c n a l o g a t n a l P r e c a s u l u c n u n a R a c i v i d a c it r U s y r d e a m a h c a c i n o r e V A 196.4 0 . 3 3 1 4 . 5 0 1 8 . 7 8 8 . 8 0 2 2 . 3 7 7 . 3 0 . 6 7 . 6 1 . 4 5 . 5 3 . 7 0 . 7 2 8 . 9 1 5 . 1 3 8 . 2 1 0 . 5 1 9 . 4 1 6 . 8 3 1 4 . 6 2 1 7 . 5 1 1 3 . 9 8 0 . 5 6 2 6 . 3 9 1 6 . 0 0 8 . 0 1 8 . 0 5 8 . 0 6 1 . 1 8 9 . 0 n a e M A 134.1 5.6 20.2 138.1 0.87 si v a s u d o n a it o e N a ll e s s o t e c a si l a x O a e p o r u e si l a t n e i r T s y r d e a m a h c a c i n o r e V B 39.0 4 . 3 6 0 . 1 6 2 . 3 7 6 . 0 1 9 . 3 4 . 3 6 . 3 4 . 2 1 1 . 4 2 . 2 1 1 . 5 1 6 . 8 1 2 0 . 8 9 0 . 0 7 1 6 . 8 6 1 2 5 . 3 8 3 1 2 2 . 2 3 8 . 1 n a e M B 59.2 5.4 11.0 164.0 2.17 a e p o r u e si l a t n e i r T s y r d e a m a h c a c i n o r e V C 4664..41 77..00 169..47 127010..40 24..2110 n a e M C 55.3 7.0 13.0 185.5 3.15 si li b o n a c it a p e H a ll e s s o t e c a si l a x O s u o n i g n o l s u l u c n u n a R a c i o i d a c it r U s y r d e a m a h c a c i n o r e V D 124.4 3 . 2 2 1 2 . 6 5 1 7 . 4 6 1 0 . 0 5 1 0 . 1 2 . 5 9 . 2 2 . 7 5 . 8 9 . 8 1 6 . 4 5 . 1 1 6 . 0 2 9 . 7 3 . 4 3 1 3 . 4 5 1 6 . 3 5 1 3 . 4 6 2 4 . 1 0 2 2 9 . 0 7 1 . 1 0 9 . 0 7 3 . 1 1 2 . 1 n a e M D 143.5 5.1 12.7 181.6 1.12 a c i o i d a c i r t U s y r d e a m a h c a c i n o r e V E 17009..42 59..95 177..46 112978..60 11..4544 n a e M E 89.8 7.7 12.5 162.8 1.49 n a e m l a t o T A-E 104.8 6.3 14.1 169.0 1.64

TABLE 3. The ionic state (anions) of dicotyledonous plants from the Piska Primeval Forest

* Plant communities: A – forest meadows, B – Sphagno-girgensohni-Picetum, C – Pino-Quercetum, D – Tilio-Carpinetum, E – forest clearing.

$ QW R[ DQ WK XP RG RU DW XP & DU H[ G LJ LWD WD ' DF W\ OLV DV FK HU VR QL DQ D 0 LOL XP HI IX VX P & DU H[ G LJ LWD WD & DU H[ P RQ WD QD & RQ YD OD ULD P DM DO LV 0 DM DQ WK HP XP EL IR OLP ' DF W\ OLV JO RP HU DW D 0 LOL XP HI IX VX P $ QW R[ DQ WK XP RG RU DW XP & DU H[ G LJ LWD WD ' DF W\ OLV JO RP HU DW D 0 LOL XP HI IX VX P 0 DM DQ WK HP XP EL IR OLP 6SKDJQRJLUJHQVRKQL

3LFHHWXP 3LQR4XHUFHWXP &DUSLQHWXP7LOLR )RUHVWFOHDULQJ

 <

(6)

dynamic balance, plants absorb increased amounts of nitrogen in the ammonia form to neutralise orga-nic acids, therefore supplementing the metal cations deficit (Kirkby 1968).

