• Nie Znaleziono Wyników

Wyniki przedstawione w niniejszej rozprawie mog¡ by¢ podstaw¡ do dalszych bada«. Niektóre z zaprezentowanych metod mo»na ulepszy¢, cz¦±¢ z nich mo»na te» rozwin¡¢ b¡d¹ wykorzysta¢ jako elementy skªadowe dla nowych, bardziej skomplikowanych metod.

Poni»ej przedstawiono proponowane kierunki rozwoju metod zaprezento-wanych w rozprawie.

• Rozbudowa metody kalibracji poªo»enia sensorów w ukªadzie robota o elementy autonomii: samodzielne znajdowanie pªaskich powierzchni oraz wykrywanie potrzeby ponownej kalibracji ukªadu.

• Wzbogacenie metod budowy mapy o sposoby uzupeªniania pustych przestrzeni.

• Dalsza werykacja mo»liwo±ci planowania ruchu robota krocz¡cego przy u»yciu map zbudowanych przedstawionymi metodami.

• Wyznaczenie modeli niepewno±ci dla innych sensorów zwracaj¡cych g¦-st¡ map¦ gª¦bi (kamery TOF, skanery 3D) oraz werykacja zastosowa-nia przedstawionych metod z tymi sensorami.

• Werykacja wykorzystania innych metod optymalizacji (takich jak Par-ticle Swarm Optimization lub algorytmy genetyczne) w samolokalizacji na podstawie map wysoko±ci.

• Implementacja kompletnej metody SLAM dedykowanej robotom kro-cz¡cym na podstawie przedstawionych algorytmów mapowania i samo-lokalizacji.

• Rozwini¦cie metod budowy mapy tak, aby umo»liwiaªy modelowanie du»ych obszarów.

Bibliograa

[1] A. Albert, M. Suppa, W. Gerth. Detection of stair dimensions for the path planning of a bipedal robot. Advanced Intelligent Mechatro-nics, 2001. Proceedings. 2001 IEEE/ASME International Conference on, wolumen 2, strony 12911296. IEEE, 2001.

[2] M. Aldon, L. Le Bris. Mobile robot localization using a light-stripe sensor. Intelligent Vehicles' 94 Symposium, Proceedings of the, strony 255259. IEEE, 1994.

[3] M. Asada. Map building for a mobile robot from sensory data. Systems, Man and Cybernetics, IEEE Transactions on, 20(6):13261336, 1990.

[4] R. B¡czyk, A. Kasi«ski. Visual simultaneous localisation and map

building supported by structured landmarks. Int. J. Appl. Math. Com-put. Sci, 20(2):281293, 2010.

[5] D. Belter, P. Skrzypczynski. Precise Self-Localization of a Walking Robot on Rough Terrain Using PTAM. World Scientic, 2012.

[6] D. Belter. Gait control of the six-legged robot on a rough terrain using computational intelligence learning and optimization methods. Praca doktorska, Politechnika Pozna«ska, Listopad 2011.

[7] D. Belter, P. Šab¦cki, P. Skrzypczy«ski. Map-based adaptive foothold planning for unstructured terrain walking. Proc. 2010 IEEE Interna-tional Conference on Robotics And Automation (ICRA 2010), strony 52565261, 2010.

[8] D. Belter, P. Šab¦cki, P. Skrzypczy«ski. Estimating terrain elevation maps from sparse and uncertain multi-sensor data. Robotics and Bio-mimetics (ROBIO), 2012 IEEE International Conference on, strony 715722. IEEE, 2012.

[9] D. Belter, P. Šab¦cki, P. Skrzypczy«ski. An exploration-based appro-ach to terrain traversability assessment for a walking robot. Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE International Sym-posium on, strony 16. IEEE, 2013.

[10] D. Belter, P. Šabecki, P. Skrzypczynski. On-board perception and motion planning for legged locomotion over rough terrain. 5th European Conference on Mobile Robots (ECMR), Orebro, Sweden, strony 195

200, 2011.

