• Nie Znaleziono Wyników

An alternative intuitionistic version of Mally's deontic logic

N/A
N/A
Protected

Academic year: 2021

Share "An alternative intuitionistic version of Mally's deontic logic"

Copied!
8
0
0

Pełen tekst

(1)

Delft University of Technology

An alternative intuitionistic version of Mally's deontic logic

Lokhorst, Gert Jan C DOI

10.4467/20842589RM.16.003.5280

Publication date 2016

Document Version Final published version Published in

Reports on Mathematical Logic

Citation (APA)

Lokhorst, G. J. C. (2016). An alternative intuitionistic version of Mally's deontic logic. Reports on Mathematical Logic, (51), 35-41. https://doi.org/10.4467/20842589RM.16.003.5280

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

doi:10.4467/20842589RM.16.003.5280

Gert-Jan C. LOKHORST

AN ALTERNATIVE INTUITIONISTIC

VERSION

OF MALLY’S DEONTIC LOGIC

A b s t r a c t. Some years ago, Lokhorst proposed an intuitionistic reformulation of Mally’s deontic logic (1926). This reformulation was unsatisfactory, because it provided a striking theorem that Mally himself did not mention. In this paper, we present an alter-native reformulation of Mally’s deontic logic that does not provide this theorem.

.

1

Introduction

Some years ago, Lokhorst proposed an intuitionistic reformulation of Mally’s deontic logic (1926) [3]. This reformulation was unsatisfactory, because it provided a striking theorem that Mally himself did not mention, namely ⌥(A_¬A). In this paper, we present an alternative reformulation of Mally’s deontic logic that does not provide this theorem.

Received 4 October 2015

(3)

36 GERT-JAN C. LOKHORST

.

2

Definitions

Heyting’s system of intuitionistic propositional logic h is defined as follows [1, Ch. 2].

Axioms: (a) A! (B ! A).

(b) (A! (B ! C)) ! ((A ! B) ! (A ! C)). (c) (A^ B) ! A; (A ^ B) ! B. (d) A! (B ! (A ^ B)). (e) A! (A _ B); B ! (A _ B). (f) (A! C) ! ((B ! C) ! ((A _ B) ! C)). (g) ? ! A.

Rule: A, A! B/B (modus ponens, MP).

Definitions: ¬A = A ! ?, > = ¬?, A $ B = (A ! B) ^ (B ! A).

The second-order intuitionistic propositional calculus with comprehension C2h is h plus [1, Ch. 9]:

Axioms: Q1 (8x)A(x) ! A(y).

Q2 A(y)! (9x)A(x).

Q5 (8x)(B _ A(x)) ! (B _ (8x)A(x)), x not free in B. Q6 (9x)(x $ A), x not free in A.

Rules: Q3 A(x)! B/(9x)A(x) ! B, x not free in B.

Q4 B! A(x)/B ! (8x)A(x), x not free in B.

Definition: ? = (df 8x)x [1, Ch. 9, Exercise 10].

An intuitionistic version of Mally’s deontic logic ⌥C2h is C2h plus

[4, Ch. I]: A1 ((A! ⌥B) ^ (B ! C)) ! (A ! ⌥C). A2 ((A! ⌥B) ^ (A ! ⌥C)) ! (A ! ⌥(B ^ C)). A3 (A! ⌥B) $ ⌥(A ! B). A4 ⌥>. A5 ¬(> ! ⌥?). Some comments on⌥C2h:

1. Mally wrote !A instead of ⌥A. He read !A as “it ought to be case that A” or “it is required that A is the case.” He read A! !B as “A requires B.”

(4)

2. Definition: U =df >. Mally read U as “the unconditionally required” or “what conforms with what ought to be the case.”

3. Definition: U =df ?. Mally read U as “what conflicts with what ought to be the case.”

4. Mally wrote9U ⌥ U instead of A4. We regard 9U ⌥ U as ill-formed,

because we view U as a constant. We therefore replace 9U ⌥ U by

(9x)((x $ U) ^ ⌥x) (this is formula T1500 in the Appendix below).

This agrees with Mally’s informal interpretation of9U ⌥ U.

.

3

Theorems

Definition 1. Let A be a formula in the language of⌥C2h. By induc-tion on the number of connectives in A we define two translainduc-tions, [A]+and [A] , of A into the formulas of C2h as follows:

1. If A is atomic, then [A]± df

= A. 2. [?]± =df ?. 3. [A1⌦ A2]± df = [A1]±⌦ [A2]±, where⌦ is ^, _ or !. 4. [(Qx)A(x)]± df = (Qx)[A(x)]±, where (Qx) is (8x) or (9x). 5. [⌥A]+ df

= [A]+and [⌥A] df

= ¬¬[A] .

