• Nie Znaleziono Wyników

A Note on the Men’shov–Rademacher Inequality

N/A
N/A
Protected

Academic year: 2021

Share "A Note on the Men’shov–Rademacher Inequality"

Copied!
5
0
0

Pełen tekst

(1)

Vol. 54, No. 1, 2006

PROBABILITY THEORY AND STOCHASTIC PROCESSES

A Note on the Men’shov–Rademacher Inequality

by

Witold BEDNORZ

Presented by Stanis law KWAPIE ´N

Summary. We improve the constants in the Men’shov–Rademacher inequality by show- ing that for n ≥ 64,

E sup

1≤k≤n

k

X

i=1

Xi

2

≤ 0.11(6.20 + log2n)2

for all orthogonal random variables X1, . . . , Xn such thatPn

k=1E|Xk|2= 1.

1. Introduction. We consider real or complex orthogonal random vari- ables X1, . . . , Xn, i.e.

E|Xi|2 < ∞, 1 ≤ i ≤ n, and E(XiXj) = 0, 1 ≤ i, j ≤ n.

Set Sj := X1+ · · · + Xj for 1 ≤ j ≤ n, and S0= 0. Clearly E|Sj− Si|2 =

j

X

k=i+1

E|Xk|2 for i ≤ j.

The best constant in the Men’shov–Rademacher inequality is defined by Dn:= sup E sup

1≤i≤n

|Si|2,

where the supremum is taken over all orthogonal systems X1, . . . , Xnwhich satisfyPn

k=1E|Xk|2= 1. We also define C := lim sup

n→∞

Dn log22n.

2000 Mathematics Subject Classification: Primary 26D15; Secondary 60E15.

Key words and phrases: inequalities, orthogonal systems.

Research supported by Grant P03A 01229 of Ministry of Science, Poland.

[89]

(2)

Rademacher [6] in 1922 and independently Men’shov [5] in 1923 proved that there exists K > 0 such that for n ≥ 2,

Dn≤ K log22n, hence C ≤ K.

By now there are several different proofs of the above inequality. The tra- ditional proof of the Men’shov–Rademacher inequality uses the bisection method (see Doob [1] and Lo`eve [4]), which leads to

Dn≤ (2 + log2n)2, n ≥ 2, hence C ≤ 1.

In 1970 Kounias [3] used a trisection method to get a finer inequality Dn≤ log2n

log23 + 2

2

, n ≥ 2, hence C ≤ log22 log23

2

. S. Chobanyan, S. Levental and H. Salehi [2] proved the following result:

(1) D2n ≤ 4

3Dn if Dn≤ 3; D2n



Dn−3 4

1/2

+1 2

2

,

and as a consequence they got the estimate Dn14(3 + log22n), C ≤ 14. An example given in [2] shows that D ≥ πlog2log22n2

2e and thus C ≥ 0.0487. The aim of this paper is to improve the bisection method and together with (1) show that C ≤ 0.1107 < 19.

2. Results

Theorem1. For each n, m ∈ N and l > 2, q

Dn(2m+l)≤pDn+pmax{Dm, 2Dl−1}.

If l = 2 then an even stronger inequality holds:

q

Dn(2m+l) ≤pDn+pDm.

Proof. Set p := 2m + l. We can assume that E|Spn|2 = 1. The triangle inequality yields

|Si| ≤ |Si− Spj| + |Spj|.

Consequently,

1≤i≤pnmax |Si| ≤ max

1≤i≤pn min

0≤j≤n|Si− Spj| + max

0≤j≤n|Spj|.

Thus

E max

1≤i≤pn|Si|2 ≤ E( max

1≤i≤pn min

0≤j≤n|Si− Spj| + max

0≤j≤n|Spj|)2. The definition of Dntogether with the classical norm inequality implies

pDpn≤pDn+r

E max

1≤i≤pn min

0≤j≤n|Si− Spj|2.

(3)

It remains to show that E max

1≤i≤pn min

0≤j≤n|Si− Spj|2 ≤ max{Dm, 2Dl−1} if l > 2,

Dm if l = 2.

Define

Aj := max{|Si− Spj| : pj ≤ i ≤ pj + m},

Bj := max{|Sp(j+1)− Si| : pj + m + l ≤ i ≤ p(j + 1)}, Cj := max{|Si− Spj+m| : pj + m < i < pj + m + l}, Dj := max{|Spj+m+l− Si| : pj + m < i < pj + m + l},

for each j ∈ {0, 1, . . . , n − 1}. Each 0 ≤ i ≤ pn can be written in the form i = pj + r, where j ∈ {0, . . . , n − 1}, r ∈ {1, . . . , p}. If r ≤ m, then

|Si− Spj|2≤ A2j. If r ≥ m + l, then

|Sp(j+1)− Si|2 ≤ Bj2.

The last case is when i = pj + m + r, r ∈ {1, . . . , l − 1}. Set Pj := Spj+m− Spj, Vj := Spj+m+r− Spj+m, Qj := Sp(j+1)− Spj+m+l, Wj := Spj+m+l− Spj+m+r. Clearly (i = pj + m + r, r ∈ {1, . . . , l − 1})

min{|Si− Spj|2, |Sp(j+1)− Si|2} = min{|Pj+ Vj|2, |Qj+ Wj|2}.