[11] D. Belter, P. Skrzypczy«ski. Rough terrain mapping and classication for foothold selection in a walking robot. Journal of Field Robotics, 28(4):497528, 2011.

[12] D. Belter, P. Skrzypczy«ski. Rough terrain mapping and classication for foothold selection in a walking robot. J. Field Robot., 28(4):497528, Lipiec 2011.

[13] P. J. Besl, N. D. McKay. Method for registration of 3-d shapes.

Robotics-DL tentative, strony 586606. International Society for Optics and Photonics, 1992.

[14] J. B¦dkowski, J. Naruniec. On-line range images registration with gpg-pu. Opto-Electronics Review, 21(1):5262, 2013.

[15] T. E. Bihari, T. M. Walliser, M. R. Patterson. Controlling the adaptive suspension vehicle. Computer, 22(6):5965, 1989.

[16] O. Birbach, B. Bäuml, U. Frese. Automatic and self-contained cali-bration of a multi-sensorial humanoid's upper body. Proc. IEEE Int.

Conf. on Robotics and Automation (ICRA), strony 31033108, 2012.

[17] J.-Y. Bouguet. Camera calibration toolbox for matlab. http://www.

vision.caltech.edu/bouguetj/calib_doc/.

[18] G. R. Bradski, A. Kaehler. Learning opencv, 1st edition. O'Reilly Media, Inc., wydanie rst, 2008.

[19] C. Chen, A. Kak. Modeling and calibration of a structured light scanner for 3-d robot vision. Robotics and Automation. Proceedings. 1987 IEEE International Conference on, wolumen 4, strony 807815. IEEE, 1987.

[20] A. Chilian, H. Hirschmuller, M. Gorner. Multisensor data fusion for robust pose estimation of a six-legged walking robot. Intelligent Robots

and Systems (IROS), 2011 IEEE/RSJ International Conference on, strony 24972504. IEEE, 2011.

[21] A. J. Davison, I. D. Reid, N. D. Molton, O. Stasse. Monoslam: Real-time single camera slam. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29(6):10521067, 2007.

[22] D. H. Douglas, T. K. Peucker. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature.

Cartographica: The International Journal for Geographic Information and Geovisualization, 10(2):112122, 1973.

[23] D. A. Forsyth, J. Ponce. Computer Vision: A Modern Approach. Pren-tice Hall Professional Technical Reference, 2002.

[24] R. Gartshore, P. Palmer. Exploration of an unknown 2d environment using a view improvement strategy. Towards Autonomous Robotic Sys-tems, strony 5764, 2002.

[25] A. Gil, Ó. Reinoso, M. Ballesta, M. Juliá. Multi-robot visual slam using a rao-blackwellized particle lter. Robotics and Autonomous Systems, 58(1):6880, 2010.

[26] J.-S. Gutmann, M. Fukuchi, M. Fujita. Stair climbing for humanoid robots using stereo vision. Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on, wo-lumen 2, strony 14071413. IEEE, 2004.

[27] R. M. Haralick. Propagating covariance in computer vision. Proc.

Workshop on Performance Characteristics of Vision Algorithms, strony 493498, 1994.

[28] P. Henry, M. Krainin, E. Herbst, X. Ren, D. Fox. Rgb-d mapping: Using kinect-style depth cameras for dense 3d modeling of indoor environ-ments. The International Journal of Robotics Research, 31(5):647663, 2012.

[29] A. Hilton. Scene modelling from sparse 3d data. Image and Vision Computing, 23(10):900920, 2005.

[30] P. J. Huber, i in. Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35(1):73101, 1964.

[31] D. Q. Huynh, R. A. Owens, P. Hartmann. Calibrating a structured light stripe system: a novel approach. International Journal of computer vision, 33(1):7386, 1999.

