• Nie Znaleziono Wyników

Monitoring biodiversity change through effective global coordination

N/A
N/A
Protected

Academic year: 2021

Share "Monitoring biodiversity change through effective global coordination"

Copied!
13
0
0

Pełen tekst

(1)

Monitoring biodiversity change through effective global coordination

Navarro, Laetitia M.; Fernandez, Nestor; Guerra, Carlos; Guralnick, Rob; Kissling, W. Daniel; Londono, Maria Cecilia; Muller-Karger, Frank; Turak, Eren; El Serafy, Ghada; Balvanera, Patricia

DOI

10.1016/j.cosust.2018.02.005 Publication date

2017

Document Version Final published version Published in

Current Opinion in Environmental Sustainability

Citation (APA)

Navarro, L. M., Fernandez, N., Guerra, C., Guralnick, R., Kissling, W. D., Londono, M. C., ... More Authors (2017). Monitoring biodiversity change through effective global coordination. Current Opinion in

Environmental Sustainability, 29, 158-169. https://doi.org/10.1016/j.cosust.2018.02.005 Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

Monitoring

biodiversity

change

through

effective

global

coordination

Laetitia

M

Navarro

1,2

,

Ne´stor

Ferna´ndez

1,2

,

Carlos

Guerra

1,2

,

Rob

Guralnick

3

,

W

Daniel

Kissling

4

,

Maria

Cecilia

London˜o

5

,

Frank

Muller-Karger

6

,

Eren

Turak

7,8

,

Patricia

Balvanera

9

,

Mark

J

Costello

10

,

Aurelie

Delavaud

11

,

GY

El

Serafy

12,13

,

Simon

Ferrier

14

,

Ilse

Geijzendorffer

15

,

Gary

N

Geller

16,17

,

Walter

Jetz

18,19

,

Eun-Shik

Kim

20

,

HyeJin

Kim

1,2

,

Corinne

S

Martin

21

,

Melodie

A

McGeoch

22

,

Tuyeni

H

Mwampamba

9

,

Jeanne

L

Nel

23,24

,

Emily

Nicholson

25

,

Nathalie

Pettorelli

26

,

Michael

E

Schaepman

27

,

Andrew

Skidmore

28,29

,

Isabel

Sousa

Pinto

30

,

Sheila

Vergara

31

,

Petteri

Vihervaara

32

,

Haigen

Xu

33

,

Tetsukazu

Yahara

34

,

Mike

Gill

35

and

Henrique

M

Pereira

1,2,36

Theabilitytomonitorchangesinbiodiversity,andtheirsocietal

impact,iscriticaltoconservingspeciesandmanaging

ecosystems.Whileemergingtechnologiesincreasethe

breadthandreachofdataacquisition,monitoringeffortsare

stillspatiallyandtemporallyfragmented,andtaxonomically

biased.Appropriatelong-terminformationremainstherefore

limited.TheGrouponEarthObservationsBiodiversity

ObservationNetwork(GEOBON)aimstoprovideageneral

frameworkforbiodiversitymonitoringtosupport

decision-makers.Here,wediscussthecoordinatedobservingsystem

adoptedbyGEOBON,andreviewchallengesandadvancesin

itsimplementation,focusingontwointerconnectedcore

components—theEssentialBiodiversityVariablesasa

standardframeworkforbiodiversitymonitoring,andthe

BiodiversityObservationNetworksthatsupportharmonized

observationsystems—whilehighlightingtheirsocietal

relevance.

Addresses

1GermanCentreforIntegrativeBiodiversityResearch(iDiv)

Halle-Jena-Leipzig,DeutscherPlatz5e,04103Leipzig,Germany

2InstituteofBiology,MartinLutherUniversityHalleWittenberg,Am

Kirchtor1,06108Halle(Saale),Germany

3UniversityofFloridaMuseumofNaturalHistory,UniversityofFloridaat

Gainesville,Gainesville,FL32611-2710,USA

4InstituteforBiodiversityandEcosystemDynamics(IBED),Universityof

Amsterdam,P.O.Box94248,1090GEAmsterdam,TheNetherlands

5

InstitutodeInvestigacio´ndeRecursosBiolo´gicos,Alexandervon Humboldt,Bogota´,Colombia

6InstituteforMarineRemoteSensing/ImaRS,CollegeofMarine

Science,UniversityofSouthFlorida,1407thAve,SouthStPetersburg, FL33701,USA

7

NSWOfficeofEnvironmentandHeritage,10ValentineAvenue, Parramatta2150,NSW,Australia

8AustralianMuseum,6CollegeSt,Sydney,NSW2000,Australia

9InstitutodeInvestigacionesenEcosistemasySustentabilidad(IIES),

UniversidadNacionalAuto´nomadeMe´xico,ApdoPostal27-3,StaMa deGuido,MoreliaMichoacan58090,Mexico

10

InstituteofMarineScience,UniversityofAuckland,23Symonds Street,Auckland1142,NewZealand

11FrenchFoundationforResearchonBiodiversity(FRB),Institut

d’Oce´anographie,195rueSaint-Jacques,75005Paris,France

12StichtingDeltares,MarineandCoastalSystemsUnit,Boussinesqweg

1,2629HVDelft,P.O.Box177,2600MHDelft,TheNetherlands

13DelftUniversityofTechnology,FacultyofElectricalEngineering,

MathematicsandComputerScience,AppliedMathematics,Mekelweg 4,2628CDDelft,TheNetherlands

14CSIROLandandWater,GPOBox1700,Canberra2601,ACT,

Australia

15TourduValat,ResearchInstitutefortheConservationof

MediterraneanWetlands,Sambuc,13200Arles,France

16GrouponEarthObservations,Geneva,Switzerland 17NASAJetPropulsionLaboratory,Pasadena,CA,USA 18

DepartmentofEcologyandEvolutionaryBiology,YaleUniversity, 165ProspectStreet,NewHaven,CT06520,USA

19DepartmentofLifeSciences,ImperialCollegeLondon,SilwoodPark,

AscotSL57PY,Berks,UnitedKingdom

20DepartmentofForestry,Environment,andSystems,Kookmin

University,Seoul02707,RepublicofKorea

21UNEnvironmentWorldConservationMonitoringCentre

(UNEP-WCMC),219HuntingdonRoad,CambridgeCB30DL,UnitedKingdom

22SchoolofBiologicalSciences,MonashUniversity,Clayton3800,

Australia

23

InstituteforEnvironmentalStudies,FacultyofScience,Vrije UniversiteitAmsterdam,DeBoelelaan1087,1081HVAmsterdam,The Netherlands

24SustainabilityResearchUnit,NelsonMandelaMetropolitanUniversity,

PrivateBagX6531,George6530,SouthAfrica

25

DeakinUniversity,SchoolofLifeandEnvironmentalSciences,Centre forIntegrativeEcology,221BurwoodHwy,Burwood3125,Australia

26InstituteofZoology,ZoologicalSocietyofLondon,Regent’sPark,

LondonNW14RY,UnitedKingdom

27RemoteSensingLaboratories,UniversityofZurich,

(3)

28FacultyofGeo-InformationScienceandEarthObservation(ITC),

UniversityofTwente,TheNetherlands

29DepartmentofEnvironmentalScience,MacquarieUniversity,NSW

2106,Australia

30

InterdisciplinaryCentreforMarineandEnvironemntalResearch (CIIMAR)andUniversityofPorto,TerminaldeCruzeirosdoPortode Leixo˜es,AvenidaGeneralNortondeMatos,S/N,Matosinhos,Portugal

31BiodiversityInformationManagement,ASEANCentreforBiodiversity,

ForestryCampus,UPLB,LosBanos,Laguna4031,Philippines

32

FinnishEnvironmentInstitute(SYKE),BiodiversityCentre,P.O.Box 140,Mechelininkatu34a,FI-00251Helsinki,Finland

33NanjingInstituteofEnvironmentalSciences,MinistryofEnvironmental

ProtectionofChina,Nanjing210042,China

34

InstituteofDecisionScienceforaSustainableSociety,Kyushu University,744Moto-oka,Fukuoka819-0395,Japan

35PolarKnowledgeCanada,P.O.Box162,Canning,NovaScotia,

CanadaB0P1H0

36Ca´tedraIP-Biodiversidade,CIBIO/InBIO,CentrodeInvestigac¸a˜oem

BiodiversidadeeRecursosGene´ticos,UniversidadedoPorto,Campus Agra´riodeVaira˜o,R.PadreArmandoQuintas,4485-661Vaira˜o,Portugal Correspondingauthor:Navarro,LaetitiaM(laetitia.navarro@idiv.de)

CurrentOpinioninEnvironmentalSustainability2018,29:158–169 ThisreviewcomesfromathemedissueonEnvironmentalchange issues

EditedbyBernhardSchmid,CorneliaKrug,Debra Zuppinger-Dingley,MichaelESchaepman,NormanBackhausandOwen Petchey

Received:31October2017;Revised:25January2018;Accepted:12 February2018

https://doi.org/10.1016/j.cosust.2018.02.005

1877-3435/ã2018TheAuthors.PublishedbyElsevierB.V.Thisisan openaccessarticleundertheCCBYlicense(http://creativecommons. org/licenses/by/4.0/).