For all complex numbers a, b, c, d we have 1

2|a + b|2 ≤ |a|2+ |b|2, 1

2|c + d|2 ≤ |c|2+ |d|2. Since

min{|a + b|2, |c + d|2} ≤ 1

2|a + b|2+ 1

2|c + d|2 we obtain

min{|a + b|2, |c + d|2} ≤ |a|2+ |b|2+ |c|2+ |d|2. Hence

min{|Si− Spj|2, |Sp(j+1)− Si|2} ≤ |Pj|2+ |Qj|2+ |Vj|2+ |Wj|2, and consequently for each pj < i ≤ p(j + 1), j ∈ {0, 1, . . . , n − 1},

min{|Si− Spj|2, |Sp(j+1)− Si|2} ≤ A2j + B2j + Cj2+ D2j. In fact we have proved that

E max

1≤i≤pn min

0≤j≤n|Si− Spj|2≤ E

n−1

X

j=0

(A2j + Bj2+ Cj2+ Dj2).

(4)

Observe that EA2j ≤ Dm

m

X

k=1

E|Xpj+k|2, EBj2≤ Dm

m

X

k=1

E|Xpj+m+l+k|2,

E(Cj2+ Dj2) ≤ Dl−1

E|Xpj+m+1|2+ E|Xpj+m+l|2+ 2

l−1

X

k=2

E|Xpj+m+k|2 , Notice that if l = 2 then

E(Cj2+ Dj2) ≤ D1(E|Xpj+m+1|2+ E|Xpj+m+1|2).

Hence, if l > 2 then E max

1≤i≤pn min

0≤j≤n|Si− Spj|2 ≤ max{Dm, 2Dl−1} and if l = 2 then

E max

1≤i≤pn min

0≤j≤n|Si− Spj|2 ≤ Dm. This ends the proof.

Corollary 1. For each n ≥ m, Dn≤ Dm



2 + log2n − log2m log2(2m + 2)

2

. Proof. Taking l = 2 in Theorem 1 we obtain

Dm(2m+l)k≤ (k + 1)2Dm.

For each n ≥ m there exists k ≥ 0 such that m(2m+l)k≤ n < m(2m+l)k+1. Hence

k ≤ 1 + log2n − log2m log2(2m + 2) . Consequently,

Dn≤ Dm



2 +log2n − log2m log2(2m + 2)

2

. This result implies

C = lim sup

n→∞

Dn

log22n ≤ Dm log22(2m + 2).

Putting l > 2 in Theorem 1 and proceeding as in the proof of Corollary 1 we get the following result.

Corollary 2. For each l > 2 and n ≥ m, Dn≤ max{Dm, 2Dl−1}



2 +log2n − log2m log2(2m + l)

2

. Consequently,

C ≤ max{Dm, 2Dl−1} log22(2m + l) .

(5)

As mentioned in the introduction, D2 = 4/3 (by the result of Chobanyan, Levental, and Salehi [2]). Hence applying Corollary 1 with m = 2 we get

Dn≤ 4

3 log226(2 log26 − log2n)2, and C ≤ 4

3 log226 < 1 5. It follows by (1) that

D2 = 4

3, D4≤ 4 3

2

, D8 ≤ 4 3

3

, D16≤ 4 3

4

and

D32



D16−3 4

1/2

+1 2

2

, D64



D32−3 4

1/2

+1 2

2

. Hence

D8 ≤ 2.3704, D64≤ 5.5741.

Taking m = 64, l = 9 we get

max{Dm, 2Dl−1}

log22(2m + l) ≤ 0.1107 < 1/9.

Thus applying Corollary 2 (with m = 64, l = 9) we find that for each n ≥ 64, Dn≤ 0.1107(2 log2(137) − 8 + log2n)2≤ 0.1107(6.1960 + log2n)2. This gives the estimate C ≤ 0.1107 < 19.

References

[1] J. L. Doob, Stochastic Processes, Wiley, New York, 1953.

[2] S. Chobanyan, S. Levental and H. Salehi, On the best constant in the Rademacher–

Menchov inequality, J. Inequal. Appl., to appear.

[3] E. G. Kounias, A note on Rademacher’s inequality, Acta Math. Acad. Sci. Hungar.

21 (1970), 447–448.

[4] M. Lo`eve, Probability Theory, D. Van Nostrand, 1960.

[5] D. Menchoff [D. Men’shov], Sur les s´eries de fonctions orthogonales, Fund. Math. 4 (1923), 82–105.

[6] H. Rademacher, Einige S¨atze ¨uber Reihen von allgemeinen Orthogonalfunktionen, Math. Ann. 87 (1922), 112–138.

Witold Bednorz

Institute of Mathematics Warsaw University Banacha 2

02-097 Warszawa, Poland E-mail: wbednorz@mimuw.edu.pl

Received January 19, 2006;

received in final form May 18, 2006 (7502)

Cytaty

Powiązane dokumenty

1. In the last years there have been several attempts to study the Brownian motion and diffusion processes by endowing the path- space with stronger topologies than the uniform one.

Department of Mathematics Zhanjiang Teachers College 524048 Zhanjiang, Guangdong

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXX (1990) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGOR. Séria I: PRACE MATEMATYCZNE

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXVII (1987) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE

The proof that (I) holds can now be completed from (3) by appealing to the Krein - Milman theorem and the weak star compactness of the set of probability measures on

It turns out that the (B) conjecture cannot be extended to the class of sets which are not necessarily o-symmetric yet contain the origin, as one of the sets provided in

Sums of independent random variables, Rademacher random variable, Gaussian ran- dom variable, Spherically symmetric random vector, Tail comparison.. be independent Rademacher

We prove a dimension-free tail comparison between the Euclidean norms of sums of independent random vectors uniformly distributed in centred Euclidean spheres and properly