[32] M. Iagolnitzer, F. Richard, J. Samson, P. Tournassoud. Locomotion of an all-terrain mobile robot. Robotics and Automation, 1992. Proce-edings., 1992 IEEE International Conference on, strony 104109. IE-EE, 1992.

[33] J.-L. Jezouin, P. Saint-Marc, G. Medioni. Building an accurate range

nder with o the shelf components. Computer Vision and Pattern Re-cognition, 1988. Proceedings CVPR'88., Computer Society Conference on, strony 195200. IEEE, 1988.

[34] G. H. Joblove, D. Greenberg. Color spaces for computer graphics. ACM siggraph computer graphics, wolumen 12, strony 2025. ACM, 1978.

[35] A. E. Johnson, M. Hebert. Surface registration by matching oriented points. 3-D Digital Imaging and Modeling, 1997. Proceedings., Interna-tional Conference on Recent Advances in, strony 121128. IEEE, 1997.

[36] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, S. Schaal. Fast, robust quadruped locomotion over challenging terrain. Robotics and Automation (ICRA), 2010 IEEE International Conference on, strony 26652670. IEEE, 2010.

[37] J. Kennedy, R. C. Eberhart. Particle swarm optimization. Proce-edings of the IEEE International Conference on Neural Networks, stro-ny 19421948, 1995.

[38] K. Khoshelham, S. O. Elberink. Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors, 12(2):14371454, 2012.

[39] W. S. Kim, A. I. Ansar, R. D. Steele, R. C. Steinke. Performance analysis and validation of a stereo vision system. Proceedings of the IEEE International Conference on Systems (SMC), strony 14091416, 2005.

[40] C. A. Klein, C.-C. Kau, E. A. Ribble, M. R. Patterson. Vision pro-cessing and foothold selection for the asv walking machine. Robotics and IECON'87 Conferences, strony 195203. International Society for Optics and Photonics, 1987.

[41] L. Kneip, F. Tâche, G. Caprari, , R. Siegwart. Characterization of the compact hokuyo urg-04lx 2d laser range scanner. Proc. IEEE Int.

Conf. on Robotics & Automation, strony 14471454, Maj 2009.

[42] J. Z. Kolter, Y. Kim, A. Y. Ng. Stereo vision and terrain modeling for quadruped robots. Proceedings of the 2009 IEEE international confe-rence on Robotics and Automation, ICRA'09, strony 38943901. IEEE Press, 2009.

[43] K. Konolige. Small vision systems: hardware and implementation.

Eighth International Symposium on Robotics Research, strona 111116, 1997.

[44] K. Konolige, M. Agrawal, J. Sola. Large-scale visual odometry for rough terrain. Robotics Research, strony 201212. Springer, 2011.

[45] E. Krotkov. Laser rangender calibration for a walking robot. IEEE Int. Conf. on Robotics and Automation, strony 25682573, 1991.

[46] E. Krotkov, R. Homan. Terrain mapping for a walking planetary rover. Robotics and Automation, IEEE Transactions on, 10(6):728

739, 1994.

[47] N. Kwak, G.-W. Kim, S.-H. Ji, B.-H. Lee. A mobile robot exploration strategy with low cost sonar and tungsten-halogen structured light.

Journal of Intelligent and Robotic Systems, 51(1):89111, 2008.

[48] I. S. Kweon, T. Kanade. High resolution terrain map from multiple sen-sor data. Intelligent Robots and Systems' 90.'Towards a New Frontier of Applications', Proceedings. IROS'90. IEEE International Workshop on, strony 127134. IEEE, 1990.

[49] T. Lang, C. Plagemann, W. Burgard. Adaptive non-stationary kernel regression for terrain modeling. Robotics: Science and Systems, 2007.

[50] G. D. Leo, C. Liguori, A. Paolillo. Covariance propagation for the uncertainty estimation in stereo vision. IEEE T. Instrumentation and Measurement, 60(5):16641673, 2011.