Introduction

TheagreementontheAichiBiodiversityTargetsbythe PartiesoftheConventiononBiologicalDiversity(CBD) [1], the Sustainable Development Goals of the UN Agenda 2030 (Resolution 70/1), and the establishment of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) [2] are encouraging responsestothebiodiversitycrisis[3].However,forthese internationaleffortstobesuccessful,ourabilitytoassess biodiversity changemust drasticallyimprove. The con-cept of biodiversity itself is complex and multifaceted, embracingseveraldimensionsoflifeonearth,fromgenes to speciesand ecosystems, operatingat multiple scales [4,5].The datacurrentlysupportingbiodiversity assess-mentsvaryspatially,temporally,and/orthematically(e.g. taxons,realms)[6,7].Thisimpairsourabilitytoderive meaningfulconclusionsabouttheintensityanddriversof biodiversitychange[8],theirconsequencesforthe deliv-eryofbenefitstosociety[9],andtoassessthe effective-nessofconservationmeasures[7].Furthermore,spatial

gaps are particularly problematic when available biodi-versity data do not overlap with areas of current and predictedincreasesinimpacts,forexamplefromhabitat lossand fragmentation[6,10].

Toaddressthesechallenges,theGrouponEarth Obser-vations BiodiversityObservation Network (GEO BON) wasestablishedin2008,asaglobalinitiativethataimsto improve the acquisition, coordination and delivery of biodiversity observations and related services to users includingdecision-makersandthescientificcommunity [4].Tenyearslater,GEOBONhasdevelopedaglobally coordinated strategy for the monitoring of biodiversity changebasedontwofundamentalcomponents:an Essen-tialBiodiversityVariables(EBVs)framework[11],anda system of coordinated Biodiversity Observation Net-works (BONs)for sustained,operationalmonitoring. Here,wereviewprogressmadeinthedevelopmentofthe EBVsandtheirconceptualframework,discussthe ratio-naleforBONsasamechanismtomeasureandinterpret EBVs,andthechallengesinestablishingBONs.Finally, we reiteratethesocietalrelevanceofacoordinated bio-diversityobservationsystem.

A

global

observing

system

for

biodiversity

GEO BON, the biodiversity flagship of the Group on Earth Observations (GEO), aims to integrate existing biodiversitymonitoringefforts,currentlyscatteredacross regions,tobuildacoordinatedandharmonisedsystemof observing systemsfor biodiversity.Thedevelopmentof thisobservingsystemisdrivenbytheneedsofusers[12], ranging fromthescientificcommunity,to local commu-nities,industry andNGOs,to nationalandsub-national policy makers, and intergovernmental bodies. GEO BON’sapproachisbasedontheinterconnectionbetween theEBVframeworkandtheBONdevelopmentprocess (Figure 1). These two components are connected via capacitybuildingandknowledgeexchangemechanisms fortools,techniques,andbestpractices.Asaresult,GEO BON’sstructurehasevolvedfrombeingoriginally orga-nized aroundrealms(e.g. marine,terrestrial) and moni-toringmethods(insitu,remotesensing),toacross-realm and cross-method approach centred on the different levelsoforganizationofbiodiversity,andrelated ecosys-temservices[13].Thisstructureisorganizedaroundthe top-down development of the EBV framework, within working groups, and the bottom-up development of BONsthat bothtesttheframework andincrease biodi-versity observationcapacity(Figure1).

InspiredbytheEssentialClimateVariables(ECVs)[14], GEO BONput forwardtheconceptof Essential Biodi-versityVariables.Theseareaminimumsetofbiological state variables,complementary to one another, thatare needed to detect biodiversity change [11]. The EBV approach provides guidance to the various biodiversity

(4)

observation systems and facilitate data sharing across habitatsand regions.EBVs are producedbyintegrating biodiversityobservations(primarydata), obtainedviain situ monitoring or remote sensing, in space and time, oftenthroughtheuseofmodelsandotherenvironmental observationsandancilliarydata[15](Figure2).EBVsare organizedaroundsixclasses(GeneticComposition, Spe-cies Populations,Species Traits, Community Composi-tion, Ecosystem Structure, and Ecosystem Function [11]).Variables are prioritizedfrom the many potential biodiversitychangevariablesbased onrelevance, sensi-tivitytochange,generalizabilityacrossrealms,scalability, feasibility,anddataavailability[16].Thesecriteriamake EBVswell-suitedtobethebuildingblocksofbiodiversity indicators(Figure2),suchasthoseusedtotrackprogress against the international and national targets for biodi-versityand sustainability[17,18,19],andwithinIPBES assessments[20].EBVsarealsoimportantforsupporting thedevelopmentofglobalandregionalchangescenarios (Figure 2). Properties such as scalability make them particularlyusefulforthenextgenerationofmulti-scale scenarios[21].

AlongsideEBVdevelopment,GEOBONhasbeen facil-itating the development of Biodiversity Observations Networks (BONs) to improve the coordination and harmonization of observation systems. BONs are

organized aroundthree categories: thematic BONsthat focusonaspecificbiologicaltheme,suchasthe freshwa-terandmarinerealms; nationalBONsthatareendorsed by national governments; and regional BONs. Species andecosystems, andthepressuresthataffect them,are not constrained by political borders. Therefore the regionaland thematicBONsconnectmonitoringefforts for different dimensions and scales of biodiversity. NationalBONsaredirectly orientedto servetheneeds of national and sub-national policy-makers and corre-spondtotheoperationalscaleofmanymonitoring initia-tives.Inparticular,theyaddresspolicyneedsforreporting on multilateral environmental agreements (e.g. CBD, RamsarConvention)andsupportprocessessuchas eco-system accounting, Environmental Impact Assessment, orland andoceanuse planning.Inpractice,BONs pro-duce, testand applytools to deliver EBV-relevantdata thatcanbeupscaledanddownscaledtosupport sustain-abledevelopmentandconservationdecisions[22,23].By beingpartofaglobalframeworkandasystemof obser-vationsystems,BONsalsoreinforcethescientificbasisof bothbiodiversitymonitoringandindicatordevelopment.

Progress

in

the

development

of

EBVs

across

the

dimensions

of

biodiversity

AfteraninitialphaseduringwhichtheEBVconcepthas been consolidated, disseminated to, and endorsed by

Figure1

Current Opinion in Environmental Sustainability

EssentialBiodiversityVariablesrequiretheintegrationofprimarybiodiversityobservationsfrommultiplesources.GEOBONcoordinatesand promotesEBVdevelopmentbyfacilitatingcollaborationbetweenbiodiversityexperts–organisedinWorkingGroups-andBiodiversityObservation Networks.TheEBVs,andderivedindicators,canthenbeusedforassessmentsatmultiplespatialandtemporalscalestosupportpolicyand decisionmakingprocesses.

