• Nie Znaleziono Wyników

Podsumowanie i wnioski

W dokumencie Index of /rozprawy2/11191 (Stron 122-138)

Niniejsza praca dotyczy zagadnień związanych z wytwarzaniem światło-wodowych struktur periodycznych przy wykorzystaniu lasera ekscymerowego oraz masek dyfrakcyjnych.

W pracy wykazano w jaki sposób wybrane parametry układu laserowego wpływają na parametry optyczne wytworzonych struktur. Wymagało to przeprowadzenia obliczeń numerycznych określających wpływ kluczowych parametrów fizycznych struktur na ich właściwości optyczne. Pozwoliło to na wyznaczenie wartości kluczowych parametrów fizycznych struktur takich jak długość okresu, długość struktury, zmiana współczynnika załamania wewnątrz struktury, pozwalających na uzyskanie pożądanych charakterystyk widmowych. Parametry te zostały uwzględnione w procesie projektowanie i wykonania kompletnej linii technologicznej umożliwiającej zapis siatek Bragga na włóknach światłowodowych.

Do oceny parametrów wytwarzanych struktur optycznych wprowadzono (zdefiniowano) odpowiednie wskaźniki jakościowe. Następnie wykazano możliwość wpływania na te parametry poprzez regulację parametrów układu laserowego. W tym celu zaprojektowano układ przeniesienia wiązki promieniowania UV z lasera na włókno światłowodowe umożliwiający i kontrolowanie sterowanie geometrią wiązki optycznej. Układ przeniesienia na włókno światłowodowe dostosowano do rzeczywistego rozkładu natężenia wyjściowej wiązki laserowej. Aby zapewnić optymalność warunków zapisu struktur wykonano również projekt układu dystansowania oraz obserwacji położenia włókien światłowodowych względem maski fazowej. Wymiernym efektem badań uzyskanych przy wykorzystaniu zaproponowanego układu optycznego była wykonana na potrzeby pracy analiza wpływu parametrów ułożenia geometrycznego włókna na parametry optyczne periodycznych struktur optycznych. Istotnym elementem było również określenie wpływu zamian parametrów lasera ekscymerowego (częstotliwość generowanych impulsów, energia impulsów, repetycja, czas ekspozycji włókna) na parametry optyczne wytwarzanych siatek Bragga.

Za osiągnięcia własne pracy uważam:

 zdefiniowanie wskaźników jakościowych światłowodowych siatek Bragga na podstawie wykresów ich widm,

 wykonanie obliczeń numerycznych pozwalających na określenie wpływu parametrów fizycznych struktur na ich właściwości optyczne (modelowanie przy wykorzystaniu techniki macierzy przejścia),

123

 wykonanie projektu układu przeniesienia wiązki UV z lasera na włókno światłowodowe i umożliwiającego sterowanie wiązką w środowisku CAD,

 zaproponowanie oraz realizację metody pomiaru rozkładu natężenia wiązki UV po przejściu przez układ przeniesienia

 określenie warunków nieniszczących dla elementów optycznych w zaprojektowanym układzie,

zaprojektowanie układu dystansowania włókna światłowodowego

względem maski fazowej,

określenie możliwości uzyskania powtarzalności parametrów

wytwarzanych struktur,

 określenie wpływu parametrów geometrycznych układu przeniesienia wiązki laserowej na wskaźniki jakościowe charakteryzujące struktury na podstawie ich widm,

 wyznaczenie wpływu parametrów pracy lasera ekscymerowego na zdefiniowane wskaźniki jakościowe.

124

Literatura

[1] Cheng-Ling L., Ray-Kuang L., Yee-Mou K.; Design of multichannel DWDM fiber Bragg grating filters by Lagrange multiplier constrained optimization; Optics Express, vol. 14, issue 23, pp. 11002-11011, 2006

[2] Tae-Hyun P., Jin-Soo S., Guanghao H., Woo-Sung Ch., Min-Cheol O.; Tunable channel drop filters consisting of a tilted Bragg grating and a mode sorting polymer waveguide; Optics Express Vol. 24, Issue 6, pp. 5709-5714, 2016 [3] Silva S.; Coelho L.; Frazao O; Santos J.; Malcata F.; A Review of

Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection; IEEE Sensors Journal, vol. 12, issue 1, 2012