Theorem 1. (After [2, Theorem 1, p. 312].) If A is a theorem of⌥C2h, then [A]± is a theorem of C2h.

Proof. By induction on the construction of the proof of A. Base case: for each axiom A of ⌥C2h, [A]± is a theorem of C2h, as can easily be

checked. Inductive step: MP, Q3 and Q4 preserve this property. Suppose

that the theorem holds for A, B and that⌥C2h provides A/B by rule R

(induction hypothesis). We show that C2h provides [A]±/[B]± by R. Case R of:

• MP: let A = C, Bdf = Cdf ! D. C2h provides [A]±/[B]± by R,

because [A]±= [C]± and [B]± df

= [C ! D]± df

= [C]±! [D]±.

• Q3: let A = C(x)df ! D, B = (9x)C(x) ! D, x not free in D. C2h

provides [A]±/[B]±by R, because [A]± df

= [C(x)! D]± df

= [C(x)]±!

[D]±and [B]± = [(9x)C(x) ! D]df ± df

(5)

38 GERT-JAN C. LOKHORST

• Q4: let A = Cdf ! D(x), B = [C ! (8x)D(x)]±, x not free in C. C2h

provides [A]±/[B]± by R, because [A]± = [Cdf ! D(x)]± = [C]df ± ! [D(x)]±and [B]± df

= [C ! (8x)D(x)]± df

= [C]±! (8x)[D(x)]±.

⇤ Theorem 2. (After [2, Theorem 1, p. 312].) Let p be an atomic formula. There is no formula A in the language of C2h such that⌥C2h ` ⌥p $ A.

Proof. From Theorem 1. If for some formula A of C2h,⌥C2h ` ⌥p $

A, then C2h ` ¬¬p $ A and C2h ` p $ A, since [A]± is A. Hence

C2h` p $ ¬¬p, but this is false. ⇤

Definition 2. For theories T based on intuitionistic logic, if A is an arbitrary formula of the language of T , then A is stable in T if and only if

T provides¬¬A ! A.

Theorem 3. ⌥A is not stable in ⌥C2h.

Proof. From Theorem 1. [¬¬⌥p ! ⌥p]+(df

= ¬¬p ! p) is not a theorem

of C2h. ⇤

Theorem 4. ⌥C2h provides A1–A5 and all theorems of [4, Chs. I–II]

(see Appendix), except:

T12c ⌥(A ! B) $ ⌥¬(A ^ ¬B).

T12d ⌥¬(A ^ ¬B) $ ⌥(¬A _ B).

T13a (A! ⌥B) $ ¬(A ^ ¬ ⌥ B).

T13b ¬(A ^ ¬ ⌥ B) $ (¬A _ ⌥B).

T14 (A! ⌥B) $ (¬B ! ⌥¬A).

Proof. From Theorem 1. For each formula A on the above list, [A]+ is

not a theorem of C2h. Additionally, [T13b] is not a theorem of C2h. ⇤

Theorem 5. ⌥C2h does not provide ⌥(A _ ¬A).

Proof. From Theorem 1. [⌥(p _ ¬p)]+(df

= p_ ¬p) is not a theorem of

(6)

.

4

Conclusion

The intuitionistic reformulation of Mally’s deontic logic proposed in [3]

pro-vided ⌥(A _ ¬A). This formula is not a theorem of ⌥C2h. Moreover,

Mally did not mention this formula. ⌥C2h is, in a sense, therefore more adequate than the intuitionistic reformulation proposed in [3], even though the latter reformulation lacked only T13b (from the formulas mentioned in Theorem 4).

.

Appendix

All theorems from [4, Ch. II], as listed in [5, pp. 121–123], plus one theorem that seems to have been overlooked in [5, pp. 121–123], namely T1500(cf. [4,

Ch. I, axiom IV]). All theorems are derivable in⌥C2h, except those marked with a† (Theorem 4). T01 (C! ⌥(A ^ B)) ! ((C ! ⌥A) ^ (C ! ⌥B)) T02 ((C! ⌥A) ^ (C ! ⌥B)) $ (C ! ⌥(A ^ B)) T1 (A! ⌥B) ! (A ! ⌥>) T20 (A! ⌥?) ! (8x)(A ! ⌥x) T200 (8x)(A ! ⌥x) ! (A ! ⌥?) T3 ((C! ⌥A) _ (C ! ⌥B)) ! (C ! ⌥(A _ B)) T4 ((C! ⌥A) ^ (D ! ⌥B)) ! ((C ^ D) ! ⌥(A ^ B))

T5a ⌥A $ (8x)(x ! ⌥A)