(5)

stakeholders (e.g. [16]; UNEP/CBD/COP/DEC/XI/3), the development of EBVs has faced the challenge of producing global coverage of spatially and temporally consistentobservations.Majorprogressintheproduction of EBVs is expected for variables enabled by satellite remote sensing observations [24]. An example is the Global Forest Change project [25] which, building on freely available and consistently processed Landsat images, delivers decade-long time series of data which canbeusedto produce EBVs onecosystem extentand fragmentationfromsub-nationaltoglobalscales.Further agreementandcommunitysupportonaprioritizedlistof EBVs isimportantinorder toencouragespaceagencies and the Committee on Earth Observation Satellites (CEOS)toinvestintonewproductsthatfillcriticalgaps in monitoringbiodiversitychange[26,27].

For EBVsthat rely on insitu observations, GEO BON faceschallengesemergingfromthelackofglobal moni-toringschemes,theintegrationofdatasetsresultingfrom differentcollectionmethods,andtechnicalissuesrelated to data product structure, storage, workflow execution, and legal interoperability[10,12].Consequently, EBV

productionworkflowsarenowbeingdesignedtoprovide thenecessarystepsfromidentificationandaggregationof candidate datasets to the elaboration of consistent and reproducible EBVs [28].The developmentof suitable datastandards iskey in thisprocess. The Darwin Core [29] has already catalysed the global sharing of species occurrence data. Its recent Event Core extension now connectsrelatedsamplingeventsandtheproposed Hum-boltCorestandard[30]extendsthistocaptureinventory processesbroadly—allaimedatcapturingmorerelevant information for EBV production (e.g. absences, abun-dance). Furtheradvancesin thecoordinatedproduction of EBVs will require developing data standards and minimum informationspecificationsthatcanbeapplied accrossall EBVclasses.

Below, we outline recent progress and perspectives for coordinatingtheproductionofEBVswithinthemultiple dimensionsof biodiversity.

Geneticlevel

Variables informing ongeneticdiversityof populations, structure and inbreeding based on the number and

Figure2 In situ observations Biodiversity Change Indicator Citizen science 1 2 Primary observations Surveys Data integration Remote sensing eDNA EBV Integration Biodiversity models Reporting units

e.g. countries, ecoregions

Essential Biodiversity Variables Species distribution time Indicator Scenarios Ecosystem extent 1 2 time time time time

Current Opinion in Environmental Sustainability

FromobservationstotheproductionofEBVsandindicators.Inthisexample,integrateddatafromdifferentprimarysourcesofobservations(e.g. insitu,remotesensing)arecombinedwithinbiodiversitymodelstoproducelayersofspatialandtemporalvariationinecosystemextentand speciesdistributionEBVs.InsomecasesoneEBVcanbeaninputforamodeltoproduceanotherEBV.Thisinformationisthenintegratedand summarisedwithinreportingunits((1)and(2)inthefigure)tocalculateanindicatorofbiodiversitychange,whichcanthenbeused,forinstance, forreportingprogresstowardsanAichiconservationtarget.Notethatthisindicatorcanbeprocessedwithinanyspatialunit(e.g.froman ecoregion,toacountry,oranentirebiome).EBVsandmodelscanalsobeusedtoprojectchangesintheindicatorusingscenarios.Although bothrawobservationsandindicatorsmightchangeinthefuture,includingwiththedevelopmentofnewobservationtechniquesandthe expressionofnewuserneeds,theEBVsshould,bydefinition,remainthesame.

(6)

frequencyofallelesmeasuredacrosstimeandspeciesare consideredkeycandidateEBVs.Theydirectlyinformon thegeneticstatusatthepopulationandspecieslevelsand aresuitableformonitoringgeneticerosionovertime[31]. Whileaconsultationprocessforagreeingonaprioritized listofgeneticcompositionEBVshasstilltobecompleted, thescarcityofstudiescollectinggeneticinformationfrom populationsover time,andtheiruneven taxonomicand geographiccoverage,aremajorchallengesforproducing these variables in alignment with the requirements of global,regional,and nationalreportingand assessments regardingsafeguardinggeneticdiversityasstatedinthe Aichi Biodiversity Targets and elsewhere (e.g. CBD’s NagoyaProtocol)[32].Progressisneededin the imple-mentation of coordinated genetic monitoring systems withtheserequirementsinmind,forexample,combining monitoring of a necessarily reduced set of (indicator) specieswithmodelsofgeneticvariation[33].The popu-larization of Next Generation Sequencing and other techniquesthatprovidehighlydetailedgenetic informa-tion, and a wider use of the vast amount of biological materialstoredinmuseumcollectionsasacomplementto contemporarygeneticmonitoring[34],havethepotential toboosttheproductionofmorecomprehensivetemporal seriesofgeneticdataandof EBVs.

Specieslevel

Species-level EBVs capture dimensions of biodiversity relatedtopopulationsandtraits.Forspeciespopulations, spatiotemporally explicit data on their distribution and abundancearegrowing,thanksto increaseddata collec-tion, sharing, and integration activities, and to a rapid growth in citizen science that fill important data gaps [35,36]. The development of the species distribution EBV has benefitted from data infrastructures such as the Global Biodiversity Information Facility (GBIF), the Ocean Biogeographic Information System (OBIS), and Map of Life [37]. Moreover, increasingly sophisti-catedmodellingapproachesthatcombinespecies obser-vationswith remotelysensed environmental datamake theglobal monitoringof speciesdistributionsand abun-dance increasingly tractable [38,39]. However, major gaps in the spatial, taxonomic, and temporal coverage continuetoimposeconstraintsontheglobalandregional productionofSpeciesPopulationsEBVs[10,40].Future directions include the implementationof workflows for dataintegration[28,37]andthedevelopmentofmodels thatlinkinsituobservationstoenvironmentalcovariates supportingEBVproduction[39,41].Anon-going prior-ityapplicationoftheSpeciesDistributionEBVis moni-toringinvasivealienspeciesfromnationaltoglobalscales [42,43].

ThedevelopmentofspeciestraitEBVshasbeenslowed by the challenge of measuring traits repeatedly across time. Most available datasets (e.g. plants [44]) do not provide within species temporal variation of traits.

Exceptionsarerepeatedmeasurementsoffishbodysize and plant phenology [19], and work is under way to integrate, standardize, and harmonize such measurements.

Ecosystemlevel

Because of the interdependence between ecosystem composition, structure and function, and all other dimensionsofbiodiversity,EBVsattheecosystemlevel provideasynopticperspectiveofcriticalcomponentsof biodiversitychange.Satelliteinformationthatcan sup-port monitoringofstructuralandfunctional aspectsof ecosystemsgloballyhasbeenrecentlydetailed[24],but agreement on EBVs per structure and function still needstobereached.Adaptedworkflowsfortranslating potentiallyusabledatasetsintoEBVs,asrecentlydone forspeciespopulations[28],nowneedtobeconsidered forecosystems. One suggested priority formonitoring ecosystemsisdevelopingmetricsincorporating descrip-tions of properties such as canopy height, leaf area, biomass[45],aswellasstructuralbiochemical compo-nents. For ecosystem function EBVs, a typology of ecosystem functions that underpins the identification ofEBVshasbeenproposed[46];theseEBVsnowneed tobeagreedontobetterinformglobalinitiativesandto quantifythestatus,degradationandcollapseof ecosys-tems(e.g.[47]).

Developmentof EBVs addressingcommunity composi-tionwithinecosystemshasreceivedfarlessattention to date than ecosystem structure and function. Existing approaches to deriving variables of potentialrelevance, such as alpha and beta diversity, typically involve esti-matingthese collectivevariables fromobservations and models of multiple individual species [48]. Rapid advances in observation technologies such as metage-nomic analysis of eDNA samples, and hyperspectral remote sensing, provide unprecedented potential for direct large-scaled monitoring of community changes [39,49,50].Mostsignificantly,thisincludesthepotential tomovebeyondderivingvariablessimplyasanaggregate function of species co-occurring at a given location, to consider the full diversity of traitsand relationships of individualorganismsintomeasuresofoverallcommunity composition.

