• Nie Znaleziono Wyników

Some Problems for Lineary Invariant Families

N/A
N/A
Protected

Academic year: 2021

Share "Some Problems for Lineary Invariant Families"

Copied!
14
0
0

Pełen tekst

(1)

UNI

VEBSIT

ATIS MARIAE

C U

R IE-S К Ł

OD O

WS К

A LUBLIN -

POLONIA

VOL. XXX, 12 SECTIO A 1978

Instytut Matematyki, Uniwersytet Marii CurieSkłodowskiej, Lublin

JAN SZYNAL, JÓZEF WANIUESKI

Some Problems for Linearly Invariant Families*

Pewne problemy dla rodzin liniowo-niezmienniczych.

Некоторые проблемы для линейно-инвариантных семейств

1. Introduction. Notations

One

of

the most interesting

family of locally

univalent functions

(1)

tp(e) =

z

+ b2

z2+....

which

are

analytic in the unit disk

K

{z: \z\ <

1} is

the class V

k

(Tc 2) of

functions

with bounded boundary

rotation

at most Itn

in

K. Namely, we say

that g>

eV

k if

for every r

e

[0,1)

/

H1+re

Sr)dQ<

^

It is

well known that

e

Vk

if

and only

if

<p'W = exp{-f log(l-2e-")d

J

«(t)},

0

where p.

is

real

valued function with

bounded variation on [0; 2yt] with J

dju(i) =

2, f

o o

Another

very

useful

necessary and sufficient

condition

for <p to

be an element of the class

Vk has

been

done

by Brannan

[1].

* This research was supported by National Research Council of Canada, Grant A-3081 in the name of Prof. Q. I. Rahman of the University of Montreal

(2)

Lenuua 1. [1].

A function

(p

belongs to if and only if

there exist two normalized starlike functions

s1} s2

such that

(«)1-fc+!!

'

r“

(2) zeK.

The

condition (2) can be written in

the

following form

(3) = [<h(«)]—

[fc(*)]~, zeK,

where g,

, g

2 are two normalized convex functions. In

this way we may

say

that

the

class

S

c of convex normalized

functions generates the

class V

k

by

the

formula (3).

In the same

manner we can

define

another

class of

functions using

instead

of 8C

for example the

class $ of

normalized

uni­

valent functions in

K. Looking at this problem

somewhat

more generally, we consider

the following

class 2F.

Definition 1.

We say

that F e

& if F

is analytic in K and its

deri­

vative

F' has

the

form

n

n

(4) F'(z) =

[f'

} (z)p

,

aj

is

real,

£ai =1,

zeK,

j=i i=i

wherefj e3Jl}, j —1,2,...,

n,

and is linearly invariant

family in

the sense of

Pommerenke

[10].

For

some

known

families we will

determine

here

the region

I

F'(z\

1

(5) D(z,

a) =

w

eC:

w =

log

, F e&\, D(z, 0) = D(z),

I

F'(a)

)

for

fixed

z,

a

e

K.

As a

corollary we

obtainthe sharp

estimates

for

\F'

(z)|

and

|argF'(«)|.

Moreover, we will determine

the

region D(z) for

the class of /3-close-

-to-Fj. functions defined

below.

The fact that SF is linearly

invariant family

for

which we

know

max largF'^)!»

z e

K,

allow us to find the

radii of univalence

and

close- -to-convexity

of &. In

particular we show

that if

f is univalent (/

e8) and a e [0;

1]

then the

integral

F(z) = J (/'(£))“

is

univalent at

least in the disk

\z\

< 0,81.

0

Definition 2. Let /3

>

0.

An analytic function f of

the

form («) f(z)

=

z +

a

2z

2+..., zeK

is

/S-close-to- V

k function if there exist a

real number a,

and

a

function

<Pe

V

k

such

that

(7)

arge /'(*)

< ßr 2

—, n zeK.

(3)

The class

of

/S-close-to-functions which

we

will denote

by

LV(f},k) has

been considered in

[3].

In particular,

we have

LV(fl,2)

= Lp =

the

class

of

/9-close-to-convex functions;

hV

(1,2)

=

L

= the

class of close-to-convex

functions;

LV(0,k) - V

k; LV(0,2) =

8°, e.g.

[5], [7],

[8], [13] respectively.