[51] G. Li, Y. Liu, L. Dong, X. Cai, D. Zhou. An algorithm for extrinsic parameters calibration of a camera and a laser range nder using line features. Proc. IEEE Int. Conf. on Intelligent Robots and Systems, strony 38543859, 2007.

[52] G. Li, Y. Liu, L. Dong, X. Cai, D. Zhou. An algorithm for extrinsic parameters calibration of a camera and a laser range nder using li-ne features. IEEE International Conference on Intelligent Robots and Systems (IROS), strony 38543859, 2007.

[53] P. Šab¦cki. Analiza i optymalizacja konguracji systemu wizyjnego ze

±wiatªem strukturalnym dla zadania budowy mapy terenu. Studia z Automatyki i Informatyki, 34:3756, 2009.

[54] P. Šab¦cki. Kalibracja ukªadu kamera-skaner laserowy hokuyo urg-04lx dla robota krocz¡cego. Studia z Automatyki i Informatyki, 35:85104, 2010.

[55] P. Šab¦cki, A. Šopatowski, P. Skrzypczy«ski. Terrain perception for a walking robot with a low-cost structured light sensor. 4th Eur. Conf.

on Mobile Robots, strony 199204, Wrzesie« 2009.

[56] P. Šab¦cki. Improved data processing for an embedded stereo vision system of an inspection robot. R. Jabªo«ski, T. B°ezina, redakto-rzy, Mechatronics:Recent Technological and Scientic Advances, strony 749757. Springer, 2012.

[57] P. Šab¦cki, A. Kasi«ski. Aktywny pokªadowy system wizyjny dla ro-bota autonomicznego. Pomiary, Automatyka, Kontrola, 55:731736, 2009.

[58] P. Šab¦cki, M. Nowicki, P. Skrzypczy«ski. Characterization of the measurement errors in a miniature laser scanner for walking robots.

Adaptive Mobile Robotics, strony 739746. World Scientic, 2012.

[59] P. Šab¦cki, P. Skrzypczy«ski. Spatial uncertainty assessment in visual terrain perception for a mobile robot. Intelligent Systems in Technical and Medical Diagnostics, strony 357368.

[60] P. Šab¦cki, P. Skrzypczy«ski. Real-time visual perception for terrain mapping in a walking robot. Adaptive Mobile Robotics, strony 754761.

World Scientic, 2012.

[61] P. Šab¦cki, K. Walas. Multisensor perception for autonomous stair climbing with a six legged robot. H. F. et al, redaktor, Emerging Trends in Mobile Robotics, strony 10135261. World Scientic, 2010.

[62] P. Šab¦cki, D. Belter. Sensory system calibration method for a walking robot. Journal of Automation, Mobile Robotics & Intelligent Systems, 7(2), 2013.

[63] P. Šab¦cki, M. Nowicki, P. Skrzypczy«ski. Characterization of a com-pact laser scanner as a sensor for legged mobile robots. Management and Production Engineering Review, 3(3):4552, 2012.

[64] P. Šab¦cki, D. Rosi«ski, P. Skrzypczy«ski. Terrain map building for a walking robot equipped with an active 2d range sensor. Journal of Automation Mobile Robotics and Intelligent Systems, 5:6778, 2011.

[65] P. Šab¦cki, K. Walas, A. Kasi«ski. Autonomous stair climbing with multisensor feedback. World Congress, wolumen 18, strony 81598164, 2011.

[66] A. Šopatowski. Sterowanie chodem robota. Praca magisterska, Poli-technika Pozna«ska, Pozna« 2009.

[67] T. K. Marks, A. Howard, M. Bajracharya, G. W. Cottrell, L. Mat-thies. Gamma-slam: Using stereo vision and variance grid maps for slam in unstructured environments. Robotics and Automation, 2008.

ICRA 2008. IEEE International Conference on, strony 37173724. IE-EE, 2008.

[68] L. Matthies, S. Shafer. Error modeling in stereo navigation, 1987.

