• Nie Znaleziono Wyników

per cent of their weight of solid isoborneol. Aft er repeated crystallizations from petroleum ether the

p roduc t melted at 2 0 7 - 2 1 0 ° . T h e low m eltin g point m a y b e explained b y the fact th a t b y this m ethod of identification some borneol is usually formed along with the isoborneol. ether solution of the crystalline dihydrochloride had a rotation a DVl° — 2.85°.

C O N E O IL O F L O N G L E A F P I N E

The green cones yielded 0.363 per cent of oil having the following properties: di5°, 0.8756; « Du°, 1.4760;

— 9.220; acid No., 0.42; ester No., .3.95; ester No. after ac etylatio n, 31.07. T h e oil had a disagree­

able odor that was especially pronounced in the first fraction on fractionation. T h is odor resembled the higher aldehydes of the alipha tic series.

Fr a c t i o n a l Di s t i l l a t i o n o f Co n k Oi l o p Lo n g l e a p Pi n e B o i l i n g p o i n t . 0 C . P e r c c n t

11.0

Scrt ., 19 1 4 T H E J O U R N A L O F I N D U S T R I A L j

155.0-160.0 160.0-165.0 165.0-170.0 170.0-180.0 180.0-195.5 195.5-250.0 250.0-275.0 Residue

61.011.0 3.51.5 8.31.4 2.3

f u r f u k a l— A qu a li ta tiv e test showed furfural to be present in the first fraction.

a-MNENE— T h e t o t a l a -p in e n e fra c tio n s , b. p. 15 6 - 160°, w eighed 193 g r a m s (39.6 p er c e n t). T h e fra c tio n b. p. 1 5 6 -15 8 ° , di5° 0 .8 637, a D24° + 6 .8 2 ° , g a v e an e x ­ cellent yield o f p in e n e n itro so c h lo rid e . Its nitrol- piperidine co m p o u n d m e lte d a t 1 1 8 - 1 1 9 ° . I t w ill be noted th a t th e a -p in e n e fr a c tio n fro m th e cone oil is

¿-rotatory, w h ile t h a t fro m th e n ee d le oil w a s /-ro tato ry.

c a m p h e n e— T he fr a c tio n s e x a m in e d for cam p h en e were as fo llo w s: ( i) - 30.85 g ra m s, b. p. 16 0 -16 1 , d|S° 0.8671, a D: t ' — 0 .3 1 ° ; (2) 28.6 g ram s, b. p. 1 6 1 -162°, d ls° 0.8685, «dm» — 3 -4 i °- B y tre a tm e n t w ith glacial a c e tic a n d s u lfu r ic a c id s iso b o rn eo l, m . p.

208-210°, w as o b ta in e d .

0-p in e n e-— A t o ta l of 125 g r a m s (25 p er cen t) boiled between 1 6 2 - 1 7 0 ° . T h e m a jo r p o rtio n , b. p. 16 4 - 166°, h ad : di»», 0 .8 7 14 ; a D26°, — 11 .8 0 °. B y o x id atio n with a lkalin e p e r m a n g a n a te a y ie ld of 26.8 per cen t of crystalline s o d iu m n o p in a te w a s o b ta in e d . I he free nopinic acid m e lte d a t 1 2 5 - 1 2 6 ° .

d ip e n t e n e — In th e oil b . p. 170—180° p h ella n d rcn e could n ot be d e te c te d . B y t r e a tm e n t w ith d r y H C1 gas the d ih y d r o c h lo rid e o b ta in e d m e lte d a t 4 9 - 5 ° ■ The fra ctio n b . p . 1 7 4 - 1 8 0 ° , a n d h a v in g a ro ta tio n Odi:» — 18 .2 4 °, y ie ld e d d ip e n te n e te tra b ro m id e m eltin g at 12 3 -12 4 °.

b o r n e o l — T h e fr a c tio n b . p . i9 5-5~ 25° ° w as s a Pon>' fied and th e re c o v e re d oil h e a te d w ith p h th a lic a n ­ hydride. B y th e c u s t o m a r y p ro c e d u re b o rn eo l, m . p.