We

will need the class

&

of all

analytic

functions in

K of

the

form (8)

p(z)

=

e

ii+p1

z+p

2#+--- (& is real)

which satisfy the

condition

Вер

(z)

>0, zeK.

Finally, let

us define

thefunction

which

willplay

further an

important

role

:

(9)

F

W«) =

/

0 (l-fe

<e

>/+

2

+1

2

(2

j5

+ fc)(e*

('i-e

t

'

<’

2)

0n

0

2

e

[0, 2л],

e

i9

i =/= e’

"2

.

2. Statement of results

Let

us denote

(10) Dj(z)

=

{w:

w

=

logfj(z),

ff

e

991,}, j =

1,

2,n, and

(l-\a\2

\

2 h z-a

n

I

---

1 ,

f =---

, z,

a eK.

1 \

1-az J

1-az’ ’ (11)

We have

Theorem 1.

If

FsF. then

(12)

D(z,a)

=

©D^Duflogjj),

y-i

where ©

denotes the

geometric sum

of

sets.

From Theorem

1 it follows

that

in order

to find the

set

D(z,

a)

it is

sufficient

to

determine

the

sets D

}

(£). The set

D(z) is

known in

the case

of

the classes 8

[12], L [7]

and

S

c

[13]. Here we will

find

this set for

the class

FV(/},k).

Theorem 2.

The set

D(z)

=

{w:

w =

log/'^),

f 6

LV^)} a

sed and convex set whose boundary

has

the

equation

(13)

(l

reie2

Y~

l

»(o =

log

(

i

L^.)

h

T ’1

61°; 2jt

]>

r

i « i

< i,

(4)

where

y

= /94- — and 2

(14)

=

ejt) =

< —

arcsin(rsinJ),

02 =

0

2(f) = ?r +

<

+ arcsin(rsint).

The functions corresponding to

the boundary

points

of

D(z)

have the

form (9)

with

O

lf 02 given by

(14).

Putting /9

= 0 in

Theorem 2

we have

Theorem 2'.

The

set

D(z) =

{w: w

= log<p'(z),

<P e

F

fc

}

is

a

closed and

convex

set

whose boundary has

the

equation

w(t) = *

e [0; 2tt

], r =

|2| < 1,

where

and

62

are

given

by

(14). The

f

unctions

corresponding

tothe boundary points of D(z) have the form

(9)

with f)

= 0.

By

putting /9=0

and

k

= 2

in

Theorem 2

we

obtain the result for

close-to-convex

functions [7].

From Theorem 2

we can get

exact

estimates for

|/'(«)| and larg/z(2)l if f eLV(fi,k).

Theorem 3. If

f eLV(ji,

k) then for

|«|

=

r

< 1

(15)

(16)

|arg/'(«)|< (2/9 + fc)arcsinr

[3],

(l-rf

1

(l +

r)y+1

< !/'(*)! < (1

(l-r)’+

rf-1

+1

'

The

extremal

function has

the form

(9)

with 0n 02

given by (14)

with appro

­

priate

t.

So

far as the set

D(£) has been determined

for f

e

LV((S, k) we can

find the

set

D(z, a) for the following

class

Theorem 4. Let

?LV

=

(F:

F'(z

) =

/7[/;(«)A

£

fy)}.

j=i

Then

D(z,

a) is a closed

and convex

set whose

boundary

has

the

equation

,

nT

(1—

|£|e<(,2

)(59-1)o>

(17) w(t) =

logy , * e

[0, 2«],

where = pj+kj/2 and

y, £

are given

by

(11) and

(18) 0! =

0i(f)

= t

arcsin(|f|sinJ).

0

2

= 02

(t)

=

n

+t

+ arcsin(

|f|sinf).

(5)

The functions

F

corresponding

to the

boundary

of

JD(z,

a) are

given

by

(19) F'W

F'(a)

1-1

(z> n

^=r,ll

(1 _ çjovfrj-ïpj

Putting

in Theorem

4

n =

1 and k

= 2 or

/3

=

0

we

obtain Corollary 1.

The

boundary of

w: w — log—

f

e

Lp',, has

the

equation

(1-|£I«<V t e

[0;

2jr]

.

Corollary 2.

The

boundary

of

D(z,

a)

= Jw:

w =

log <p e

F

J

has

the

equation

I J

(l-|f|e

V/2_1

w(<) =

log, * e[

0; 2*].