[69] L. Matthies, Y. Xiong, R. Hogg, D. Zhu, A. Rankin, B. Kennedy, M. He-bert, R. Maclachlan, C. Won, T. Frost, i in. A portable, autonomo-us, urban reconnaissance robot. Robotics and Autonomous Systems, 40(2):163172, 2002.

[70] S. May, D. Droschel, S. Fuchs, D. Holz, A. Nuchter. Robust 3d-mapping with time-of-ight cameras. Intelligent Robots and Systems, 2009.

IROS 2009. IEEERSJ International Conference on, strony 16731678.

IEEE, 2009.

[71] E. Mihankhah, A. Kalantari, E. Aboosaeedan, H. D. Taghirad, S. Ali, A. Moosavian. Autonomous staircase detection and stair climbing for a tracked mobile robot using fuzzy controller. Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on, strony 1980

1985. IEEE, 2009.

[72] J. Miura, Y. Shirai. An uncertainty model of stereo vision and its application to vision-motion planning of robot. In Proceedings of the 13th Int. Joint Conf. on Articial Intelligence, strony 16181623, 1993.

[73] E. Moore, D. Campbell, F. Grimminger, M. Buehler. Reliable stair climbing in the simple hexapod'rhex'. Robotics and Automation, 2002.

Proceedings. ICRA'02. IEEE International Conference on, wolumen 3, strony 22222227. IEEE, 2002.

[74] J. J. Moré. The Levenberg-Marquardt algorithm: Implementation and theory. G. A. Watson, redaktor, Numerical Analysis, strony 105116.

Springer, Berlin, 1977.

[75] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shot-ton, D. Molyneaux, S. Hodges, D. Kim, A. Fitzgibbon. Kinectfusion:

Real-time dense surface mapping and tracking. Mixed and augmented reality (ISMAR), 2011 10th IEEE international symposium on, strony 127136. IEEE, 2011.

[76] N. J. Nilsson. Shakey the robot. Raport instytutowy, DTIC Document, 1984.

[77] D. Nistér, O. Naroditsky, J. Bergen. Visual odometry. Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, wolumen 1, strony 652659.

IEEE, 2004.

[78] M. Nowicki, P. Skrzypczy«ski. Experimental verication of a walking robot self-localization system with the kinect sensor. Journal of Auto-mation Mobile Robotics and Intelligent Systems, 7, 2013.

[79] A. Nüchter, K. Lingemann, J. Hertzberg, H. Surmann. 6d slam- 3d mapping outdoor environments. Journal of Field Robotics, 24(8-9):699

722, 2007.

[80] T. Oggier, M. Lehmann, R. Kaufmann, M. Schweizer, M. Richter, P. Metzler, G. Lang, F. Lustenberger, N. Blanc. An all-solid-state opti-cal range camera for 3d real-time imaging with sub-centimeter depth resolution (swissranger). Optical Systems Design, strony 534545. In-ternational Society for Optics and Photonics, 2004.

[81] K. Okada, S. Kagami, M. Inaba, H. Inoue. Plane segment nder: Algo-rithm, implementation and applications. Proceedings of the 2001 IEEE International Conference on Robotics and Automation, ICRA 2001, May 21-26, 2001, Seoul, Korea, strony 21202125. IEEE, 2001.

[82] Y. Okubo, C. Ye, J. Borenstein. Characterization of the hokuyo urg

04lx laser rangender for mobile robot obstacle negotiation. Proc. SPIE 7332, Unmanned Systems Technology XI, Kwiecie« 2009.

[83] R. Ozawa, Y. Takaoka, Y. Kida, K. Nishiwaki, J. Chestnutt, J. Kuner, S. Kagami, H. Mizoguch, H. Inoue. Using visual odometry to create 3d maps for online footstep planning. Systems, Man and Cybernetics, 2005 IEEE International Conference on, wolumen 3, strony 26432648.