A

cross-scale

approach

for

identifying

EBVs

and

users’

needs

Todate,theprocessofidentifyingandprioritizingEBVs haslargelybeenbasedonexpertknowledgeabout glob-allyrelevantbiodiversitymeasurements[11].While nec-essary, this approach has not yet been systematically driven or informed by users’ needs at the regional, national,or localscales. Thereisaneedto make biodi-versitydatamorerelevantforarangeofusers(e.g.CBD, IPBES,nationalandlocalauthorities,NGOs)[51],anda need to have stronger connections to dataproviders to

(7)

ensuredataqualityandcomparabilityacrossscales.This leadstothedevelopmentofacomplementarybottom-up approachtoformulatingaconsistentsetofEBVsglobally (Figure 3) by considering context-specific user needs across a range of applications at sub-global scales (e.g. [23]).Thisapproachmobilizeslocalknowledge,placing it inabroader context,byfocusingontherelationships betweenvariablestounderstandinformationneedsunder specific management and conservation contexts ( Fig-ure3).By promotingaglobalbiodiversityinfrastructure basedonmultiplenodes,italsoallowsdatatobequickly mobilized andstandardizedacrossscales, while empow-ering local and national organizations to develop their own monitoringschemes.

Developing

monitoring

systems

and

observation

networks

ThedevelopmentofBiodiversityObservationNetworks aims to build a global community of practice for the collection, curation, analysisand communicationof bio-diversitydata.Suchacommunitywillorganize,enhance andlinkexistingmonitoringandobservationsystemsand facilitatetheexchangeofstandardsinmethods,tools,and frameworks to provide data and information to users, whileavoiding theduplicationof effortsacrossseparate initiatives.ThedevelopmentofBONsshouldbefocused onfeasibleimplementation,buildinguponexistingdata, observation platforms,and monitoringprogramssuchas the InternationalLong TermEcologicalResearch Net-work [52].

CurrentstatusofthenetworkofBONs

BONsframetheirobservationsystemstodirectlyaddress user needs,making them diverse, flexible, and autono-mousinthewaytheyoperate.Therearecurrentlyseven formally endorsedBONswithinGEOBON [22,53–57]. National BONs, in China, France,and Colombia, have developed intensive monitoring schemes [54] or biodi-versity(meta)datahubs[53].TheChinaBONisanotable exampleofasystematic,country-widemonitoringdesign withbroadspatialandtaxonomicextent:441sitesarepart ofanobservationsystemofover9000transectsandpoint counts for birds, amphibians,mammals,butterflies, and vascularplantswiththeparticipationofvolunteercitizen scientists at each site [54]. Illustrating a different approach, the French BON hasset as its initial aim to document existing data, acquisition methods and stan-dards to facilitate their access, sharing, and use by researchers and decision makers, and to support biodi-versity managementandnationalreporting[53]. Regional BONs are also diverse and autonomous. The Asia PacificBON is active in promotingresearch colla-borations,capacitybuilding,andacultureofdatasharing [56].TheArcticBONfocusesonlinkingandintegrating existingbiodiversityobservationeffortsanddatato sup-portconservationplanningandpolicy-making[55].The publication in 2017 of the ‘State of the Arctic Marine BiodiversityReport’[58]wastheculminationofthefirst five-year implementation phase for the Arctic Marine BiodiversityMonitoringPlan.

Figure3 EBV user needs guidelines and support data mobilisation data mobilisation Plot, Local, Landscape scale

National monitoring system

[cross-comparison and EBV prioritisation] decision

support

decision support

Regional, Ecosystem, and/or Management scale

variable identification

indicators and

modelling frameworks data

mobilisation

Global scale monitoring

Policy, Management, and Conservation options

Cross-border Harmonisation

Biodiversity Monitoring

Current Opinion in Environmental Sustainability

Across-scaleapproachforglobalbiodiversitymonitoring.Nationalmonitoringsystemshavetorelyonakeysetofpolicy,managementand conservationoptions/questionstodefinetheirmonitoringprioritiesthatprovideinformationfordecisionmaking.Oncetheseprioritiesareset, indicatorsandmodellingframeworkscanbeidentifiedanddescribedtoproduceeffectivemonitoringsystemsthatallowfordatamobilization acrossscales.Ontheotherside,whilenationscollaboratetomobilizedatatoinformEBVs,GEOBONcontributestothenationaleffortsby providingguidanceandsupportforBONdevelopmentanddatastandards.Inparallel,nationsprovideuserneedsforthedevelopmentofEBVs whilecontributingtotheglobaldatapoolonbiodiversityandecosystems.Greenarrowsindicatebiodiversitydatamobilizationflows,blackarrows indicatedecisionsupportflows,andfinallyredarrowsindicatetheidentificationofuserneeds.

(8)

Attheglobalscale,theMarineBON(MBON)isworking incoordinationwiththeGlobalOceanObservingSystem (GOOS)andtheOceanBiogeographicInformation Sys-tem(OBIS)todevelopEssentialOceanVariables[22,59]. The MBON facilitates the development of a common framework for the integration of marine biodiversity observationswithenvironmentalvariables[13].Thegoal istofacilitatethesharingofregionalobservationsthrough common data standards while offering access to the advancedgeospatialanalysistoolsofOBIS,whichwould inturn supportfuture WorldOceanAssessmentsofthe UN[59], or theneedsof the BarcelonaConvention for instance.MBONisalsoworkingwiththeremotesensing community to define newsatellite sensorspecifications to, inter alia, monitor EBVs in coastal wetlands and

aquaticenvironments[27].Therecentlyendorsed Fresh-waterBON (FWBON)is alsousingthe EBVsfor orga-nizingand prioritizing thesteps needed to monitorthe differentcomponentsoffreshwaterbiodiversityand facil-itateits globalassessment [13,57],whilesupportingthe needsoftheRamsarConvention.

AprocessforBONdevelopment

ThegeneralapproachforBONdevelopmentisguidedby a framework that ensures the resulting system directly servesusers’needs[60],whileallowingfor interoperabil-ity with other observation systems (Figure 4a). This framework emphasises the establishment of conduits betweendatacollection,management,analysis,and com-munication that are driven and validated by the users.

Figure4

Focal ecosystems, conceptual models, EBVs and primary observations Data collection methods Sampling framework Data management, analysis and reporting 5 6 7 8 IMPLEMENTATION 9

Design and implementation team Scientific community

Decision and policy makers

STAKEHOLDERS USERS MANAGERS System design Implementation (a) (b) COMMUNICATION TACIT KNOWLEDGE ENGAGEMENT

Create an authorizing environment Establish design and implementation team

2 1

ASSESSMENT

DESIGN

User needs assessment and choice of regional assessment units

Inventory of data, tools and platforms 4 3 Data bases Data standards Data Protocols Citizen Science DATA COLLECTION DATA MANAGEMENT Key Questions Reports Narratives Indicators Information DATA ANALISIS E XP LICIT KNOWLEDGE

Current Opinion in Environmental Sustainability

FrameworkanddevelopmentprocessofBiodiversityObservationNetworks(BONs).(a)Conceptualframeworkfornationalandregional

biodiversityobservationSystemsorganizedaroundtheinteractionbetween(andintegrationof)basicandappliedscience,andend-users.(b)Nine stepprocessforBONdevelopmentdefinedaroundtheengagementofthedifferentstakeholdergroups;theassessmentofuserneedsand availabledata,tools,andplatforms;thedesignoftheBONperse;andfinally,itsimplementation.

(9)

BuildingtheBONsarounduserneedsfurthercontributes toensuringtheirsustainabilitybeyondthelifespanofthe fundedprojectsthatmighthaveinitiatedtheprocessofa BON development.

In practice, GEO BON suggests a stepwise, iterative approachtoestablishingandimplementingBONs, draw-ing upon existing processes, standards, and tools. An exampleof suchsequencedprocessisdividedintonine steps applied to build eachcomponent of anobserving system (Figure 4b) and involves four development phases:engagement,assessment,design,and implemen-tation.Thisflexibleapproachhasbeenusedandadapted fortheArctic[55],Australia’sNewSouthWales[23]and ismore recentlybeingappliedin Colombia.