Moreover, from

Theorem 4 it follows then

n

Corollary 3. If F e

3FLY F" tz}

(20)

ar

w

(21) |,| ■

(1~

lfl)1

n

--- <

(1+lfl)1

2

Vy;) arc sin 1^1, 1-1

F

’(z) F'(a)

(i+ifl)1 2(Vj-l)°j d-lfl)1

Theorem 5. Theradiusof

univalence of LV

(P

,

k)isequal

to

tan The extremal

function is given

by

(9) with

appropriate

G, and 62

.

7t

2p

+

k

Corollary 4. Theradius

of univalence

of

&LV is equal

to tan

n

ZVPi

+

kf)

Theorem 6.

The

radius

of

x-close-to-convexity of

LV(P,k)

is the unique root

of

the

equation

(22) 2arccotw —

(2/?+

fc)arccot

[(/!+!)«,]--«»

where w =

(l-r2)[(20 +fc)2

r

2

-(l-r

2)

2

]-

1/s.

The

result

is sharp.

(6)

Corollary 5. LV(p, k)

Lp+kli_1

,

in

particular

V

k

c L

k/2

_j[2].

Remark

1. If 2/3 +

k 4

then LV(^,k) consists only

of univalent

close-to-convex functions.

An interesting

example

of

the class

33

is the following

one:

z

(23)

=

{F: F(z)

0

The considerations of

properties

of

the

class

&s are close to the problem z

concerning

univalence of the integral J (/'(£))“d£- We will

prove.

0

Theorem 7. 1/ a e [0, 1]

then

every function

Fe3

s is univalent

at least

in the

disk

|«| <

r

u

where

o*/2

(24)

1+FT +

c

(r„> 0,81).

Remark 2. The

integral/ (/'(C))°^£>

/e£,

ae[0,l] is univalent

at least for

|z|

< r„.

0

3. Lemmas

Lemma 1'. A

function f

eLV

, k)

if

and

only

if

there

exist

a func­

tion pe3>

and functions g

1

,g2

eS

c such

that 2 +

fc 2—fc

(25)

/'(z) =

[&(*)]”

, « e£-

The proof

of

Lemma 1'

follows

from

Lemma

1 and formula

(7).

Lemma 2. For

every and

k^2 the class

LV(p,

k) is linearly invariant family

of

order y

=

/3

+

.

Proof.

Let /3, k be

admissible and

f

e

LV

(/3, k).

From

the definition

2 f'(z)

+

0, zeK, so

in

order to

prove the

linear

invariance of LV(/3,

k)

we

should show that

for arbitrary

a e

K

(26)

F(z) =

/(^) -/(.)

\l+gg/

______

(1

|«|*)/'(a) eLV(ß,k).

Robertson has

proved

[11] that Vk is

linearly

invariant

family

which

implies

T \l + azJ p(a)

e

Ffc if peVk.

(27) *(*) =

(7)

From

(26)

and

(27)

wo

obtain

Because

arge

arge

; **'(*)

,/'(«)

?'(«)

71

F'(z)

?'(«)

J

1 z

+ a \

\

1 +

äz/ 0'(z) f'W , 1 z

+ a \

\ 1+ äz/

71 a

e

K,

we can choose a such that

2

</5

—,

zeK,

and

hence

F e

LV(ß,

Tc).

2 0'(z)

From

(7) we can

write

(28)

?'(*)

=pp(z) = (e**

’+2M+...)

3

where

p

e Comparing the

coefficients

in (28)

we find that

(29)

a2

= b2+

ßpr

e u

Taking

into

account that |62| < and IPil

<2 we

find that the order of

famiy

LV([f,

It)

is

equal to

y

= sup|a2| = /?

+—.It

Lemma

3.

The class

& is linearly invariant

family.

Proof. Let

fe/

be given

by (4).

Then f

} e9Jl

;

as

well

as

(30)

JW =.

(l-|a|%'(a) n.

If

we put

y(z)

/

z + a

\ _

\

1 +

äz

/ F(a) (1 — \a\

2)

F'(a) , I

z+a \

\

1

+

az J

1

(l

+

az)

2F'

(a)

(l+ az)

2

i— fj - Il ur,w>

if L /;(«)

(1+äz)

2

J-l

6®ln j

=1,2,

F

F

-,

then

v'W =

which

completes the proof.