[4] Hang Z. Y.; Xue G. Q.; Yu P. W.; Muhammad M. A.; Man H. L.; Kok S. L.; Harith A.; In-Fiber Gratings for Simultaneous Monitoring Temperature and Strain in Ultrahigh Temperature; IEEE Photonics Technology Letters; vol. 27, issue: 1, 2015

[5] Sulejmani S.; Sonnenfeld C., Geernaert, T., Luyckx, G., Van Hemelrijck, D., Margo, P.; Urbanczyk W, Chah K., Caucheteur Ch., Mégret P, Thienpont, H., Berghmans F.; Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers; Optics Express, vol. 21, issue 17, pp. 20404-20416, 2013

[6] Osuch T., Jurek T., Markowski K., Jedrzejewski K.; Simultaneous Measurement of Liquid Level and Temperature Using Tilted Fiber Bragg Grating; IEEE Sensors Journal, vol. 16, issue: 5, 2016

[7] Kisała P., Harasim D., Mroczka J.; Temperature-insensitive simultaneous rotation and displacement (bending) sensor based on tilted fiber Bragg grating; Optics Express, vol. 24, issue 26, pp. 29922-29929, 2016

[8] Kisała P., Cięszczyk S.; Method of simultaneous measurement of two direction force and temperature using FBG sensor head; Applied Optics; vol. 54, Issue 10, pp. 2677-2687, 2015

[9] Kisala P.; Measurement of the maximum value of non-uniform strain using a temperature-insensitive fibre Bragg grating method; Opto-electronics review, nr 3, vol. 21, s. 293-302, 2013

[10] Kisala P.; Generation of a zone chirp in uniform Bragg grating as a way of obtaining double functionally of a sensor; Metrology and measurement systems, nr 4, vol. 19, s. 727-738, 2012

125

[11] Cięszczyk S., Kisała P.; Inverse problem of determining periodic surface profile oscillation defects of steel materials with a fiber Bragg grating sensor; Applied Optics, vol. 55, issue 6, pp. 1412-1420, 2016

[12] Sulejmani S., Sonnenfeld C., Geernaert T., Mergo P., Makara M., Poturaj K.,

Skorupski K., Martynkien T., Satkiewicz-Barabach G., Olszewski J.,

Urbanczyk W., Caucheteur C., Chah K., Megret P., H. Terryn H., Van Roosbroeck J., Berghmans F., Thienpont H.; Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers; IEEE Photonics Technology Letters, 24 (6), art. no. 6125218, pp. 527-529, 2012

[13] Sulejmani S., Sonnenfeld C., Geernaert T., Luyckx G., Van Hemelrijck D., Mergo P., Skorupski K., Urbanczyk W., Chah K., Thienpont H., Berghmans F.; Microstructured optical fiber Bragg grating-based shear stress sensing in adhesive bonds; Proceedings of SPIE - The International Society for Optical Engineering, 9157, art. no. 91577P, 2014

[14] Tenderenda T., Murawski M., Szymanski M., Becker M., Rothhardt M., Bartelt H., Mergo P., Poturaj K., Makara M., Skorupski K., Marc P., Jaroszewicz L., Nasilowski T.; Fiber Bragg Gratings in few-mode highly birefringent microstructured optical fibers for sensing applications; Proceedings of SPIE - The International Society for Optical Engineering, 8421, art. no. 84217X, 2012

[15] Orthonos A, Kalli K. ; Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing; London, Artech House, 1999

[16] Osuch T., Markowski K., Pawel Gasior P., Jedrzejewski K.; Quasi-Uniform Fiber Bragg Gratings; Journal of Lightwave Technology, vol. 33, no. 23, 2015

[17] Hill K.O.; Aperiodic distributed-darameter waveguides for integrated optics; Applied Optics 1853 vol. 13, no. 8, 1974

[18] Osuch T., Markowski K.; Jędrzejewski K.; Fiber-Optic Strain Sensors Based on Linearly Chirped Tapered Fiber Bragg Gratings With Tailored Intrinsic Chirp; IEEE Sensors Journal, vol. 16, issue: 20, 2016

[19] Wei Z., Qin L., Li H., Wang Q., Zheng W., Zhang Y.; Fabrication of high quality chirped fiber Bragg grating by establishing strain gradient; Optical and Quantum Electronics 33: 55±65, 2001

