• Nie Znaleziono Wyników

ELECTRICAL CHARACTERISTICS STATIC CHARACTERISTICS

W dokumencie BYT01-200 (Stron 63-80)

HIGH EFFICIENCY FAST RECOVERY RECTIFIER DIODES

ELECTRICAL CHARACTERISTICS STATIC CHARACTERISTICS

RECOVERY CHARACTERISTICS

BYW29(F)

2/7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig.2 : Peak current versus form factor.

Tj=125 Co

Fig.3 : Forward voltage drop versus forward current (maximum values).

0.1

Single pulse

tp(s)

T

=t p/T tp

1.0E-03 1.0E-02 1.0E-01 1. 0E+00

K

Fig.4 : Relative variation of thermal impedance junction to case versus pulse duration.

(TO220AC)

Fig.1 : Average forward power dissipation versus average forward current.

0.2

1.0E-03 1.0E-02 1.0E-01 1.0E +00 1 .0E+0 1 K

T

=t p/T tp

Fig.5 : Relative variation of thermal impedance junction to case versus pulse duration.

(ISOWATT220AC)

BYW29(F)

3/7

0.0010 0.01 0.1 1

Fig.7 : Non repetitive surge peak forward current versus overload duration.

(ISOWATT220AC) Rth(j-a)=15 oC/W

Rth(j -a)=Rth(j-c)

Fig.8 : Average current versus ambient temperature.

(duty cycle : 0.5) (TO220AC)

0 20 40 60 80 100 120 140 160 Rth(j-a)=15 oC/W

Rth(j-a)=Rth(j-c)

Fig.9 : Average current versus ambient temperature.

(duty cycle : 0.5) (ISOWATT220AC)

C(pF)

VR(V)

F=1Mhz Tj=25 Co

Fig.10 : Junction capacitance versus reverse voltage applied (Typical values).

0.0010 0.01 0.1 1

Fig.6 : Non repetitive surge peak forward current versus overload duration.

(TO220AC)

QRR(nC)

IF=IF(av) 90 %CONFIDENCE Tj -10 0 C

dIF/dt(A/us)

O

Fig.11 : Recovery charges versus dIF/dt.

BYW29(F)

4/7

Tj( C)

QRR;IRM[Tj]/QRR;IRM[Tj=125 C]

IRM QRR

o

o

Fig.13 : Dynamic parameters versus junction temperature.

IRM(A)

IF=IF(av) 90% CONFIDENCE

dIF/dt(A/us)

Tj-100 CO

Fig.12 : Peak reverse current versus dIF/dt.

BYW29(F)

5/7

Cooling method : C Marking : Type number Weight : 2 g

Recommended torque value : 0.55m.N Maximum torque value : 0.70m.N PACKAGE MECHANICAL DATA TO220AC (JEDEC outline)

Cooling method : C Marking : Type number Weight : 1.9 g

Recommended torque value : 0.8m.N Maximum torque value : 1.0m.N PACKAGE MECHANICAL DATA ISOWATT220AC (JEDEC outline)

A Millimeters Inches Min. Max. Min. Max.

A 10 10.4 0.393 0.409

B 15.2 15.9 0.598 0.626

C 13 14 0.511 0.551

D 6.2 6.6 0.244 0.260

E 16.4 typ. 0.645 typ.

F 3.5 4.2 0.137 0.165

G 2.65 2.95 0.104 0.116

H 4.4 4.6 0.173 0.181

I 3.75 3.85 0.147 0.151

J 1.23 1.32 0.048 0.051

K 1.27 typ. 0.050 typ.

L 0.49 0.70 0.019 0.027

M 2.4 2.72 0.094 0.107

N 4.95 5.15 0.194 0.203

O 1.14 1.70 0.044 0.067

P 0.61 0.88 0.024 0.034

A Millimeters Inches Min. Max. Min. Max.

A 10 10.4 0.393 0.409

B 15.9 16.4 0.626 0.645

C 28.6 30.6 1.126 1.204

D 16 typ 0.630 typ

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I2C Components by SGS-THOMSON Microelectronics, conveys a licence under the Philips I2C Patent. Rights to use these components in an I2C system, is grantede provided that the system conforms to

the I2C Standard Specification as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia Brazil France Germany Hong Kong Italy Japan Korea Malaysia Malta Morocco The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

BYW29(F)

7/7

BYW80(F)

August 1993 Ed : 1B

HIGH EFFICIENCY FAST RECOVERY RECTIFIER DIODES

TO220AC (Plastic) BYW80-200 SUITED FOR SMPS

VERY LOW FORWARD LOSSES NEGLIGIBLE SWITCHING LOSSES HIGH SURGE CURRENT CAPABILITY HIGH AVALANCHE ENERGY CAPABILITY INSULATED VERSION (ISOWATT220AC) : Insulating voltage = 2000 V DC

Capacitance = 12 pF

DESCRIPTION

ABSOLUTE MAXIMUM RATINGS FEATURES

Single chip rectifier suited for switchmode power supply and high frequency DC to DC converters.