202-203°, w a s o b ta in e d . A n a lc o h o lic so lu tio n of the borneol w as / -ro ta to ry .

c a d i n e n e— T h e h ig h e s t b o ilin g fra c tio n co n ta in ed the sesq u iterp en e c a d in e n e . T h e c r y s ta llin e d ih y d ro - chloride m e lte d a t 116 —1 1 7 ° . A 3 - 3 4 Per cent- hydrochloridc in e th e r g a v e a ro ta tio n a„28° 1 -1 ® •

SUMMARY

The several oils of the t w o species examined are practically identical in composition. T h e same con­

stituents, in v a r y i n g percentages, were found in e a c i.

The compositions of the oils and the approximate percentages of the constituents are shown in the fol­

lowing table.

The combined borneol in the leaf and tw ig oil 0 t e Cuban pine p ro ba bly occurs as the esters of caproic and caprylic acids; t h a t in the leaf oil of longleaf P'*16 as the esters of caprylic, heptoic, and caproic aci s.

Th e rotation of the cadinene as given ab ove must be accepted with certain reservations. While the sesquiterpene fractions were d-rotatory, their

dihydro-Pe r c e n t a g e Co m p o s i t i o n s o p Pi n e Oi l s Lo n g l e a p

Cu b a n "--- ~ '

Leaf and tw ig Leaf and tw ig Leaf Cone Furfural ... T race T race T race T race Z -a -Pine t i e ... . . . . 4 8 - 9 2 3 9 - 4 0 *

- C a m p h e n e ... 1 0 1 3 - 1 4 1 2 - 1 3 12

... 35-36 ** so 25 D ipentene... 8 5 .0 5

Bornyl ester (as acetate) . ... 3 .5 2 .4 2 1 .»

Free alcohol (as ¡-borneol) ¡ i fn !9 - ? , .? , , d-C adinene... 18-19 10-11 11 ‘ %

L o s s e s b y p o l y m e r i z a t i o n , e t c . . . 9 o .u (a) d-a-pinene.

chlorides were all /-rotatory. T h e only oil containing d-rotatory cadinene whose dihydrochloride was like­

wise d-rotatory, as recorded in the literature, is th a t of Atlas cedar and possibly also West Indian sandalwood oil.1

Fo r e s t Pr o d u c t s La b o r a t o r y

Fo r e s t Se r v i c e, U . S . De p a r t m e n t o p Ag r i c u l t u r e

(In cofiperation with the U niversity of W isconsin) Ma d i s o n

T H E S P E C IF IC H E A T O F C A L IF O R N IA P E T R O L E U M S B y I Ia r o l d E . Wa l e s

Received M ay 1 1 , 1 9 1 4

T h e following work was carried out at the U niv e r s ity of California under the direction of Prof. E. O ’ N eilL It was intended to furnish those interested with data on the available oils and their specific heats.

m e t h o d s— T w o methods were em pl oyed: (i) T h e

use of an electric method; (2) the application of a modi­

fied form of R e gn au lt’s calorimeter.

The electric method consisted in using the ordinary form of an electric lamp as a source of heat. T h e lamp was immersed in the oil which was placed in a calorimeter cup and the current turned on; the rate of rise in temperature was measured and b y comparison with the rate of rise of a similar weight of water the specific heats were calculated.

The apparatus used in the modified R egn au lt method consisted of a D ew ar flask which was surrounded by an insulated container and in which the oil was placed.

A brass or metal weight was heated in a condenser b y means of steam and then dropped in the oil, the rise in temperature of the oil being measured. B y means of the formula below the specific heats were calculated:

M ( T — I) W C = C m { t — 0 m

where W = water equivalent of the apparatus vi = mass of oil

c = specific heat of the oil

q — specific heat of the brass or metal weight M = weight of the brass or metal weight T = initial temperature of the weight ta = initial temperature of the oil t - final temperature of the oil.

The electric method was found to be the least sensi­

tive of the two, results checking within abou t 2 to - per cent. In the case of the modified R e gn au lt method the accuracy ver y often approached 1.5 per cent.