7 — Annale»

(8)

Remark 3.

It

is

easy

to

observe that

if//«) e

SR; then

e

iefj(eiO

z)

eSR;

for

arbitrary

real

0. This implies

that

if y;

is the order

of SR;

then the

n

order of

& is equal

to y

=

£ |a/y;.

>=i

Remark 4.

The

result

of

Pommercnke [10]

implies

that radius of convexity of

the family &

is

equal

to

r

c = (Z

|a>’

+l/(J? _1

) •

b=i

"

j=i '

4. Proofs of

theorems

Proof

of

Theorem

I. Let Fe

SF. Then

from

(4)

and

(30) we

have F'(z}

-?'(«)

n

f eK.

i-i

Now,

we see that

l0gl^a) =

l0g,? +

a

>Iog^

(

which

implies

(12)

because

F}

is ranging

independently

over SR;, j

=

1,2, ...n.

It is worthwhile to

mention

that convexity

of

D}

,

j

=1,2,...,«

(which occurs

for example if SR;

is one

of

the classes

Sc

,

L, S,

LV(ft, &)) implies convexity

of

D(z, a).

Proof of Theorem

2.

First

of

all it is

convenient to

observe that

F(zeie

)

=

D(|«|)

=

D, |z|

= r. The set

D is closed because the class

LV((1,

k) is

compact. The

convexity

of D

follows

from

the fact that for

2 e

[0,1] and J\,f

2

LV((i, k)

the

function

//«)

= f[f[(t)r-[f'2W^dteLV^,k).

0

Let

f e LV((i,k). From Lemma

1'

we have

(31)

/'(r)

=«-

<ap/

'(r)[^(r)]^"[^(r)]?5_

, 0

<

r <

1, is real, where

p

e&, q>

1

,(f>

2

e

8C.

It

is well-known

that

functions

corresponding

to the

boundary

po

­

ints

of

{w.

w

=p(r), petf1} have the

form

1_ reu

> Te[0;2«), P(r) =

(9)

as well as

the functions corresponding to the boundary points of {w: w

= (fj

gS

c,

j

=1,2} have

the

form

=1>

2

From

the definition of

the class

LV(fi,k)

it follows that e

ia

This fact and the

facts

cited

above

imply together

with (31) that

the

function/

corresponding to the boundary

points of

D

has the

following form

/ 1 _£

r\&

_2

+*

(32) f

(r)= - --- —J (1

—e3

r)

2 (l~«4r)

2

,

ej

=eiOi, Oj e[0,2n],

j =1,2, 3,4.

The

convexity

of

D

implies

that

finding

the boundary

of

D is

equivalent

to determining the maximum

of

the

function

(33) Re[<r“

log/'(r)]

=

Re

J«-"plog(l-reifl

i)

—/91og(l — re'“2) — log (1

- re™3

) -

log

(1

-

re

iB

*) j

with

respectto e

[0, 2»], for

fixed t e [0, 2ti],

The

number

t denotes

the

angle

between the imaginary axis and

supporting

line to

D.

Moreover,

we may observe from (24)

that D

is symmetric

with

respect to

the

real

axis

because

the image of

the

circle

£

=

1 —

ze™, 0 e

[0, 2

tt

],

z eK,

under

the

mapping

w

logf is

a

convex curve

symmetric with respect to

the real

axis.

So,

we

may

assume

that t e [0;

?r].

It

is easy to check that the

function

%(0)

=

Re

{e_ " log (1

re*'

8

)}

attains

its minimum

for

0

= 0

X(<) and maximum

for

0

=

02(<), where

0,

and 0

2

are

given by (14). Substituting (14) into (33) we obtain (13).

Proof

of

Theorem 3.

Taking into

account the

convexityand

symmetry with respect to the

real axis

of D(z) we

see that max|/'(z)| is

attained

for t =

0, min|/'(z)| for

t

=

n and

max[arg/'(2)l for t =

tt

/2.

Putting

these

special

values of t into (14)

and

(32) we get (15)

and

(16).

Proof

of

Theorem

4.

This result follows

immediately

from Theorems 1

and 2.