The assessment phase of the development process of BONs (Figure 4b) aims to capitalize on existing infra-structures,monitoringefforts,andcapacity,while identi-fyingstrengthandweaknessesintermsofEBV develop-ment.Forinstance,theFrenchBONidentifiedover130 insituobservationinfrastructures,mostlyobservingEBVs withinthespeciestraits,speciespopulations,andgenetic compositionclasses[53].Similarly,aFinnishassessment ofthenationalindicatorsandthebiodiversitymonitoring programs underlying them [18]showed that aside from speciespopulationsandecosystemstructure,mostEBV classesarestillpoorlycoveredbytheFinnishmonitoring system. The same observation was made for the ColombiaBONwhichidentifiednonethelessover100 dif-ferent tools for biodiversity observation, data manage-ment and reporting [61]. These assessments thus help governmentsandorganizationstoprioritizeand strategi-callyfillkeygapsintheirexistingordeveloping observa-tionsystems.

BON-in-a-Box:acatalogueforknowledgeexchange

Coretotheestablishmentofagloballyharmonized sys-temofsystemsistheneedforthescientificcommunityto sharedata,knowledgeandtoolstoensurethe accessibil-ity, interoperability,and reporting of biodiversity infor-mationacrossscales[62](Figure4a).Thereareexcellent tools,protocolsandsoftwarethatfacilitateeffective bio-diversitymonitoring,butthesearenotnecessarilyeasily discoverableoravailable.Withthisinmind,GEOBON hasdevelopedBON-in-a-Boxasatechnologytransferand capacity-building mechanism to improve the quantity, quality and interoperability of biodiversity observations and furthersupport BONsdevelopment(e.g. Colombia [61]). BON-in-a-Box is an online catalogue that will connect decision makers, scientists and tool developers aroundtheworld,ensuringaccesstothelatest technolo-gies andmethodologies (https://boninabox.geobon.org/). BON-in-a-Box will also allow the thematic BONs and working groups to provide regional and national BONs withstate-of-the-artapproachesandtoolsforbiodiversity observations. Having such a platform for capacity

building and knowledge exchange will further support theintegration ofthetop-down EBVdevelopment pro-cesswiththebottom-upapproachfor BONdesign.

From

biodiversity

monitoring

to

addressing

societal

needs

Policyrelevanceandindicators

The policy relevanceof GEO BON wasacknowledged early on. Its establishment was recognisedby the Con-ference of theParties of the CBD (UNEP/CBD/COP/ DEC/IX/15),andithasbeenidentifiedasakeypartnerof the IPBES [2]. EBVs have also been proposed by the IPBES as anappropriate framework to determine com-monmetricsforthebiodiversitymodelling,reporting,and observation communities [20]. In practice, monitoring progress towards conservation and sustainable develop-ment targets and the effectiveness of policy decisions, will befacilitated byBONs thatapply theEBV frame-work [17,32] (Figure 1). For instance, the linkages betweentheIntergovernmentalOceanographic Commis-sionofUNESCOandGEOBONarebasedonthevalue chain betweendatacollectors (GOOS),acommunityof practice that shares standards (MBON), and the data hosting and analysis services established by OBIS as a contribution to BON-in-a-Box.Furthermore, to support national reporting needs for CBD Aichi Target 9,37 a modular approach was designed to set up national schemes to monitor the occurrence of invasive alien species while allowing cross-border cooperation, and accommodatingfor varyingcapacity[42,43].

AlthoughEBVsthemselvescanbeconceptuallylinkedto manyoftheAichiTargets[11,32]andSustainable Devel-opmentGoals[13],itistheindicatorsderivedfromthem thatareparticularlyusefultostakeholders[17,18]( Fig-ure2).GEOBON and itspartners aretherefore devel-opingasetofGlobalBiodiversityChangeindicators[48] thatdirectlyreport ontheprogresstowardssomeof the Aichi Targets, and caninform the IPBES assessments. For instance, indicators that combine EBVs on species populationsand/orcommunitycomposition,and ecosys-temstructure,suchasthe‘SpeciesHabitatIndices’and the ‘Biodiversity Habitat Index’ [48] can inform Aichi Targets 5 (‘habitat loss halved or reduced’) and 12 (‘reducing risk of extinctions’). Highlighting the rele-vanceofEBVsasthebuildingblocksoftheseindicators canfurtherincreaseawarenessamongstpolicymakersof thevalueof globallycoordinatedmonitoring.

Monitoringecosystemservices

Monitoring thecontribution of nature to people [63] is critical to inform policy [64,65]. Data on ecosystem

37Target9:By2020,invasivealienspeciesandpathwaysareidentified

andprioritized,priorityspeciesarecontrolledoreradicatedand mea-suresareinplacetomanagepathwaystopreventtheirintroductionand establishment.

(10)

services suffers from the same patchiness and incom-pletenessasbiodiversitydata.Thisisfurthercomplicated bytheneedtointegrateecologicalandsocialdata. How-ever, there have been some promising methodological developments in recent years [66,67]. These include theintegrationofnationalstatistics(e.g.censusdata)with in situ measurements, community monitoring, remote sensingand modeloutputs[9,66].Therefore,an impor-tantsteptoadvancethemonitoringofecosystemservices isthe definition of aconceptualand operational frame-workfor EssentialEcosystemServiceVariables(EESV) and thedevelopmentof multidisciplinary interoperable datastandards[13,67].TheEESVframeworkincludes several classes of variables,covering thedifferent com-ponentsoftheecosystemserviceflowfromecosystemsto society, thedifferent types of values of ecosystem ser-vices and the actual benefits obtained by society [11]. EESVsexplicitly linkthemonitoring of ecosystem ser-vicesto identifyingprogresstowardsmeetingtheSDGs andAichitargets,asdemonstratedinarecentassessments oncurrentuseofecosystemservicedatainreporting[68].

MainstreamingEBVs

Thevalueof EBVsto policywillbedetermined bythe degreetowhichtheyenabletheproductionofindicators and their incorporation into decision making to help countriesmeettheirinternalandinternationalobligations. Sincetheywereproposedinthe1990s,theECVsarenow widelyacceptedandusedtostructurenationalreportingto theUNFrameworkConventiononClimateChange,for global climate annual assessments, and to support the workoftheIntergovernmentalPanelonClimateChange [14]. Similarly, EBVs need to be both accessible and usable by a variety of stakeholders regardless of their familiarity with theirproduction process. To be useful, EBVdatasetswillneedtoadheretoscientificstandardsof peer-review, replicability and sensitivity to detect changes,as well as theinclusionof uncertaintymetrics, allofwhichmustbefullyreported.Atransparentprocess needs to be developed for the endorsement of EBV datasetsbytheGEOBONcommunitytoensure appro-priate data and metadata for measuring biodiversity change.EBVdataproductsneedtobemadefreely avail-ableaccordingtoOpenDataprinciples,i.e.beaccessible withoutrestrictionsonuse,modificationandsharing[28]. Moreover, EBVdata products and indicators should be resourced in a waythat maximizes discoverability. One suchmechanismisaGEOBONPortalthatenhancesthe accessibilityofendorsedEBVdatasets.Thisonline clear-inghousewillserveasthebiodiversityequivalentof the GlobalObservingSystemsInformationCentre(GOSIC) for climate variables [14], and will feedinto the Global EarthObservationSystemof Systems(GEOSS).

Conclusion

Thebiodiversitycrisis[3]callsforboththeadoptionofa commonframeworkforbiodiversitymonitoring,andthe

establishment of a system of harmonised biodiversity observation systems that supports it. In ten years of existence, GEO BON, largely as a volunteer effort, designedamonitoringframeworkaroundEssential Bio-diversity Variables which supports the development of biodiversitychangeindicators.The nextdecadewillbe critical for the development of those EBVs and will requiretheirrefinementacrossalllevelsofbiodiversity, thewidespread useofcommondataandmetadata stan-dards,andthedesignof workflows.GEOBONhasalso facilitatedtheestablishmentofseveralnational,regional, andthematicBONs,anddeveloped acapacitybuilding andknowledgetransferplatformto furtherimprovethe designof biodiversityobservation systems.