126

[20] Bernier M., Sheng Y., Vallee R.; Ultrabroadband fiber Bragg gratings written with a highly chirped phase mask and Infrared femtosecond pulses; Opt. Express 3285, vol. 17, no. 5, 2009

[21] Chen J., Liu Q., Fan X, He Z.; High Resolution Temperature and Strain Discrimination by Using π-phase-shifted Fiber Bragg Grating on Polarization Maintaining Fiber; OSA Technical Digest, Optical Society of America, paper JTu5A.139, 2016

[22] He J., Wang Y., Liao Ch., Wang Ch., Liu S., Wang Y., Yang K., Luo Y., Peng G.; Phase-shifted gratings and negative-index gratings fabricated by 800 nm femtosecond laser overexposure; OSA Technical Digest, Optical Society of America, paper BTh3B.6, 2016

[23] Algorri J.F, García-Cámara B., Urruchi V., Sánchez-Pena J., Vergaz R.; IEEE Journal of Selected Topics in Quantum Electronics; Volume: 23, Issue: 2, March-April (przyjęty do druku), 2017

[24] Minato N., Kobayashi S., Sasaki K., Kashima M.; Inter-Band Crosstalk Reduction Using Sinc Apodization of Super-Structured Fiber Bragg Gratings for Hybrid WDM/OCDM Add/Drop Filters; IEEE Photonics Technology Letters, vol: 24, issue: 6, 2012

[25] Eggleton J., Krug P., Poladin L., Ouellette R., Long periodic superstructure Bragg gratings in optical fibres; Electron. Lett. 30(19), 1620-1621, 1994 [26] Chia-Min L., Yi-Chi L., Wen-Fung L., Ming-Yue F., Hao-Jan S., Sheau-Shong

B., Chuen-Lin T.; High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating; IEEE Sensors Journal, vol. 6, no. 3, 2006

[27] Hung-Ying C., Ming-Yue F., Wen-Fung L.; Optical fiber sensor based on second-order superstructure fiber bragg grating; Sensors and Materials, vol. 28, no. 5 421–425, 2016

[28] Kashap R.; Fiber Bragga Gratings; Ipswich, Academic Press, 1999

[29] Rumadi; Syahriar A., Astharini D., Lubis A.; The effects of apodization profile on uniform fiber Bragg gratings; 9th Conference on Telecommunication Systems Services and Applications (TSSA), 2015

[30] Khalid K., Zafrullah M., Bilal S., Mirza M.; Simulation and analysis of Gaussian apodized fiber Bragg grating strain sensor; Journal of Optical Technology, vol. 79, issue 10, pp. 667-673, 2012

127

[31] Negri L., Nied A., Kalinowski H., Paterno A., Benchmark for Peak Detection Algorithms in Fiber Bragg, Sensors 2011, 11, 3466-3482, 2011

[32] Dyer, S.; Williams, P.; Espejo, R.; Kofler, J.; Etzel, S.; Fundamental limits in fiber Bragg grating peak wavelength measurements . Proc. SPIE, 5855, 88-93, 2005

[33] Archambault J., Reekie L.; P. St. J. Russell;100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses; Electronics Letters, Vol.29 , pp. 453 – 455, 1993

[34] Makara M., Janoszczyk B., Wójcik J.; Experimental determination of effect of selected parameters of MCVD proces on the properties of formed SiO2 particles; Proceedings of SPIE, 3189, pp. 12-17, 1997

[35] Wójcik J., Rayss J., Dorosz D.; Optical fibre with from multicomponent glass core and silica cladding; Proceedings of SPIE, 4239, pp. 63-70, 2000

[36] Gruner-Nielsen L., Hubner J.; Photosensitive fiber for highly reflective Bragg gratings; Tech. Digest ofConf. on Opt. Fiber Commun. OFC'97, paper WL16, p. 178, 1997

[37] Essid M., Brebner, Albert J., Awazu K.; Difference in the behavior of oxygen deficient defects in Ge-doped silica optical fiber preforms under ArF and KrF excimer laser irradiation; Journal of Applied Phisics; vol. 84, no. 8, 1998 [38] Wójcik J., Makara m., Poturaj K., Janoszczyk B.; Influence of diffusion of water during production process of single-mode fibres on their loss; Proceedings of SPIE, 4239, pp. 44-51, 2000