Proof of

Theorem 5. In

order

to

find the radius

of univalence

ru of linearlyinvariantfamily

of

itis

sufficient

to find

the

largest

disk |»| < r0 in

(10)

which every function from

LV((i,k)

is

different from zero

because then

we

have

[10]

(34)

r„

*0

1+yï-r*

The

reasoning

as in

[10,

Satz

2.6]impliesthat if

f

e

LV

(ß, 7c) and/(r0)

=

0

then

arg/'(r0

) = ±2?r. Since from (15) we have

|arg/'(2)l <(2/3+fc)arcsin

|«|

2ji

we conclude

that

r0 >

sin

-

— - =

q. By

considering

the function

-f-

7c

Fß, k given

by (9) with

0!

=

arccosq,

02 — —

arccosq

we

find that

F, 2л \

sin

——

-I

2ß +

k) =

0.

Thus r0 <

q

= sin

+ к which

complete the

proof after using

formula (34).

Proof of Theorem 6. The estimate of |arg/'(«)|, feLV(ß,k) help us to find the

radius of x-close-to-convexity, 0, of

LV(ß, к). Good

­

man

[5]

has proved

that f

e

L„ if

for each

r

e

(0,

1) and

for each pair

0,, 02, 0< 0j< 02<2л

,

io

f"(re

i0)\ JO

^ Re l

+

re

r.

73—

\ aO > —mz

J \ f(re'9) J

®i

Using

this condition and the method originated in

[6] (see

also [3]) one can

prove

Theorem

6.

Corollary 5 follows

from

thefact that the left

hand side of

the

equation (22)

is strictly decreasing

function of r

e (0,1) and its

value for

r

1

is

equal to —(2 —2ß — к). л

2

Proof of Theorem 7. Let F e be given by (23) and a 6 [0,1].

Then

(35) |argU'(«)| <

4

arcsin1г|,

1

У2

л + log

1-И

2’

The

estimate

(35)

is

exact

and the sign

of

equality holds if

/

=

g

= F

oe

S

r where F„

isextremal

function

for

max

|arg

F'

(z)| [4, p.

116]

within

class

Let

r0 =

inf

sup{r: F(z)

0

for

0

<

|z| <

r} The

factthat islinearly

F&Fg r>0

invariant family allow us to

applythe

method of Pommerenke [10, Satz

2.6]

like

in

the

Proof

of Theorem

5. In this manner

we

find that

r0 is

the

root

of the

equation

log

--- r2

=

n which

implies

(24)

after

using

(34).

It

1

r2

may

be

checked

that

r„($)

> 0.81.

(11)

From (35)

and from

linearly invariance

of &a follows

that

the

exact

radius of close-to-convexity r

L

(^s)

=

^(tf) e

(0,80;

0,81) [6].

If

g(z)

= z then the class reduces to

(36)

which

is no more linearly invariant.

The problem of finding

max|a|

for which (36)

consists of univalent functions has been

considered by many

authors.

Recently Pfaltzgraff [9]

proved that (36) is

univalent

for |a, <

{ (a

may be

a

complex

number).

Since the

class

(36)

for

a e

(0,1)

is

a

subclass

of

&

s

given

by

(23)

we

obtain

from Theorem

7 that the radius of

univalence

for

(36)

is

at

least 0,81.

REFERENCES

[1] Brannan D. A., On functions of bounded boundary rotation I, Proc. Edinburgh Math. Soc. Ser II, 16 (1969), 339-347.

[2] Brannan D. A., Clunie I. G. and Kirwan W. E., On the coefficient problem for functions of bounded boundary rotation. Annales Aoademiae Scientiarum

Fennicae, Series A (1973), 2-18.

[3] Campbell D. M., Ziegler M. R., The argument of the derivative of linear invariant families of finite order and the radius of close-to-convexity, Ann. Univ. M. Curie-

Sklodowska, Sec. A, 28 (1974), 5-22.

[4] Goluzin G. M., Geometric theory of functions of a complex variable. Vol. 26 Amer.

Math. Soc., Providence, R. I., 1969.

[5] Goodman A. W., On close-to-convex functions of higher order. Annales Uni- versitatis Scientiarum Budapestinensis de Rolando Eotovs Nominatae, Sectio Math., 15 (1972), 17-30.

[6] Krzyż J., The radius of close-to-convexity within the family of univalent functions, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys., 10 (1962), 201-104.

[7] —, Some remarks on close-to-convex functions, ibidem, 12 1964, 25-28.