IEEE, 2005.

[84] L. M. Paz, P. Piniés, J. D. Tardós, J. Neira. Large-scale 6-dof slam with stereo-in-hand. Robotics, IEEE Transactions on, 24(5):946957, 2008.

[85] P. Pfa, R. Triebel, W. Burgard. An ecient extension to elevation maps for outdoor terrain mapping and loop closing. The International Journal of Robotics Research, 26(2):217230, 2007.

[86] C. Plagemann, S. Mischke, S. Prentice, K. Kersting, N. Roy, W. Bur-gard. Learning predictive terrain models for legged robot locomotion.

Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ Interna-tional Conference on, strony 35453552. IEEE, 2008.

[87] J. Poppinga, A. Birk, K. Pathak. Hough based terrain classication for realtime detection of drivable ground. Journal of eld Robotics, 25(1-2):6788, 2008.

[88] J. Poppinga, A. Birk, K. Pathak. A Characterization of 3D Sensors for Response Robots, wolumen 5949 serii Lecture Notes in Articial Intelligence (LNAI), strony 264275. Springer, 2010.

[89] A. Prusak, O. Melnychuk, H. Roth, I. Schiller. Pose estimation and map building with a time-of-ight-camera for robot navigation. Inter-national Journal of Intelligent Systems Technologies and Applications, 5(3):355364, 2008.

[90] I. D. Reid. Projective calibration of a laser-stripe range nder. Image and Vision Computing, 14(9):659666, 1996.

[91] C. Rocchini, P. Cignoni, C. Montani, P. Pingi, R. Scopigno. A low cost 3d scanner based on structured light. Computer Graphics Forum, wolumen 20, strony 299308. Wiley Online Library, 2001.

[92] A. Roennau, T. Kerscher, M. Ziegenmeyer, J. Zoellner, R. Dillmann.

Six-legged walking in rough terrain based on foot point planning. Mo-bile robotics: Solutions and challenges, strony 591598, 2009.

[93] A. Roennau, T. Kerscher, M. Ziegenmeyer, J. Zoellner, R. Dillmann.

Six-legged walking in rough terrain based on foot point planning. Mo-bile robotics: Solutions and challenges, strony 591598, 2009.

[94] R. B. Rusu, S. Cousins. 3D is here: Point Cloud Library (PCL). Pro-ceedings of the IEEE International Conference on Robotics and Auto-mation (ICRA), Shanghai, China, Maj 2011.

[95] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, M. Beetz. Towards 3d point cloud based object maps for household environments. Robotics and Autonomous Systems, 56(11):927941, 2008.

[96] R. B. Rusu, A. Sundaresan, B. Morisset, K. Hauser, M. Agrawal, J.-C.

Latombe, M. Beetz. Leaving Flatland: Ecient Real-Time 3D Naviga-tion. Journal of Field Robotics (JFR), 2009.

[97] H. Sahabi, A. Basu. Analysis of error in depth perception with vergence and spatially varying sensing. 63(3):447461, Maj 1996.

[98] J. N. Sanders-Reed. Error propagation in two-sensor three-dimensional position estimation. Optical Engineering, 40(4):627636, 2001.

[99] D. Scharstein, R. Szeliski. High-accuracy stereo depth maps using structured light. Computer Vision and Pattern Recognition, 2003.

Proceedings. 2003 IEEE Computer Society Conference on, wolumen 1, strony I195. IEEE, 2003.

[100] A. Schmidt, A. Kasi«ski. The visual slam system for a hexapod robot.

Computer vision and graphics, strony 260267. Springer, 2010.

[101] A. Schmidt, K. Walas. The classication of the terrain by a hexapod robot. Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013, strony 825833. Springer, 2013.

[102] Y. Shirai. Recognition of polyhedrons with a range nder. Pattern Recognition, 4(3):243250, 1972.