[39] Lemaire P., Atkins R., Mizrahi V., Reed W.; High pressure H2 loadings as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres; Electron. Lett. 29, 1191, 1993 [40] Erdogan T., Mizrahi V., Lemaire P., Monroe D.; Decay of ultraviolet‐induced

fiber Bragg gratings J. Appl. Phys. 76, 73, 1994

[41] Liou C., Wang L., Shih M.; Characteristics of hydrogenated fiber Bragg gratings; Appl.Phys. A-64,191-197, 1997

[42] Limberger H., Ban C., Salathé R., Slattery S., Nikogosyan D.; Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber; Optics Express 5610, vol. 15, no. 9, 2007

128

[43] Slattery S., Nikogosyan D., Brambilla G.; Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: comparison with other existing methods of fabrication; J. Opt. Soc. Am. B/Vol. 22, 2005

[44] Hill K., Fujii Y., Johnson D., Kawasaki B.; Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication; Applied Physics Letters 32, 647; doi: 10.1063/1.89881, 1978

[45] Meltz G., Morey W., Glenn W.; Formation of Bragg gratings in optical fibers by a transverse holographic method; Opt. Lett.,vol. 14, pp. 823–825, 1989

[46] Zheng Y., Yu H., Guo H., Li X., Jiang D.; Analysis of the Spectrum Distortions of Weak Fiber Bragg Gratings Fabricated In-Line on a Draw Tower by the Phase Mask Technique; Journal of Lightwave Technology, vol. 33, no. 12, 2015

[47] Grobnic D., Hnatovsky C., Mihailov S.; Low loss Type II regenerative Bragg gratings made with ultrafast radiation; Optics Express Vol. 24, Issue 25, pp. 28704-28712, 2016

[48] Voigtländer Ch., Krämer R., Goebel T., Richter D., Nolte S.; Variable wavefront tuning with a SLM for tailored femtosecond fiber Bragg grating inscription; Optics Letters 41(1) 17-20, 2016

[49] Dix C., Mckee P.; High accuracy electron-beam grating lithography for optical and optoelectronic devices; J. Vac. Sci. Technol. 10(6), 2667, 1992 [50] Madou M.; Fundamentals of Microfabrication: The Science of

Miniatu-rization; CRC Press ISBN 0-8493-0826-7, 2002

[51] Okai M., Tsuji S., Chinone N., Harada T.; Novel method to fabricate corrugation for a λ/4shifted distributed feedback laser using a grating photomask; Applied Physics Letters 55, 415 doi: 10.1063/1.101882, 1989 [52] Hill K., Malo B., Bilodeau F., Johnson D., Albert J.; Bragg gratings fabricated

in monomode photosensitive optical fiber by UV exposure through a phase mask; Applied Physics Letters 62, 1035-1037, 1993

[53] Gamet E., Tishchenko A., Parriaux O.; Cancellation of the zeroth order in a phase mask by mode interplay in a high index contrast binary grating; Appl. Opt, Vol. 46, No. 27, 2007

[54] Sun W., Lv P., Zhou C., Wu J., Wang S.; Modal analysis of the 0th order nulled phase masks; Chinese Optics Letters col 11(7), 070502, 2013

129

[55] Wang B., Cancellation of the zeroth order by a low-contrast grating; Nature Scientific Reports 5:16501 DOI: 10.1038/srep16501, 2015

[56] Osuch T., Kowalik A., Jaroszewicz Z., Sarzyński M.; Fabrication of phase masks with variable diffraction efficiency using HEBS glass technology; Applied Optics Vol. 50, No. 31, 2011

[57] Osuch T., Jaroszewicz Z.; Numerical analysis of apodized fiber Bragg gratings formation using phase mask with variable diffraction efficiency; Optics Communications 284, pp. 567–572, 2011

[58] Mills J., Hillman C., Blott B., Brocklesby W. ; Imaging of free-space interference patterns used to manufacture fiber Bragg gratings; App. Opt. Vol. 39, No. 33, 2000