[8] Lewandowski Z., Sur l’identite de certaines classes de fonctions univalentes I, Ann. Univ. M. Curie-Sklodowska, Sectio A, 12 (1958), 131-146.

[9] Pfaltzgraff J. A., Univalence of the integral f'(a)*. Bull. London Math. Soc.

7 (1975), 254-256.

[10] Pommerenke Ch., Linear — invariante Familien analytischer Funktionen I, Math. Annalen, 155 (1964), 108-154.

[11] Robertson M. S., Coefficients of functions with bounded boundary rotation, Canad.]. Math. 21 (1969), 1477-1482.

[12] Schaeffer A. C., Spencer D. C., The coefficient regions of schlicht functions, New York 1950.

[13] Strohhâcker E., Beitrüge aur Théorie der schlichten Funktionen, Math. Z. 37 (1933), 356-380.

(12)

STRESZCZENIE

Niech & oznacza rodzinę funkcji holomorficznych F w kole K «= {«: |z| < 1}

danych wzorem

F'(z) = fj[fj(g)]ai, zeK, i-i

n

gdzie aj jest liczbą rzeczywistą, V aj — 1 a funkcje fj należą do ustalonej rodziny f=i

3Jty, która jest liniowo-niezmiennicza w sensie Pommerenke [10].

W pracy wyznaczono obszar Z)(z, a) = {w: w

dla kilku znanych rodzin SDly.

W szczególności wyznaczono

D(z) = {w: w = log/'(z)}

dla ustalonego z e K i funkcji / zmieniającej się w klasie funkcji /-prawie- T* (defi­

nicja 2).

Podano również promienie jednolistności i prawie-wypukłośoi pewnych rodzin a jako wniosek otrzymano, że jeśli / jest funkcją jednolistną, to całka

F(z) = f a e [0, 1]

o

jest jednolistną przynajmniej w kole |z| < 0,81.

zmienności

F'(z) I

= log--- , F e , z, а e К e F'(a) J

obszar wartości

РЕЗЮМЕ

Пусть Р обозначает класс голоморфных функций в кругу К = {в: |г| < 1} данных формулой

Л*) = /7 [Л«)]аА j=i

где а! вещественное число, У а] = 1 и функция принадлежит к фиксированному семейству 9Л;, которое есть линейно-инвариантное в смысле Поммеренке [10].

В этой работе определено область изменения

( F’ (z) 1

D(z,а) = jw:w = log j", F 6j> z, aek для некоторых известных семейств ЭИ;.

В частности определено область изменения

D(z) = [w:w = log f(z)}

для фиксированного г е К, когда функция / изменяется в класс / — почти — (определение 2).

Кроме того поданы радиусы однолистности и почти-выпуклости некоторых семейств У.

В следствии получен результат, что для однолистной функции / интеграл

-F<«) = / (7(0)“*, а

е [0,1]

о

однолистный по крайней мере в круге |г| <0,81.

(13)

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA

VOL. XXIX SECTIO A 197Ö

1. M. Bojarska, M. Wesołowska: Les dépendances entre la subordination et l’inégalité des modules dans le cas des majorantes appartenantes aux classes 8*(a,fi), 8*(a, —fi).

Zależności między podporządkowaniem i nierównością modułów w przy­

padku majorant należących do klas S*(a,fi), 8*(a, —fi).

2. D. A. Brannan, L. Brickman: Coefficient Regions for Starlike Polynomials.

Obszar zmienności współczynników dla wielomianów gwiaździstych.

3. Cz. Bucka, K. Ciozda: Sur 1' interprétation géométrique de certains sousclassos de la classe S.

O interpretacji geometrycznej pewnych podklas klasy S.

4. Cz. Bucka, K. Ciozda: Some Estimations and Problems of the Majorization in the Classes of Functions 8k(a,fi).

Pewne oszacowania i problemy majoryzacji w klasach funkcji Sk(a,fl).

5. W. Cieślak: Groups of Automorphisms of a Conus.

Grupy automorfizmów stożka.

6. J. A. Cima: Hadamard Products of Convex Schlicht Functions.

Iloczyny Hadamarda funkcji wypukłych jeduolistnych.

7. M. Fait, J. Stankiewicz, J. Zygmunt: On some Classes of Polynomials.

O pewnych klasach wielomianów.