Packaged in TO220AC, or ISOWATT220AC this device is intended for use in low voltage, high frequency inverters, free wheeling and polarity protection applications.

isolated ISOWATT220AC

(Plastic) BYW80F-200

Symbol Parameter Value Unit

IF(RMS) RMS forward current 20 A

IF(AV) Average forward current δ= 0.5

TO220AC Tc=120°C 10 A

ISOWATT220AC Tc=95°C 10

IFSM Surge non repetitive forward current tp=10ms sinusoidal

100 A

Tstg

Tj Storage and junction temperature range - 65 to + 150

- 65 to + 150 °C

°C

Symbol Parameter BYW80-(F)

Unit

50 100 150 200

VRRM Repetitive peak reverse voltage 50 100 150 200 V

K A

K A

1/7

Symbol Test Conditions Min. Typ. Max. Unit

IR* Tj= 25°C VR= VRRM 10 µA

Tj= 100°C 1 mA

VF ** Tj= 125°C IF= 7 A 0.85 V

Tj= 125°C IF= 15 A 1.05

Tj= 25°C IF= 15 A 1.15

Pulse test : * tp = 5 ms, duty cycle < 2 %

** tp = 380µs, duty cycle < 2 %

To evaluate the conduction losses use the following equation : P = 0.65 x IF(AV)+ 0.027 x IF2

(RMS)

Symbol Test Conditions Min. Typ. Max. Unit

trr Tj= 25°C IF= 0.5A IR= 1A

Irr = 0.25A 25 ns

IF= 1A VR= 30V

dIF/dt = -50A/µs 35

tfr Tj= 25°C IF= 1A VFR= 1.1 x VF

tr = 10 ns 15 ns

VFP Tj= 25°C IF= 1A tr = 10 ns 2 V

Symbol Parameter Value Unit

Rth (j-c) Junction to case TO220AC 2.5 °C/W

ISOWATT220AC 4.7

THERMAL RESISTANCE

ELECTRICAL CHARACTERISTICS STATIC CHARACTERISTICS

RECOVERY CHARACTERISTICS

BYW80(F)

2/7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig.2 : Peak current versus form factor.

0.1 1 10 100

Fig.3 : Forward voltage drop versus forward current (maximum values).

0.1

Single pulse

tp(s)

T

=t p/T tp

1.0E-03 1.0E-02 1.0E-01 1. 0E+00

K

Fig.4 : Relative variation of thermal impedance junction to case versus pulse duration.

(TO220AC)

Fig.1 : Average forward power dissipation versus average forward current.

0.2

1.0E-03 1.0E-02 1.0E-01 1.0E +00 1 .0E+0 1 K

T

=t p/T tp

Fig.5 : Relative variation of thermal impedance junction to case versus pulse duration.

(ISOWATT220AC)

BYW80(F)

3/7

0.0010 0.01 0.1 1 10

Fig.7 : Non repetitive surge peak forward current versus overload duration.

(ISOWATT220AC) Rth(j-a)=15 oC/W

Rth(j-a)=Rth(j-c)

Fig.8 : Average current versus ambient temperature.

(duty cycle : 0.5) (TO220AC)

0 20 40 60 80 100 120 140 160 Rth(j-a)=15 oC/W

Rth(j-a)=Rth(j-c)

Fig.9 : Average current versus ambient temperature.

(duty cycle : 0.5) (ISOWATT220AC)

C(pF)

VR(V)

Fig.10 : Junction capacitance versus reverse voltage applied (Typical values).

0.0010 0.01 0.1 1 100IM(A)

Tc=25 oC

Fig.6 : Non repetitive surge peak forward current versus overload duration.

(TO220AC)

QRR(nC)

90% CONFIDENCE Tj=125oC IF=IF(av)

dIF/dt(A/us) Fig.11 : Recovery charges versus dIF/dt.

BYW80(F)

4/7

Tj( C) QRR;IRM[Tj]/QRR;IRM[Tj=125 C]

IRM

QRR

o

O

Fig.13 : Dynamic parameters versus junction temperature.

I RM(A)

90% CONFIDENCE Tj=125oC IF=IF(av)

dIF/dt(A/us)

Fig.12 : Peak reverse current versus dIF/dt.

BYW80(F)

5/7

Cooling method : C Marking : Type number Weight : 2 g

Recommended torque value : 0.55m.N Maximum torque value : 0.70m.N PACKAGE MECHANICAL DATA TO220AC (JEDEC outline)

Cooling method : C Marking : Type number Weight : 1.9 g

Recommended torque value : 0.8m.N Maximum torque value : 1.0m.N PACKAGE MECHANICAL DATA ISOWATT220AC (JEDEC outline)

A Millimeters Inches Min. Max. Min. Max.