Futureadvancesin thedevelopmentof EBVsand gen-erationofthecorrespondingdataareexpectedgiventhe current trend in technological improvement for in situ data acquisition, better availability of satellite remote sensingdata, widespread useof emerging genetic tech-niquesand genomic libraries,and theuse of models to produce spatially and temporally comprehensive EBV dataproducts.Thesedevelopmentsfurtherbenefitfrom theestablishmentofnationalandsub-national biodiver-sity observation systems and the involvement of end-users in the process so as to produce policy relevant indicators (Figures 1 and 2). Ten years from now, GEO BON envisions a wide and robust network of nationalandregionalBONs,withmultipleEBVproducts openly available thatcover the differentdimensions of biodiversityandcomponentsofecosystemservices,allof whichcontributingtowellinformedlocaltoglobal assess-ments of the status and trends of biodiversity and its contributiontosociety.

Acknowledgements

LMN,NF,CG,HJK,andHMParesupportedbytheGermanCentrefor integrativeBiodiversityResearch(iDiv)Halle-Jena-Leipzig,fundedbythe GermanResearchFoundation(FZT118).GES,IG,andCGarealso supportedbyECOPOTENTIAL(http://www.ecopotential-project.eu),a projectfundedbytheEuropeanUnion’sHorizon2020researchand innovationprogramme,undergrantagreementno.641762.WDK acknoweldgesfinancialsupportfromtheEuropeanCommission (GLOBIS-Bproject,grant654003).WJacknowledgessupportbyNASAgrant AIST-16-0092,NSFgrantDBI-1262600,andtheYaleCentreforBiodiverstiyand GlobalChange.ThecontributionofMESissupportedbytheUniversityof ZurichResearchPriorityProgrammeon‘GlobalChangeandBiodiversity’ (URPPGCB).CMandGESaresupportedbyODYSSEA(http:// odysseaplatform.eu/),aprojectfundedbytheEuropeanUnion’sHorizon 2020researchandinnovationprogramme,undergrantagreementno 727277.PVacknowledgesMinistryoftheEnvironment,theFinnishMAES projectandTheStrategicResearchCouncil(SRC)attheAcademyof Finland(grantno:312559).FMKwassupportedinpartbytheNational AeronauticsandSpaceAdministration(NASAgrantsNNX16AQ34Gand NNX14AP62A),theNOAAUSIntegratedOceanObservingSystem/IOOS ProgrammeOffice,theNOAAOceanExplorationProgramme,andthe NOAANationalMarineFisheriesServicethroughtheUSNationalOcean PartnershipProgramme.ThismanuscriptisacontributiontotheMarine BiodiversityObservationNetwork.Finally,theworkdevelopedwithin GEOBONislargelysupportedbythevolunteerdedicationofitsmembers withoutwhomthiswork,andmanymore,wouldnothavebeenpossible.

(11)

References

and

recommended

reading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:

 ofspecialinterest ofoutstandinginterest

1. CBD:AichiBiodiversityTargets.2011.

2. LarigauderieA,MooneyHA:TheIntergovernmental science-policyPlatformonBiodiversityandEcosystemServices: movingastepclosertoanIPCC-likemechanismfor biodiversity.CurrOpinEnvironSustain2010,2:9-14.

3. CeballosG,EhrlichPR,DirzoR:Biologicalannihilationviathe ongoingsixthmassextinctionsignaledbyvertebrate populationlossesanddeclines.ProcNatlAcadSci2017,114: E6089-E6096.

4. ScholesRJ,MaceGM,TurnerW,GellerGN,Ju¨rgensN, LarigauderieA,MuchoneyD,WaltherBA,MooneyHA:Towarda globalbiodiversityobservingsystem.Science2008, 321:1044-1045.

5. NossRF:Indicatorsformonitoringbiodiversity:ahierarchical approach.ConservBiol1990,4:355-364.

6. PereiraHM,NavarroLM,MartinsIS:Globalbiodiversitychange: thebad,thegood,andtheunknown.AnnuRevEnvironResour 2012,37:25-50.

7.

 MihoubSchmellerJ-B,DS:HenleSettingK,TiteuxtemporalN,BrotonsbaselinesL,Brummittforbiodiversity:NA, the limitsofavailablemonitoringdataforcapturingthefullimpact ofanthropogenicpressures.SciRep2017,7:srep41591.

Thispapercomparesthetimeframeofbiodiversitydatawiththetimingof anthropogenicpressuresinthe20thcentury,anddiscussesthe limita-tionsofthetemporalbaselinesthatdataavailabilityimposesandtheir implicationforbiodiversityconservation.

8. GonzalezA,CardinaleBJ,AllingtonGRH,ByrnesJ,Arthur EndsleyK,BrownDG,HooperDU,IsbellF,O’ConnorMI, LoreauM:Estimatinglocalbiodiversitychange:acritiqueof papersclaimingnonetlossoflocaldiversity.Ecology2016, 97:1949-1960.

9. TallisH,MooneyH,AndelmanS,BalvaneraP,CramerW,KarpD, PolaskyS,ReyersB,RickettsT,RunningSetal.:Aglobalsystem formonitoringecosystemservicechange.Bioscience2012, 62:977-986.

10.

 Proenc¸BelnapaJ,V,Bo¨hmMartinM,LJ,BrummittPereiraN,HM,Garcı´a-Moreno J,FernandezM,McRaeGregoryL,RD etal.:Globalbiodiversitymonitoring:fromdatasourcesto EssentialBiodiversityVariables.BiolConserv2017, 213:256-263.

Thispaper presentsdifferent biodiversitymonitoring approaches and datasources,theirspatial,temporal,andtaxonomiccoverages,andtheir relationtoEBVsandindicators.

11. PereiraHM,FerrierS,WaltersM,GellerGN,JongmanRHG, ScholesRJ,BrufordMW,BrummittN,ButchartSHM,CardosoAC etal.:EssentialBiodiversityVariables.Science2013, 339:277-278.

12. ScholesRJ,WaltersM,TurakE,SaarenmaaH,HeipCH, TuamaE´O´ ,FaithDP,MooneyHA,FerrierS,JongmanRHetal.: Buildingaglobalobservingsystemforbiodiversity.CurrOpin EnvironSustain2012,4:139-146.

13. GEOBON:GEOBONImplementationPlan2017–2020.Version 1.3.GrouponEarthObservationsBiodiversityObservation NetworkSecretariat;2017.

14. BojinskiS,VerstraeteM,PetersonTC,RichterC,SimmonsA, ZempM:TheconceptofEssentialClimateVariablesinsupport ofclimateresearch,applications,andpolicy.BullAmMeteorol Soc2014,95:1431-1443.

15. HonradoJP,PereiraHM,GuisanA:Fosteringintegration betweenbiodiversitymonitoringandmodelling.JApplEcol 2016,53:1299-1304.

16. WaltersM,PereiraHM,FerrierS,GellerGN,JongmanR, ScholesRJ,BrufordM,ReyersB:EssentialBiodiversity

Variables.SubsidiaryBodyonScientific,Technicaland TechnologicalAdvice(SBSTTA)notes.2013.

17.

 BrummittGeijzendorfferN,ReganIR,RocchiniEC,WeatherdonD,GavishLV,Y,HaaseMartinP,CS,MarshCJ, SchmellerDS:Takingstockofnature:EssentialBiodiversity Variablesexplained.BiolConserv2017,213:252-255.

ThispaperprovidesanexplanationoftheEssentialBiodiversityVariables thatissimpleandaccessibletoawideraudience,byusingananalogy withstockmarket.

18. VihervaaraP,AuvinenA-P,MononenL,To¨rma¨ M,AhlrothP, AnttilaS,Bo¨ttcherK,ForsiusM,HeinoJ,Helio¨la¨ Jetal.:How EssentialBiodiversityVariablesandremotesensingcanhelp nationalbiodiversitymonitoring.GlobEcolConserv2017, 10:43-59.

19. SchmellerDS,WeatherdonLV,LoyauA,BondeauA,BrotonsL, BrummittN,GeijzendorfferIR,HaaseP,KuemmerlenM,MartinCS etal.:Asuiteofessentialbiodiversityvariablesfordetecting criticalbiodiversitychange.BiolRev2017http://dx.doi.org/ 10.1111/brv.12332.