8. K. Goebel: On a Fixed Point Theorem for Multivalued Nonexpansivo Mappings.

O pewnym twierdzeniu o punkcie stałym wielo wartościowych operacji nic oddalaj ących.

9. K. Goebel: On the Structure of Minimal Invariant Sets for Nonexpansive Mappings.

O strukturze minimalnych zbiorów niezmienniczych operacji nieoddala- jących.

10. Z. J. Jakubowski, J. Kamiński: Remarks on some Properties of the Coeffi­

cients of Regular Functions with Positive Real Part.

O pewnych własnościach współczynników funkcji holomorficznych o do­

datniej części rzeczywistej.

11. S. S. Miller, P. T. Mocanu, M. O. Reade: Janowski Alpha-Convex Functions.

Funkcje alfa-wypukłe Janowskiego.

12. A. Schild, II. Silverman: Convolutions of Univalent Functions with Negative Coefficients.

Sploty funkcji jednolistnych o współczynnikach ujemnych.

13. H. Silverman: Products of Starliko and Convex Functions.

Iloczyny funkcji gwiaździstych i wypukłych.

14. J. Szelmeczka: On some Properties of Integral Moduli of Continuity of Func­

tions of Several Variables Integrable with Mixed Powers.

O pewnych własnościach całkowego modułu ciągłości funkcji wielu zmien­

nych całkowalnych względem mieszanych potęg.

15. Z. Świętochowski: On Second Order Cauchy’s Problem in a Hilbert Space with Applications to the Mixed Problems for Hyperbolic Equations. I.

O zadaniu Cauchy’ego drugiego rzędu z przestrzeni Hilberta z zastoso­

waniom do zadań mieszanych dla równań hiperbolicznych. I.

16. Z. Świętochowski: On Second Order Cauchy’s Problem in a Hilbert Space with Applications to the Mixed Problems for Hyperbolic Equations. II.

(14)

ÜNIVEKSITATIS VOL. XXIX

ANNA MARIAE

SECTK

w Lublinie

MQöö 30

CZASOPISMA

W

O zadaniu Cauchy’ego drugiego sowaniem do zadań mieszanych 17. Z. Świętochowski: Some Remarks o

Coordinate System.

Pewne uwagi o operatorze falowym w krzywoliniowym układzie współ­

rzędnych.

18. J. Waniurski: A Note on Extremal Properties for Certain Family of Convex Mappings.

Własności ekstremalne pewnej rodziny odwzorowań wypukłych.

19. A. Wesołowski: Des certaines estimations dans la classe 2*(a,P).

O pewnych oszacowaniach w klasie

20. W. Zygmunt: On the Full Solution of the Functional-Paratingent Equation.

O pełnym rozwiązaniu równania paratyngensowo-funkcjonałowego.

21. W. Zygmunt: The Generic Property of Differential Equations with Compact Convex Valued Solutions.

Własność generyczna równań różniczkowych, których rozwiązaniami są zbiory zwarte i wypukłe.

22. W. Zygmunt: On the Convergence of Solutions of Certain Generalized Func­

tional-Differential Equations.

O zbieżności rozwiązań pewnych równań kotyngensowo-funkcjonałowych.

UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ BIURO WYDAWNICTW

LUBLIN Plac Litewski 5 POLAND

Cena zł 30,—

Cytaty

Powiązane dokumenty

In order to solve the theoretical question of the uniqueness of the discretized prob- lem (especially when we do not know whether the condition (12) is fulfilled), stabilized

In [4, 7] the authors studied the existence and uniqueness of solutions of classes of initial value problems for functional differential equations with infinite delay and

Keywords: boundary value problem, fixed point theorem, functional- integral equation, hyperbolic equation, measure of noncompactness.. 2000 Mathematics Subject

In order to study the existence of solutions we replace these two problems with their multivalued approximations and, for the first problem, we estabilish an existence result while

We seek for classical solutions to hyperbolic nonlinear partial differential- functional equations of the second order.. We give two theorems on existence and unique- ness for

Abstract. Generalized solutions to quasilinear hyperbolic systems in the second canonical form are investigated. A theorem on existence, uniqueness and continuous dependence upon

With the aid of the method o f successive approximations applied to an appropriate system o f Volt err a’s integral equations there was proved the existence o f

The purpose of this note is to present some results concerning the oscillation of the solutions of certain elliptic equations of fourth