Nitrogen

Nitrogen constitutes the main component in both of the groups of plants in the Piska Primeval Forest, exceeding total cations (Ca2+ + Mg2+ + K+ + Na+),

except for herbaceous plants collected in forest me-adows, and certain species in the Tilio-Carpinetum habitat (Table 1). Veronica chamaedrys is a plant sen-sitive to environmental changes, occurring in all of the habitats studied. The content of nitrogen in the species varies from 201.4 me/100 g in Tilio-Carpine-tum to 93.6 me/100 g in forest meadows. Nettle (Urti-ca dioi(Urti-ca) contains constant nitrogen content irrespec-tive of the environment it grows in (Table 1).

The vegetation of Sphagno-girgensohni-Picetum and Pino-Quercetum habitats shows a level of nitro-gen 2.5 times higher than that of total cations (Fig. 1 and 2). Therefore, plants of the two latter habitats use (considering weight content) the average of 25% less alkaline cations than plants of the remaining habitats in the Piska Primeval Forest (Table 4). Plants of these habitats show a correlation between calcium deficit and nitrogen content: the less calcium in the vegetal biomass, the higher nitrogen content. A deficit of a

component in the soil environment seems to be com-pensated by plants with another component (Dijkshorn et al. 1968; De Wit et al. 1963; Van Tuil et al. 1964, 1965; Crooke. 1962; Mattson 1966; Ostrowska 1990; Brogowski et al. 1976; Weremko 1985). A deficit in metal cations in plants from the habitats mentioned is compensated by the ammonia cation, temporarily re-storing the state of balance in the plants (Kirkby 1968). In dicotyledonous plants, nitrogen exceeds total cations (considering equivalent values) by the average of 44%, and in the group of monocotyledonous plants of the study area, by 70%. Only the composition of dicotyle-donous plants from forest meadows shows the preva-lence of total cations (Ca2+ + Mg2+ + K+ + Na+) over

nitrogen content (Fig. 1). Similarly, monocotyledono-us plants of poor habitats show the evident prevalence of nitrogen over total metal cations (Fig. 2).

The ionic composition of forest vegetation is evi-dently determined by the soil-habitat and microcli-matic conditions. This presumably results from the genetic factors permitting the survival of the species in stress conditions.

CONCLUSIONS

1. The study showed a substantial effect of environ-mental, and predominantly microclimatic conditions on the ionic composition of selected plant species of the forest floor in the Piska Primeval Forest. TABLE 4. The ionic state (anions) of monocotyledonous plants from the Piska Primeval Forest

s ei c e p s t n al P Habtiat* meq/100g N S/ ofcaitons O O C -R – H 2PO4– SO42–+Cl– N m u t a r o d o m u t n a x o t n A a l a ti g i D x e r a C a n a i n o s r e h c s a si l y t c a D m u s e ff e m u il i M B 38.6 8 . 6 4 6 . 7 4 1 . 7 6 5 . 3 8 . 2 1 . 4 5 . 3 9 . 0 2 6 . 5 8 . 8 6 . 0 2 3 . 4 5 1 7 . 5 1 1 3 . 4 6 1 3 . 4 5 1 5 4 , 2 0 1 . 2 2 7 . 2 9 6 . 1 n a e M B 50.0 3.5 14.0 147.2 2.18 a l a ti g i D x e r a C a n a t n o M x e r a C si l a j a m a i r a l a v n o C m u il o fi b m u m e h t n a j a M C 45.9 0 . 0 6 0 . 1 6 3 . 6 4 6 . 5 2 . 9 9 . 5 4 . 8 3 . 6 8 . 5 1 8 . 4 7 . 4 1 1 . 7 4 1 3 . 4 1 2 6 . 8 1 1 2 . 2 0 1 4 6 . 2 2 5 . 2 5 6 . 1 8 4 . 1 n a e M C 53.3 7.3 10.4 145.6 2.07 a t a r e m o l g si l y t c a D m u s u ff e m u il i M D 18004..69 68..97 1299..72 116675..78 11..4244 n a e M D 92.8 7.8 24.5 166.8 1.34 m u t a r o d o m u h t n a x o t n A a t a ti g i d x e r a C a t a r e m o l g si l y t c a D m u s u ff e m u il i M m u il o fi b m u m e h t n a j a M E 25.6 2 . 1 5 1 . 1 3 6 . 6 4 8 . 2 5 2 . 2 5 . 4 6 . 5 3 . 4 5 . 7 8 . 4 1 6 . 0 1 1 . 2 2 1 . 9 1 0 . 4 1 1 . 7 8 0 . 0 1 1 8 . 2 7 3 . 4 9 7 . 1 2 1 4 0 . 2 6 6 . 1 4 2 . 1 5 3 . 1 4 6 . 1 n a e M E 41.5 4.8 16.1 92.2 1.56 n a e m l a t o T B-E 59.4 5.9 16.2 138.0 1.83