1 Gildem eister and H odm an, " T h e V olatile Oils," 1 (1913), 330.

I

■1N D E N G I N E E R I N G C H E M I S T R Y 727

r e s u l t s T w e l v e s a m p le s o f o il w e r e u s pH T i i c r • 1 r

w e r e t e s t e d f o r w a t e r , lo w f r a c t i o n s a n d a s p h a l t F e r r o « “ ' ° W6r ° x id e S o f n i t r o S e n m u s t ^ absent.

T h e r e s u lt s o f t h e a n a l y s i s o f t h e s e o ils a s w e ll a s th o’ I ‘ T ’ m Presence o f n i t r i c a c id , m u s t not be s p e c ific h e a t s f o u n d a r e g i v e n b e lo w ^ m d iC a t ° r s i n c e t h i s w o u ld m ea n lower

t a u « , pijrcbntagus s t ? 0 J t s h o u ld b e n o t e d t h a t ferric

Sample ' £ § i S 5at aS, m d lf tor m a y cause precipitation of lead

N°' Water c . c . Asphalt Asphalt 20«.c. s u l f a t e w h e n t h e b u lli o n c o n t a i n s le a d . I t h a s been 2 :: ::: : : : : : : : : : : 0.33 :::: ° - 3?99 rec°m m e n d e d to use t w o solutions, a standard and 4 : : : : : : : : : : : : : : : ° r i

2

-5-7 i i : u i v i S : « 3S t e n t h s t a n < ^ d .

o

3 3°S6

^o.'o 30. l i o : ! ? ! ! I n d i s s o l v i n g b u llio n c a r r y i n g t i n in n itr ic acid, I : ... 8' 2f : > f : 39;? M l P “ rP e Cassius is al m ost al w a y s formed and this 8 2 12 3 2 . 1 ¿ 3 8:3Sf| interfere« m os t seriously in determining the

sulfo-\ i ...2 0 30:9 22!6 39;9 8' « l o C y a n a -e end P ° m t - Stanniferous bullions are quite 0 34.1 30.2 35.4 0^4491 r a r e , b u t o n e o ffic e g e t s p l a c e r g o ld b a r s c a r r y in g tin F r o m the a b o v e results it can be seen t h a t the occasionally> and anothe r gets scrap bullion con-av er ag e specific he a t of Californ ia petroleum is aro und w f g £ “ a t l n t e r v a l s

-0 .4 5 -0 -0 . T h e o ils 1 , 2 a n d 3 w e r e o ils c o n t a i n i n g o n l y • , a m o u n t o f S llv e r p r e s e n t is k n o w n ap-t h e f r a c ap-t i o n s f r o m 3 0 0 ° C . u p . T h e r e s u lt s s h o w t h a t p r o x i m a t e l y a n d t h e e q u i p m e n t is a t h a n d , i t h as been a s t h e a s p h a l t c o n t e n t in c r e a s e s t h e s p e c ific h e a t r e c o " lm e n d e d t o p r e c i p i t a t e n e a r l y a ll t h e s ilv e r with d e c r e a s e s w h ile a s th e w a t e r c o n t e n t in c r e a s e s t h e S t a n d a r d s a I t s ° l u t i o n a n d fin is h t h e t i t r a t i o n with s p e c ific h e a t in c r e a s e s . s u l f o c y a n a t e . T h e n e c e s s i t y o f s e p a r a t i n g th e A gC l

Universityoh California f r o m t h e s o lu t i o n b e f o r e a d d i n g t h e s u l f o c y a n a t e makes

bkrkei.ey __ t h is c o m b i n a t i o n m e t h o d t o o l e n g t h y .

D E T E R M IN A T IO N O F S IL V E R A N D B A S E M E T A L IN' n J u !n

7

^ ? U e stio n o f a p p ly in g this P R E C IO U S M E T A L B lS .L I O N “ m , V d e t e r m in a t l0 n t h e s i l v e r present B Y PfiSDBRICP H Z m b u h ° n ’ w e a r e a t ^ c e c o n f r o n t e d w ith the Received May 15, 1914 f , T ™ . ° f ,£ e t t l n £ t h e s i l v e r i n t o s o lu t io n . Where (lC o n c lu d e d f r o m the A u g u st N u m b e r ) nf W ^ ^ 3 ° ° R n e g ° l d ’ P o s s ib ly the o r m e t a ls m a y b e d i r e c t l y d i s s o lv e d in n it r ic acid, TH E DIRECT d e t e r m i n a t i o n o r s i l v e r b u t a b o v e t h a t g o ld fin e n e s s , s o m e p r e lim in a r y treat-I lie d e t e r m i n a t i o n o f s i l v e r in s o lu t io n b y t i t r a t i o n m e n t is n e c e s s a r y .