A 10 10.4 0.393 0.409

B 15.2 15.9 0.598 0.626

C 13 14 0.511 0.551

D 6.2 6.6 0.244 0.260

E 16.4 typ. 0.645 typ.

F 3.5 4.2 0.137 0.165

G 2.65 2.95 0.104 0.116

H 4.4 4.6 0.173 0.181

I 3.75 3.85 0.147 0.151

J 1.23 1.32 0.048 0.051

K 1.27 typ. 0.050 typ.

L 0.49 0.70 0.019 0.027

M 2.4 2.72 0.094 0.107

N 4.95 5.15 0.194 0.203

O 1.14 1.70 0.044 0.067

P 0.61 0.88 0.024 0.034

A Millimeters Inches Min. Max. Min. Max.

A 10 10.4 0.393 0.409

B 15.9 16.4 0.626 0.645

C 28.6 30.6 1.126 1.204

D 16 typ 0.630 typ

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I2C Components by SGS-THOMSON Microelectronics, conveys a licence under the Philips I2C Patent. Rights to use these components in an I2C system, is grantede provided that the system conforms to

the I2C Standard Specification as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia Brazil France Germany Hong Kong Italy Japan Korea Malaysia Malta Morocco The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

BYW80(F)

7/7

BYW 100-50200

HIGH EFFICIENCY FAST RECOVERY RECTIFIER DIODES

VERY LOW CONDUCTION LOSSES NEGLIGIBLE SWITCHING LOSSES

LOW FORWARD AND REVERSE RECOVERY TIMES

HIGH SURGE CURRENT

THE SPECIFICATIONS AND CURVES ENABLE THE DETERMINATION OF trrAND IRMAT 100°C UNDER USERS CONDITIONS

DESCRIPTION

Low voltage drop and rectifier suited for switching mode base drive and transistor circuits.

December 1994

F 126 (Plastic)

Symbol Parameter Value Unit

IFRM Repetive Peak Forward Current tp20µs 50 A

IF (AV) Average Forward Current* Ta =90°C

δ= 0.5

1.5 A

IFSM Surge non Repetitive Forward Current tp= 10ms Sinusoidal

50 A

Pto t Power Dissipation* Ta =90°C 1.3 W

Tstg

Tj

Storage and Junction Temperature Range - 40 to + 150

- 40 to + 150

°C TL Maximum Lead Temperature for Soldering during 10s at 4mm

from Case

230 °C

ABSOLUTE RATINGS (limiting values)

Symbol Parameter Value Unit

Rth (j - a) Junction-ambient* 45 °C/W

THERMAL RESISTANCE

Symbol Parameter BYW

100-Unit

50 100 150 200

VRRM Repetitive Peak Reverse Voltage 50 100 150 200 V

VRSM Non Repetitive Peak Reverse Voltage 55 110 165 220 V

* On infinite heatsink with 10mm lead length.

1/5

2/5

Synbol Test Conditions Min. Typ. Max. Unit

IR Tj= 25°C VR= VRRM 10 µA

Tj= 100°C 0.5 mA

VF Tj= 25°C IF= 4.5A 1.2 V

Tj= 100°C IF= 1.5A 0.85

STATIC CHARACTERISTICS ELECTRICAL CHARACTERISTICS

Symbol Test Conditions Min. Typ. Max. Unit

trr Tj= 25°C IF= 1A diF/dt = - 50A/µs

VR= 30V See figure 10

35 ns

Qrr Tj= 25°C IF= 1A diF/dt = - 20A/µs

VR30V

10 nC

tfr Tj= 25°C IF= 1A tr= 10ns

Measured at 1.1 x VF

30 ns

VFP Tj= 25°C IF= 1A tr= 10ns 5 V

RECOVERY CHARACTERISTICS

To evaluate the conduction losses use the following equations:

VF= 0.66 + 0.075 IF

P = 0.06 x IF(AV)+ 0.075 IF2 (RMS)

BYW 100-50200

Figure 2. Average forward current versus ambient temperature.

Figure 3. Thermal resistance versus lead length.

Figure 4. Transient thermal impedance junction-ambient for mounting n°2 versus pulse duration (L = 10 mm).

Figure 5. Peak forward current versus peak forward voltage drop (maximum values).

Mounting n°1 INFINITE HEATSINK

Mounting n°2 PRINTED CIRCUIT Fi g ure 1 . M a xi m u m av er ag e powe r

dissipation versus average forward current.

3/5

BYW 100-50200

4/5

Figure 6. Capacitance versus reverse voltage applied.

Figure 7. Recovery time versus diF/dt.

Figure 8. Peak reverse current versus diF/dt.

Figure 10. Measurement of trr (Fig. 7) and IRM

(Fig. 8).

Figure 9. Dyn amic pa rameters versus junction temperature.

BYW 100-50200

F 126 (Plastic)

W dokumencie BYT01-200 (Stron 63-80)

Powiązane dokumenty