[59] Osuch T., Jaroszewicz Z.; Analysis of the Talbot effect in apodized diffractive optical elements; Photonics Letters of Poland, vol. 1 (4), 190-192, doi: 10.4302/plp.2009.4.16, 2009

[60] Tenderenda, T., Murawski, M., Szymanski, M., Becker, M., Rothhardt, M., Bartelt, H., Mergo, P., Poturaj, K., Makara, M., Skorupski, K., Marc, P., Jaroszewicz, L.R.,Nasilowski, T. Fibre bragg gratings written in highly birefringent microstructured fiber as very sensitive strain sensors Proceedings of SPIE - The International Society for Optical Engineering, 8426, art. no. 84260D, 2012

[61] Tenderenda, T., Murawski, M., Szymanski, M., Szostkiewicz, L., Becker, M., Rothhardt, M., Bartelt, H., Mergo, P., Skorupski, K., Marc, P., Jaroszewicz, L.R., Nasilowski, T.; Fiber Bragg grating inscription in few-mode highly birefringent microstructured fiber; Optics Letters, 38 (13), pp. 2224-2226.; 2013

[62] Kashyap R.; Assessment of tuning the wavelength of chirped and unchirped fibre Bragg grating with single phase-masks; Elect. lett. Vol. 34 No. 21, 1998

[63] Chehura E., James S., Tatam R.; A simple method for fabricating phase-shifted fibre Bragg gratings with flexible choice of centre wavelength; Proc. of SPIE Vol. 7503 750379, doi: 10.1117/12.83546, 2009

[64] Geernaert T., Becker M., Mergo P., Nasilowski T., Wojcik J., Urbanczyk, Rothhardt M., Chojetzki C., Bartelt H., Berghmans F., Thienpont H.; UV bragg grating inscription in germanium-doped photonic crystal fibers; Proceedings of SPIE, 7714, art. no. 77140S, 2010

130

[65] Becker M., Elsmann T., Latka I., Rothhardt M., Bartelt H.; Chirped Phase Mask Interferometer for Fiber Bragg Grating Array Inscription; Journal of Lightwave Technology, vol. 33, no. 10, doi 10.1109/JLT.2015.2394299, 2015

[66] Liao Ch., Wang Y., Wang Y., Zhu F.; A new method to fabricate phase-shifted Fiber Bragg gratings by femtosecond laser point-by-point inscription; OSA Technial Digest, paper W4A.36, Optical Society of America, 2016

[67] Malo B., Hill K., Bilodeau F., Johnson D., Albert J.; Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques; Electron. Lett. 29, 1668-1669; 1993

[68] Williams R., Voigtländer Ch., Marshall G., Tünnermann A., Nolte S., Steel M., Withford M.; Point-by-point inscription of apodized fiber Bragg gratings; Optics Letters vol. 36, issue 15, pp. 2988-2990, doi:10.1364/OL.36.002988; 2011

[69] Lai Y., Zhou K., Sugden K., Bennion I.; Point-by-point inscription of first-order fiber Bragg grating for C-band applications; Optics Express, vol. 15, no. 26, 18318; 2007

[70] Lazaro J., Quintela A., Tarnowski K., Wojcik J., Urbanczyk W., Lopez-Higuera J.; Experimental characterization of the spectral effective index dependence of index-guided photonic crystal fibers; Measurement Science and Technology, 21 (5), art. no. 055111; 2010

[71] Martinez A., Khrushchev I., Bennion I., Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser; Electron. Lett. 41, 176-178; 2005

[72] Marshall G., Williams R., Jovanovic N., Steel M. Withford M.; Point-by-point written fiber-Bragg gratings and their application in complex grating designs;Optics Express, vol. 18, no. 19 19844, 2010

[73] Morana A., Marin E., Girard S., Marcandella C., Paillet P., Boukenter A., Ouerdane Y.; Dose Rate Effect Comparison on the Radiation Response of Type I Fiber Bragg Gratings Written With UV cw Laser; IEEE Transactions on Nuclear Science, vol. 63, issue 4, 2016

[74] Slattery S., Nikogosyan D., Brambilla G.; Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: comparison with other existing methods of fabrication; J. Opt. Soc. Am. B/Vol. 22, 2005