T5b (8x)(x ! ⌥A) $ (8x)(x ! ⌥A) T6 (⌥A ^ (A ! B)) ! ⌥B T7 ⌥A ! ⌥> T8 ((A! ⌥B) ^ (B ! ⌥C)) ! (A ! ⌥C) T9 (⌥A ^ (A ! ⌥B)) ! ⌥B T10 (⌥A ^ ⌥B) $ ⌥(A ^ B)

T11 ((A! ⌥B) ^ (B ! ⌥A)) $ ⌥(A $ B)

T12a (A! ⌥B) $ (A ! ⌥B) T12b (A! ⌥B) $ ⌥(A ! B) †T12c ⌥(A ! B) $ ⌥¬(A ^ ¬B) †T12d ⌥¬(A ^ ¬B) $ ⌥(¬A _ B) †T13a (A ! ⌥B) $ ¬(A ^ ¬ ⌥ B) †T13b ¬(A ^ ¬ ⌥ B) $ (¬A _ ⌥B) †T14 (A! ⌥B) $ (¬B ! ⌥¬A) T15 (8x)(x ! ⌥U)

(7)

40 GERT-JAN C. LOKHORST T1500 (9x)((x $ U) ^ ⌥x) T16 (U! A) ! ⌥A T17 (U! ⌥A) ! ⌥A T18 ⌥ ⌥ A ! ⌥A T19 ⌥ ⌥ A $ ⌥A

T20 (U! ⌥A) $ ((A ! ⌥U) ^ (U ! ⌥A))

T21 ⌥A $ ((A ! ⌥U) ^ (U ! ⌥A))

T22 ⌥> T230 > ! ⌥U T2300 U! ⌥> T23000 ⌥(U $ >) T24 A! ⌥A T25 (A! B) ! (A ! ⌥B) T26 (A$ B) ! ((A ! ⌥B) ^ (B ! ⌥A)) T27 (8x)( U ! ⌥¬x) T270 (8x)( U ! ⌥x) T28 U ! ⌥ U T29 U ! ⌥U T30 U ! ⌥? T31 ( U ! ⌥?) ^ (? ! ⌥ U ) T310 ⌥( U $ ?) T32 ¬(U ! ⌥?) T33 ¬(U ! ?) T34 U$ > T35 U $ ?

.

References

[1] D. M. Gabbay, Semantical Investigations in Heyting’s Intuitionistic Logic. Reidel, Dordrecht, 1981.

[2] M. Kaminski, Nonstandard connectives of intuitionistic propositional logic. Notre Dame Journal of Formal Logic 29 (1988), 309–331.

[3] G. J. C. Lokhorst, An intuitionistic reformulation of Mally’s deontic logic. Journal of Philosophical Logic 42 (2013), 635–641.

(8)

[4] E. Mally, Grundgesetze des Sollens: Elemente der Logik des Willens, Leuschner und Lubensky, Graz 1926.

[5] E. Morscher, Mallys Axiomsystem f¨ur die deontische Logik: Rekonstruktion und kriti-sche W¨urdigung. In A. Hieke (Ed.), Ernst Mally: Versuch einer Neubewertung, pp. 81– 165, Academia Verlag, Sankt Augustin 1998.

Section of Philosophy

Faculty of Technology, Policy and Management Delft University of Technology

P.O. Box 5015 2600 GA Delft The Netherlands

Cytaty

Powiązane dokumenty

As we have noticed there is an important assumption behind Kali- nowski’s logic which posits that norms, just like logical propositions, are true or false, but moral value of actions

terapii, i ze względu na ten czynnik podejmuje się decyzje, czy można takie leczenie zastosować czy nie, - nieekonomiczna, która bierze pod uwagę dobro pacjenta i

Jeśli związana w kompleksie białkowym RISC wio- dąca nić siRNA nie jest w pełni komplementarna do docelowego mRNA, następuje zahamowanie ekspresji genu na drodze mikro RNA.. W

Na mocy postanowień paktu fiskalnego państwa – strony zobowiązały się do pod- jęcia działań na rzecz wzmocnienia filaru gospodarczego unii gospodarczej i wa- lutowej i w związku

Rymut K., 2003a, Granica czy strefa przejściowa między nomen appellativum a nomen proprium, w: tenże, Szkice onomastyczne i historycznojęzykowe, Wydawnictwo Instytutu Języka

From the beginning, the use of the V-G classification was accompanied by the idea that the variability of circulation patterns is characterized by regular fluctuations, forming, in

Afscheidscollege, gegeven op 18 Januari 1950, aan de Technische Hogeschool te Delft, De tijd ontbrak mij om, zoals gebruikelijk, het afscheidscollege vooraf op schrift te

Delorsa kolejny raz przekonuje nas o „skarbie”, jakim jest edukacja, a wśród czterech jej fi larów – uczyć się, aby wiedzieć, uczyć się, aby działać, uczyć się,