[103] B. Siemi¡tkowska, A. Borkowski, R. Chojecki, M. Gnatowski, W. Mo-krzycki, J. Szklarski. Reprezentacja otoczenia robota mobilnego. Aka-demicka Ocyna Wydawnicza Exit, Warszawa, 2011.

[104] R. Sim, P. Elinas, M. Grin, J. J. Little, i in. Vision-based slam using the rao-blackwellised particle lter. IJCAI Workshop on Reasoning with Uncertainty in Robotics, wolumen 14, strony 916, 2005.

[105] P. Skrzypczy«ski. An approach to low-cost real-time visual perception in a mobile robot. Proc. Automation, strony 403412, 2004.

[106] P. Skrzypczy«ski. Post¦py autonomii robotów mobilnych: percepcja i nawigacja. Pomiary, Automatyka, Robotyka, 14:7392, 2010.

[107] P. Skrzypczy«ski. Metody analizy i redukcji niepewno±ci percepcji w systemie nawigacji robota mobilnego. Rozprawy - Politechnika Pozna«-ska. Wydawn. Politechniki Pozna«skiej, 2007.

[108] A. Stelzer, H. Hirschmüller, M. Görner. Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain. The Interna-tional Journal of Robotics Research, 31(4):381402, 2012.

[109] T. Stoyanov, A. Louloudi, H. Andreasson, A. J. Lilienthal. Comparati-ve evaluation of range sensor accuracy in indoor environments. Proce-edings of the European Conference on Mobile Robots (ECMR), strony 710, 2011.

[110] R. Szeliski. Computer Vision: Algorithms and Applications. Springer-Verlag New York, Inc., New York, NY, USA, wydanie 1st, 2010.

[111] C. Theeravithayangkura, T. Takubo, Y. Mae, T. Arai. Stair recogni-tion with laser range scanning by limb mechanism robot "asterisk".

Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics, ROBIO '09, strony 915920, Washington, DC, USA, 2009. IEEE Computer Society.

[112] M. Tomono. 3-d object map building using dense object models with sift-based recognition features. Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, strony 18851890. IE-EE, 2006.

[113] K. Walas, D. Belter. Messor-verstatile walking robot for serach and rescue missions. Journal of Automation Mobile Robotics and Intelligent Systems, 5:2834, 2011.

[114] Y.-Q. Wang, M. Sutton, X.-D. Ke, H. Schreier, P. Reu, T. Miller. On error assessment in stereo-based deformation measurements. Experi-mental mechanics, 51(4):405422, 2011.

[115] S. Wasielewski, O. Strauss. Calibration of a multisensor system laser rangender/camera. Proc. of IEEE Intelligent Vehicles '95 Symposium, strony 472477, 1995.

[116] J. I. Woodll, G. Gordon, R. Buck. Tyzx deepsea high speed stereo vision system. Computer Vision and Pattern Recognition Workshop, 2004. CVPRW'04. Conference on, strony 4145. IEEE, 2004.

[117] X.Zhu, M. Minor. Terrain feature localization for mobile robots in outdoor environments. Proc. IEEE Int. Conf. on Information and Au-tomation, strony 10741080, 2009.

[118] C. Ye, J. Borenstein. A novel lter for terrain mapping with laser rangenders. IEEE Transactions on Robotics and Automation, strony 913921, 2003.

[119] Q. Zhang, R. Pless. Extrinsic calibration of a camera and laser ran-ge nder. IEEE International Conference on Intelliran-gent Robots and Systems (IROS), strony 23012306, 2004.

[120] F. Zheng, B. Kong. Calibration of linear structured light system by planar checkerboard. International Conference on Information Acqu-isition, 2004. Proceedings, strony 344  346, 2004.

[121] T. Zieli«ska. Maszyny krocz¡ce: podstawy, projektowanie, sterowanie i wzorce biologiczne. Wydawnictwo Naukowe PWN, 2013.

[122] XSens. Mti specication. http://www.xsens.com/products/

mti-100-series/.