20. IPBES:TheMethodologicalAssessmentReportonscenariosand modelsofbiodiversityandecosystemservices.Secretariatofthe IntergovernmentalScience-PolicyPlatformonBiodiversityand EcosystemServices;2016.

21. RosaIMD,PereiraHM,FerrierS,AlkemadeR,AcostaLA, AkcakayaHR,BelderE,denFazelAM,FujimoriS,HarfootMetal.: Multiscalescenariosfornaturefutures.NatEcolEvol2017, 1:1416.

22. Muller-KargerF,KavanaughM,MontesE,BalchW,BreitbartM, ChavezF,DoneyS,JohnsE,LetelierR,LomasMetal.:A Frameworkforamarinebiodiversityobservingnetworkwithin changingcontinentalshelfseascapes.Oceanography2014, 27:18-23.

23.

 DunkerleyTurakE,Brazill-BoastG,FernandezJ,M,CooneyFerrierT,S,DrielsmaGillM,JonesM,DelaCruzHetal.:J,Using theessentialbiodiversityvariablesframeworktomeasure biodiversitychangeatnationalscale.BiolConserv2017, 213:264-271.

Thispaperpresentstheapplicationatthenationalscale,usingAustralia asacasestudy,oftheEBVframeworkandEBVselectionprocessto monitorbiodiversitychangeandassessmanagementpolicies. 24. SkidmoreAK,PettorelliN,CoopsNC,GellerGN,HansenM,

LucasR,Mu¨cherCA,O’ConnorB,PaganiniM,PereiraHMetal.: Environmentalscience:agreeonbiodiversitymetricstotrack fromspace.Nature2015,523:403-405.

25. HansenMC,PotapovPV,MooreR,HancherM,TurubanovaSA, TyukavinaA,ThauD,StehmanSV,GoetzSJ,LovelandTRetal.: High-resolutionglobalmapsof21st-centuryforestcover change.Science2013,342:850-853.

26. PaganiniM,LeidnerAK,GellerG,TurnerW,WegmannM:Therole ofspaceagenciesinremotelysensedessentialbiodiversity variables.RemoteSensEcolConserv2016,2:132-140.

27. Muller-KargerF,HestirE,AdeC,RobertsDA,SiegelD,MillerRJ, HummD,IzenbergN,KellerM,MorganF,etal.:Satellitesensor requirementsformonitoringessentialbiodiversityvariablesof coastalecosystems.EcolAppl,inpress.https://doi.org/10.1002/ eap.1682.

28.

 KisslingGarcı´aEA,WD,GuralnickAhumadaRP,JA,IsaacBowserNJB,A,FernandezKellingS,LosM,Ferna´ndezWetal.: N, Buildingessentialbiodiversityvariables(EBVs)ofspecies distributionandabundanceataglobalscale.BiolRev2017

http://dx.doi.org/10.1111/brv.12359.

ThispaperdiscussedthechallengesofEBVdevelopmentandproposesa workflowtooperationalizethebuildingofEBVsoftheSpeciesPopulation classandthatincludestheidentificationandaggregationofvariousraw datasources,dataqualitycontrol,taxonomicnamematchingand sta-tisticalmodellingofintegrateddata.

29. WieczorekJ,BloomD,GuralnickR,BlumS,Do¨ringM,GiovanniR, RobertsonT,VieglaisD:Darwincore:anevolving community-developedbiodiversitydatastandard.PLoSOne2012,7: e29715.

30. GuralnickR,WallsR,JetzW:HumboldtCore—towarda standardizedcaptureofbiologicalinventoriesforbiodiversity

(12)

monitoring,modelingandassessment.Ecography2017, 40:001-012.

31. HobanS,ArntzenJA,BrufordMW,GodoyJA,RusHoelzelA, SegelbacherG,Vila` C,BertorelleG:Comparativeevaluationof potentialindicatorsandtemporalsamplingprotocolsfor monitoringgeneticerosion.EvolAppl2014,7:984-998.

32. GeijzendorfferIR,ReganEC,PereiraHM,BrotonsL,BrummittN, GavishY,HaaseP,MartinCS,MihoubJ-B,SecadesCetal.: Bridgingthegapbetweenbiodiversitydataandpolicy reportingneeds:anEssentialBiodiversityVariables perspective.JApplEcol2016,53:1341-1350.

33. MimuraM,YaharaT,FaithDP,Va´zquez-Domı´nguezE,ColauttiRI, ArakiH,JavadiF,Nu´n˜ez-Farfa´nJ,MoriAS,ZhouSetal.: Understandingandmonitoringtheconsequencesofhuman impactsonintraspecificvariation.EvolAppl2017,10:121-139.

34. HabelJC,HusemannM,FingerA,DanleyPD,ZachosFE:The relevanceoftimeseriesinmolecularecologyand conservationbiology.BiolRev2014,89:484-492.

35. AmanoT,LammingJDL,SutherlandWJ:Spatialgapsinglobal biodiversityinformationandtheroleofcitizenscience. BioScience2016,66:393-400.

36. PimmSL,AlibhaiS,BerglR,DehganA,GiriC,JewellZ,JoppaL, KaysR,LoarieS:Emergingtechnologiestoconserve biodiversity.TrendsEcolEvol2015,30:685-696.

37. JetzW,McPhersonJM,GuralnickRP:Integratingbiodiversity distributionknowledge:towardaglobalmapoflife.Trends EcolEvol2012,27:151-159.

38. WilsonAM,JetzW:Remotelysensedhigh-resolutionglobal clouddynamicsforpredictingecosystemandbiodiversity distributions.PLoSBiol2016,14:e1002415.

39.

 BushMartiusA,C,SollmannZlinszkyR,A,WiltingCalvignac-SpencerA,BohmannK,S,ColeCobboldB,BalzterCAetH,al.: ConnectingEarthobservationtohigh-throughputbiodiversity data.NatEcolEvol2017,1:176.

Thispaper discussedthepotential ofemerging technology,including high-throughputDNA,biodiversitymodelling,andautomatedrecording devices,combinedwithEarthObservationstomoreefficientlyandtimely monitorbiodiversityandbiodiversitychange.

40. MeyerC,KreftH,GuralnickR,JetzW:Globalprioritiesforan effectiveinformationbasisofbiodiversitydistributions.Nat Commun2015,6ncomms9221.

41. FerrierS,JetzW,ScharlemannJ:Biodiversitymodellingaspart ofanobservationsystem.TheGEOHandbookonBiodiversity ObservationNetworks.Springer;2017:239-257.

42. LatombeG,PyekP,JeschkeJM,BlackburnTM,BacherS, CapinhaC,CostelloMJ,Ferna´ndezM,GregoryRD,HobernD etal.:Avisionforglobalmonitoringofbiologicalinvasions.Biol Conserv2017,213:295-308.

43. McGeochMA,GenovesiP,BellinghamPJ,CostelloMJ, McGrannachanC,SheppardA:Prioritizingspecies,pathways, andsitestoachieveconservationtargetsforbiological invasion.BiolInvasions2016,18:299-314.

44. KattgeJ,Dı´azS,LavorelS,PrenticeIC,LeadleyP,Bo¨NischG, GarnierE,WestobyM,ReichPB,WrightIJetal.:TRY—aglobal databaseofplanttraits.GlobChangeBiol2011,17:2905-2935.

45. SaatchiSS,HarrisNL,BrownS,LefskyM,MitchardETA,SalasW, ZuttaBR,BuermannW,LewisSL,HagenSetal.:Benchmark mapofforestcarbonstocksintropicalregionsacrossthree continents.ProcNatlAcadSci2011,108:9899-9904.

46. PettorelliN,SchultetoBu¨hneH,TullochA,DuboisG, Macinnis-NgC,Queiro´sAM,KeithDA,WegmannM,SchrodtF,StellmesM etal.:Satelliteremotesensingofecosystemfunctions: opportunities,challengesandwayforward.RemoteSensEcol Conserv2017http://dx.doi.org/10.1002/rse2.59.