v i \ S 0 l“ t i0 n o f s u l f ° c y a n a t e w a s d e s c r i b e d b y . I n or{I e r t o m a k e a s a t i s f a c t o r y d e te r m in a t io n of o l h a r d in J o u r , p r a k t. C h e m ., in 1 8 7 4 , a n d is g e n e r a l l y s d v e r in b u llio n c a r r y i n g P t , i t w a s t h e p r a c t ic e at s p o k e n o f a s t h e “ V o l h a r d m e t h o d , ” b u t p r i o r i t y h a s t h e P h i l a d e l p h i a M i n t , f o r m a n y y e a r s p r e v io u s to b e e n c la i m e d f o r C h a r p e n t i e r , b a s e d u p o n p u b l i c a - l S 9 °> t o a l l o y w i t h P b o n a c u p e l , r e m o v i n g fr o m the t i o n s in C o m p t. r e n d ., in 1 8 7 1 , a n d B u l l . S o c . I n g . m u ffle a s s o o n a s t h o r o u g h a l l o y i n g w a s secured.

C tv de F r a n c e , m 18 7 0 . T h e c o ld b u t t o n w a s c le a n e d a n d t h e n t r e a t e d with n g e n e r a l, t h e m e t h o d c o n s is t s in a d d i n g a li b e r a l n ‘ t r i c a c i d . T h e a l l o y i n g r e q u i r e d c o n s id e r a b le care a m o u n t o f a f e r r i c s a l t t o t h e ' s i l v e r s o lu t i o n a n d t h e n a n d ski11 a n d t h e r e w a s o f t e n t r o u b l e f r o m t h e separa- a m g from a buret te a solution of a sulf ocyan ate of nitrate if stron g acid was used. T h e silver a c o n v e n i e n t s t r e n g t h , f in is h in g d r o p b y d r o p , u n t i l in t h e s o lu t io n w a s d e t e r m i n e d b y t h e G a y - L u s s a c . t h e c h a r a c t e r i s t i c r e d c o lo r o f t h e f e r r ic s a l t w i t h s u lf o - m e t h o d .

c y a n a t e a p p e a r s . M o r e o r le s s e l a b o r a t e d e s c r i p t i o n s P r i m a r i l y f o r t h e d e t e r m i n a t i o n o f t h e g o ld , G . R o se 1 m ’ 11 b0 f ° U n d in v a r i o u s t e x t - b o o k s . p r o p o s e d t o a l l o y w i t h le a d i n a p o r c e la in cru cib le W h e n w o r k i n g u p o n h i g h - g r a d e s i l v e r , 992 fin e o r o v e r _ a s p i r i t la m p , J u p t n e r 2 a l l o y e d w it h z in c and o v e r t h is m e t h o d p r o b a b l y y i e l d s f u l l y a s a c c u r a t e B a l l i n g 3 w it h c a d m i u m . I n a ll o f t h e s e c a s e s th e solu-r e s u lt s a s t h e G a y - L u s s a c m e t h o d ( t i t solu-r a t i o n w i t h s a l t t i o n w a s a v a i l a b l e f o r d e t e r m i n i n g t h e s i l v e r ; in fact, s o l u t i o n ) . N o s p e c ia l a p p a r a t u s is n e c e s s a r y a n d R o s e p r o p o s e d t o p r e c i p i t a t e t h e s i l v e r b y so lu tion w h e n o n l y a f e w d e t e r m i n a t i o n s a r e r e q u ir e d i t is o f c h lo r id e o f le a d .