(7)

2. In all of the habitats analysed, except for forest meadows, the dominant component exceeding the content of cations (Ca + Mg + K + Na) is nitrogen. 3. In part of the species of dicotyledonous plants, bi-valent cations (Ca + Mg) prevail over unibi-valent cations (K + Na), and in part of the species, it is the other way round.

4. In all of the species of monocotyledonous plants analysed, univalent cations prevail over bivalent cations, whereas potassium exceeds total calcium and magnesium approximately three times. 5. Dicotyledonous plants in the Piska Primeval

Fo-rest at Sphagno-girgensohni-Picetum and Pino-Quercetum habitats use 50% less alkaline cations (Ca + Mg + K + Na) for the production of a mass unit than plants of the remaining habitats of the Forest, whereas they use twice as much nitrogen. 6. Plants in the Tilio-Carpinetum habitat, irrespecti-ve of the species, absorb exceptionally high amo-unts of potassium from the soil. This is probably related to substantial shading of the forest floor and the necessity to compensate for low amounts of light (energy) with radioactive potassium. 7. The content of organic anions R-COO– in the plants

analysed is usually proportionate to total alkaline cations (Ca + Mg + K + Na).

Acknowledgements

The authors express their gratitude to Prof. Tade-usz Traczyk from the Institute of Ecology of the Po-lish Academy of Sciences and his co-workers for col-lecting the plants samples in the field. The manuscript was translated by Ma³gorzata Kornijów.

REFERENCES

Brogowski Z., 1966. Metodyka oznaczania mineralnego i orga-nicznego fosforu w glebie. Roczniki Gleboznawcze – Soil Science Annual, 16(1): 193–208.

Brogowski Z., Kusiñska A., 1976. Stan równowagi jonowej w ró¿nych gatunkach roœlin ³¹kowych. Roczniki Nauk Rolni-czych, Seria A, 101 (4): 21–34.

Brogowski Z., Traczyk T., 1978. The effect of mineral fertiliza-tion on ionic balance in some meadow grasses. Polish Ecolo-gical Studies, 4(1): 135–142.

Crooke W.M. and Knight A.H., 1962. An evaluation of publi-shed data on the mineral composition of plant in the light of the cation-exchange capacities of their roots. Soil Science, 93(6): 365–373.

De Wit C.T., Dijkshoorn W., Noggle J.C., 1963. Ionic balance and plant growth. Versl. Landbouwk. Onderzuk, Wagenin-gen. 69(15): 1–68.

Dijkshoorn W., Lathwell D.J., De Wit C.T., 1968. Temporal chan-ges in carboxylate content of ryeprass with stepwise change in nutrition. Plant and Soil, 29: 369–390.

Janowska E., 2006. Równowaga jonowa roœlin zielnych Puszczy Kampinoskiej jako biowskaŸnik stanu œrodowiska. Regional-ne Studia Ekologiczno-Krajoznawcze. Problemy Ekologii Krajobrazu, 15: 461–473.

Kirkby E.A., 1968. Infulence of ammonium and nitrate nutrition on the cation-anion balance and nitrogen and carboxylate me-tabolism in with mustard plants growth in dilute nutrient so-lution. Soil Science, 105(3): 133–141.

Mattson S., 1966. The ionic relationship of soil and plant. Acta Agric. Scandinavica, 16: 135–143.

Ostrowska A., 1990. Effect of nutrition conditions on ionic sys-tem plants. Part. III. Effect of between element relationship and nitrogen from in the solution as well as concentration on ionic system in pine seedlings (Pinus silvestris). Annals of Warsaw Agric. University SGGW, 39: 43–52.