47. KeithDA,Rodrı´guez JP,BrooksTM,BurgmanMA,BarrowEG, BlandL,ComerPJ,FranklinJ,LinkJ,McCarthyMAetal.:The IUCNRedlistofecosystems:motivations,challenges,and applications.ConservLett2015,8:214-226.

48. GEOBON:GlobalBiodiversityChangeIndicators.Version1.2. GrouponEarthObservationsBiodiversityObservationNetwork Secretariat;2015.

49. JetzW,Cavender-BaresJ,PavlickR,SchimelD,DavisFW, AsnerGP,GuralnickR,KattgeJ,LatimerAM,MoorcroftPetal.: Monitoringplantfunctionaldiversityfromspace.NatPlants 2016,2nplants201624.

50. SchneiderFD,MorsdorfF,SchmidB,PetcheyO,HueniA,Schimel D,SchaepmanME:Mappingfunctionaldiversityfromremotely sensedmorphologicalandphysiologicalforesttraits.Nat Commun2017,8http://dx.doi.org/10.1038/s41467-017-01530-3. 51. GeijzendorfferIR,TeeffelenAJA,AllisonH,BrainD,HorganK,

Itturate-GarciaM,SantosMJ:Howcanglobaltargetsfor biodiversityandecosystemservicesguidelocalconservation actions.CurrOpinEnvironSustain[dateunknown].

Cosust_2017_110_R1.https://doi.org/10.1016/j.cosust.2017.12. 011.

52. HaaseP,TonkinJD,StollS,BurkhardB,FrenzelM,

GeijzendorfferIR,Ha¨userC,KlotzS,Ku¨hnI,McDowellWHetal.: Thenextgenerationofsite-basedlong-termecological monitoring:linkingessentialbiodiversityvariablesand ecosystemintegrity.SciTotalEnviron2018,613:1376-1384.

53. FondationpourlaRecherchesurlaBiodiversite´:E´tatdeslieuxet analysedupaysagenationaldesobservatoiresderecherchesurla biodiversite´,unee´tudedel’infrastructureECOSCOPE.Ed.Aure´lie DelavaudetRobinGoffaux;2016.

54. XuH,CaoM,WuY,CaiL,CaoY,DingH,CuiP,WuJ,WangZ,LeZ etal.:Optimizedmonitoringsitesfordetectionofbiodiversity trendsinChina.BiodiversConserv2017,26:1959-1971.

55. GillMJ,CraneK,HindrumR,ArnebergP,BysveenI,

DenisenkoNV,GofmanV,Grant-FriedmanA,GudmundssonG, HopcroftRRetal.:ArcticMarineBiodiversityMonitoringPlan. 2011.

56. YaharaT,MaK,DarnaediD,MiyashitaT,TakenakaA,TachidaH, NakashizukaT,KimE-S,TakamuraN,NakanoS,ShirayamaY, YamamotoH,VergaraSG:Developingaregionalnetworkof biodiversityobservationintheAsia-PacificRegion: achievementsandchallengesofAPBON.In Integrative ObservationsandAssessments,EcologicalResearch Monographs.EditedbyNakanoS,YaharaT,NakashizukaT. Tokyo:Springer;2014:3-28 http://dx.doi.org/10.1007/978-4-431-54783-9_1.

57. TurakE,HarrisonI,DudgeonD,AbellR,BushA,DarwallW, FinlaysonCM,FerrierS,FreyhofJ,HermosoVetal.:Essential biodiversityvariablesformeasuringchangeinglobal freshwaterbiodiversity.BiolConserv2017,213:272-279.

58. CAFF:StateoftheArcticMarineBiodiversityReport.Conservation ofArcticFloraandFaunaInternationalSecretariat;2017.

59. CostelloMJ,BasherZ,McLeodL,AsaadI,ClausS,VandepitteL, YasuharaM,GislasonH,EdwardsM,AppeltansWetal.:Methods forthestudyofmarinebiodiversity.TheGEOHandbookon BiodiversityObservationNetworks.Springer;2017:129-163.

60. LindenmayerDB,LikensGE:Adaptivemonitoring:anew paradigmforlong-termresearchandmonitoring.TrendsEcol Evol2009,24:482-486.

61. SierraCA,MahechaM,PovedaG,A´lvarez-Da´vilaE, Gutierrez-VelezVH,ReuB,FeilhauerH,Ana´yaJ,ArmenterasD,

BenavidesAMetal.:Monitoringecologicalchangeduringrapid socio-economicandpoliticaltransitions:Colombian ecosystemsinthepost-conflictera.EnvironSciPolicy2017, 76:40-49.

62. SchmellerDS,Bo¨hmM,ArvanitidisC,Barber-MeyerS, BrummittN,ChandlerM,ChatzinikolaouE,CostelloMJ,DingH, Garcı´a-MorenoJetal.:Buildingcapacityinbiodiversity monitoringattheglobalscale.BiodiversConserv2017http://dx. doi.org/10.1007/s10531-017-1388-7.

63. Dı´az S,PascualU,StensekeM,Martı´n-Lo´pezB,WatsonRT, Molna´rZ,HillR,ChanKMA,BasteIA,BraumanKAetal.: Assessingnature’scontributionstopeople.Science2018, 359:270-272.

(13)

64. MaesJ,EgohB,WillemenL,LiqueteC,VihervaaraP, Scha¨gnerJP,GrizzettiB,DrakouEG,NotteAL,ZulianGetal.: Mappingecosystemservicesforpolicysupportanddecision makingintheEuropeanUnion.EcosystServ2012,1:31-39.

65. PascualU,BalvaneraP,Dı´az S,PatakiG,RothE,StensekeM, WatsonRT,DessaneEB,IslarM,KelemenE:Valuingnature’s contributionstopeople:theIPBESapproach.CurrOpinEnviron Sustain2017,26:7-16.

66. BalvaneraP,QuijasS,KarpDS,AshN,BennettEM,BoumansR, BrownC,ChanKMA,Chaplin-KramerR,HalpernBSetal.: EcosystemServices.TheGEOHandbookonBiodiversity ObservationNetworks.Springer;2017:39-78.

67.

 CordSeppeltAF,R:BraumanPrioritiesKA,toChaplin-KrameradvancemonitoringR,HuthofA,ecosystemZivG, servicesusingEarthObservation.TrendsEcolEvol2017, 32:416-428.

Thispaperpresentsaframeworktointegratesatelliteearthobservation withsocioeconomicdataandmodelbasedanalysisinordertoassessthe supplyanddemandforecosystemservices,alongwiththebenefitsfor humanwell-being,andprovidesfurtherguidanceontheuseofearth observationstomonitorecosystemservices.

68. GeijzendorfferIR,Cohen-ShachamE,CordAF,CramerW, GuerraC,Martı´n-Lo´pezB:Ecosystemservicesinglobal sustainabilitypolicies.EnvironSciPolicy2017,74:40-48.

Cytaty

Powiązane dokumenty

The main objective of the present work is to show that the solution of the diffusion equation with drift, with an appropriately modified initial value, complemented with initial

Międzynarodowe czasopismo R elig io u s and Sacred Poetry” („Poezja Religijna i Sakralna”) umożliwia we właściwym sobie zakresie zgłębianie wspólnego

In this paper, we propose the Smart Discovery Protocol (SDP) which outperforms the operational service discovery protocols with three main features: (1) more expressive semantic

Studia Theologica Varsaviensia 14/1,

[1] decided to perform a genetic anal- ysis of single nucleotide polymorphisms (SNPs) of crucial hemostatic platelet receptors (GPIa, GPVI, P2Y12) and correlate their presence

Erst  dann  folgen  die  einzelnen  Beiträge,  bei  deren Reihenfolge die Problematik der einzel- nen  Artikel  entscheidend  ist,  d.h.  am 

Wzrost dochodów realnych ludności ZSRR następował zatem w pierw­ szym okresie w drodze kolejnych obniżek cen i stałości płac, a w okresie drugim — do chwili obecnej —

A non-optimised tool path for the drilling process is generated with the system Creo then transformed into the CL data file and, subsequently, loaded into the Toolpath