m o r e r a p id t h a n t h e G a y - L u s s a c m e t h o d . T h e I n l 8 9 i , D r . C a b e l l W h i t e h e a d / t h e n A s s a y e r of c h ie f a d v a n t a g e o f t h e G a y - L u s s a c m e t h o d is i t s a b i l i t y t h e B u r e a u o f t h e M i n t , d e s c r i b e d t h e u se o f t h e cad- t o .t u r n o u t , w it h p r o p e r e q u i p m e n t , a l a r g e r v o l u m e m iu m f u s io n f o r t h e d e t e r m i n a t i o n o f s i l v e r in gold o f w o r k in a d a y ’s t im e . b u llio n , p a r t i c u l a r l y w h e n p r e s e n t in v e r y s m a ll a m o u n ts

” h e n > h o w e v e r , t h e V o l h a r d m e t h o d is a p p l i e d t o a s in g o ld c o in s , b u t h e r e g a r d s t h e d e t e r m in a t io n of m is c e lla n e o u s m a t e r i a l s s o m e o b j e c t i o n s a p p e a r . M e r - g ° ld b y t h i s m e t h o d u n f a v o r a b l y ,

c u r y a n d p a l l a d i u m i n t e r f e r e . M o d e r a t e a m o u n t s o f I n t h e A n n u a l R e p o r t o f t h e D i r e c t o r o f th e M in t c o p p e r a n d p l a t i n u m a r e n o t o b j e c t e d t o . I t is o f t e n f o r r 9 1 2 , p a g e 3 3 , M r . M . A . M a r t i n , t h e A s s a y e r of s a i d t h a t 70 p e r c e n t o f c o p p e r m a y b e p r e s e n t , b u t t h e S a n F r a n c i s c o M i n t , h a s p r o p o s e d t h e fo llo w in g t h i s is c e r t a i n l y a m i s t a k e . N i c k e l a n d c o b a l t o b - m e t h o d o f d e t e r m i n i n g s i l v e r in m a s s m e lt s c o m b in in g s c u r e t h e e n d c o lo r . I t h a s b e e n s u g g e s t e d w h e n a n u m b e r o f d e p o s it s :

C o a r c p r e s e n t t o a d d e x c e s s o f s u l f o c y a n a t e > M itch e ll Manual of Practical A s s a y s ," « « . p. 688.

a n a titrate b a c k with silver. Chloride of silver must 2 ^ anal- Chem., 1879, p, 105.

b e a b s e n t s in c e i t g r a d u a l l y r e a c t s w i t h s u l f o c v a n a t e ! <r rook' f " ScIcet Methods of chemical Analysis,” 188$, p. 443.

o u n u i v a i M i c t p roc F rankltn In st., 1891, I I I . p. 94.

7=8- T U B J O U R N A L O F I N D U S T R I A L A N D E N G I N E E R I N G C H E M I S T R Y V o l. i , No. ,

Sept., 191 4 already examined the cupellation method carefully, we have a good basis for co mparing the results b y the sulfocyanate method with cupellation results, and in making this com parison we shall get m any more

■comparative determinations b y cupellation in various laboratories.

In order to t r y out the sulfo cy an ate method thor­

oughly, the A s s ay e r at the San Francisco mint pre­

pared a series of 12 samples in duplicate, representing characteristic bullions which he t h o u gh t would be suitable for the process. He made duplicate determina­

tions of silver in each sam pl e b y both cupellation and

7 3° T I I E J O U R N A L O F I N D U S T R I A L A N D E N G I N E E R I N G C H E M I S T R Y V o l . 6, No. 9

composition arranged b y progressively increasing;

silver fineness:

Sept., 19 1 4 T H E J O U R N A L O F I N D U S T R I A L A N D E N G I N E E R I N G C H E M I S T R Y 7 3 1 ,get satisfactory results, however, in a reasonable length of time, requires especial equipment, and it is essential

732 T H E J O L R N A L O F I N D U S T R I A L A N D E N G I N E E R I N G C H E M I S T R Y desirability of more explicit instructions for carrying on the m ethod and es pecially of pointin g out probable and possible sources of error in the manipulations.

Therefore, each assayer, whose work has been used in this paper, was asked to write a history of his experi­

ence with the method. Also during the course of the

Powiązane dokumenty