Ostrowska A., Porebska G., 2002. Sk³ad chemiczny roœlin, jego interpretacja i wykorzystanie w ochronie œrodowiska. Inst. Ochrony Œrodowiska: 165 s.

Polañski A., Smulikowski K., 1969. Geochemia. Wyd. Geolog., Warszawa: 663 s.

Van Tuil H.D.W. 1965: Organic salts in plants in relation to nu-trition and growth. Centrum Landbouwdocumenties, Wage-ningen: 83 pp.

Van Tuil H.D.W., Lampe J.E. and Dijkshoorn W., 1964. The po-ssibility of relating the ash alkalinity to the organic salt con-tent. Jaarbook Inst. Biology Science: 157–160.

Weremko E., 1985. Równowaga jonowa roœlin i gleb zbiorowisk borowych, gr¹dowych, ³êgowych i olsowych. PhD thesis. Ty-pescript SGGW. Warszawa.

Received: January 3, 2014 Accepted: February 4, 2014

Stan równowagi jonowej niektórych gatunków roœlin naturalnych siedlisk Puszczy Piskiej

Streszczenie: Celem pracy by³a próba oceny wp³ywu ró¿nych warunków siedliskowych na stan jonowy i równowagê jonow¹ w wybranych gatunkach roœlin, wystêpuj¹cych w œrodowisku o niewielkiej antropopresji w Puszczy Piskiej, pó³nocno-wschodnia Polska. Badane roœliny jedno- i dwuliœcienne wykazuj¹ bardzo du¿e zawartoœci azotu, przewy¿szaj¹ce sumê zasadowych kationów (Ca2+, Mg2+, K+, Na+), szczególnie w ubogich siedliskach (Sphagno-girgensohni-Picetum i Pino-Quercetum). Niedobór kationów

zasadowych jest w nich prawdopodobnie kompensowany przez azot w formie NH4+, dla utrzymania równowagi jonowej miêdzy

kationami i anionami w roœlinach. Roœliny rosn¹ce w siedliskach takich, jak z zespo³em Tilio-Carpinetum wykazuj¹ bardzo du¿e zawartoœci potasu. Czêœæ radioaktywnoœci potasu (promieniowanie beta) jest prawdopodobnie wykorzystywana w procesach fizjolo-gicznych w roœlinach zamiast energii s³onecznej.

Cytaty

Powiązane dokumenty

w wieku dojrzałości drzewostanu do odnowienia gatunkiem panującym powinien być buk, a współpanującym grab.. w projektowanym składzie gatunkowym uprawy gatunkiem

Najwiêksz¹ zmian¹ wilgotnoœci charakteryzuje siê próbka piasku modyfikowanego ¿y- wic¹ metylosilikonow¹. Tak wysoka wilgotnoœæ tego materia³u wydaje siê byæ b³êdem

'The views expressed herein are those of the authors alone and do not necessarily represent those of the Institute.. and do not necessarily represent those of the Institute&#34;..

Okazało się, że możliwa jest afirmacja człowieka jako bytu skończonego przy jednoczesnym przeświadczeniu, iż można dowiedzieć się, czym jest człowiek prawdziwy albo na

ta wydaje się w oczywisty sposób sprzeczna z jednoznacznym przepisem ustawy. przepis obowiązuje w brzmieniu: „2. Na- czelny Dowódca Sił Zbrojnych dowodzi Siłami Zbrojnymi

GIERYŃ Piotr Andrzej: Dyplomy absol- wentów Wydziału Farmaceutycznego (Oddziałów Medycyny Laboratoryjnej i Kosmetologii) oraz Wydziału Pielęgniarstwa i Położnictwa w

KEYWORDS: Federico Incardona, Giovanni Damiani, University of Palermo, Post-serial dodecaphony, Heterophony, Natural harmonic sounds, Abstract expressionism, Sound vegetation,

Nie należy również zapominać, że powszechne korzystanie elektronicznych materiałów dydaktycznych rodzi określone zagrożenia, do których przede wszystkim należy