131

[75] Liao Ch., Li Y., Wang D., Sun T., Grattan K.; Morphology and Thermal Stability of Fiber Bragg Gratings for Sensor Applications Written in H2-Free and H2-Loaded Fibers by Femtosecond Laser; IEEE Sensors Journal, Vol. 10, No. 11, 2010

[76] Mihailov S., Gower M.; Periodic cladding surface structures induced when recording fiber Bragg reflectors with a single pulse from a KrF excimer laser; Applied Physics Letters 65, 2639; doi: 10.1063/1.112588, 1994 [77] Li Y., Yang M., Wang D., Lu J., Sun T, Grattann K.; Fiber Bragg gratings with

enhanced thermal stability by residual stress relaxation; Optic Express, Volume 17, Issue 22, 2009

[78] Liu Y., Williams J.A.R., Zhang L., Bennion I.; Abnormal spectral evolution of fibre Bragg gratings in hydrogenated fibres, Opt. Lett., 27, pp. 586–588, 2002

[79] Canning J., Deyerl H., Sorensen H., Kristensen M.; Ultraviolet-induced birefringence in hydrogen-loaded optical fiber; Journal of Applied Physics 97, 053104, doi: 10.1063/1.1856215, 2005

[80] Canning J.;Fibre gratings and devices for sensors and lasers; Laser & Photon. Rev. 2, No. 4, 275–289 / DOI 10.1002/lpor.200810010, 2008

[81] Simpson A.,Kalli K., Zhou K., Zhang L., Bennion I.; Formation of type IA fibre Bragg gratings in germanosilicate optical fibre; Elect. Lett. Vol. 40 No. 3, 2004

[82] Prakash O., Kumar J., Mahakud R., Agrawal S., Dixit S., Nakhe S; Enhanced temperature 800 stability of type IIa FBG written by 255 nm beam, IEEE Photonics Technology Letters, vol. 26, issue: 1, 2014

[83] Ran Y., Feng F., Liang Y., Jin L., Guan B.; Type IIa Bragg grating based ultra-short DBR fiber laser with high temperature resistance; Optics Letters Vol. 40, Issue 24, pp. 5706-5709, doi: 10.1364/OL.40.005706, 2015

[84] Kalli K., Simpson G., Dobb H., Komodromos M., Webb D., Bennion I.; Annealing and temperature coefficient study of type IA fibre Bragg gratings inscribed under strain and no strain - implications to optical fibre component reliability; Proc. of SPIE Vol. 6193, 61930L, 2006

[85] P. Kisala; Application of inverse analysis to determine the strain distribution with optoelectronic method insensitive to temperature changes; Applied Optics, nr 16, vol. 51, s. 3599-3604, 2012

132

[86] Ciȩszczyk, S., Klimek, J., Skorupski, K., Kisała, P.; A study and modeling of Fabry-Perot cavities with rare earth doped fiber; Proceedings of SPIE - The International Society for Optical Engineering, 9228, art. no. 92280X, 2014 [87] Julich F., Roths J.; Determination of the Effective Refractive Index of

Various Single Mode Fibres for Fibre Bragg Grating Sensor Applications; Sensor+test conference 2009 - Opto Proceedings, 2009

[88] Malitson I.; Interspecimen Comparison of the Refractive Index of Fused Silica; J. Opt. Soc. Am. 55, 1205-1208, 1965

[89] Chun-Jen W., Ken-Yuh H., Yung-Fu C.; Exploiting the image of the surface reflectivity to measure refractive index profiling for various optical fibers, Optics Express Vol. 23, Issue 9, pp. 11755-11762, 2015

[90] Tateda M.; Single-mode-fiber refractive-index profile measurement by reflection method; Applied Optics, vol. 17, No. 3, 1978

[91] Coherent Bragg Starr M excimer laser optimized for FBG writing – catalog https://www.coherent.com/assets/pdf/COHR_BraggStarM_DS_1016_1.pd f#page=1

[92] Mihailov S. J., Gower M. C.; Periodic cladding surface structures induced when recording fiber Bragg reflectors with a single pulse from a KrF excimer laser; Applied Physics Letters 65, 2639, doi: 10.1063/1.112588, 1994

[93] Malo B., Johnson D., Bilodeau F., Albert J., Hill K.; Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations; Opt. Lett. 18, 1277, 1993

[94] Coherent Bragg Star M drawing, Excimer Lasers with Optimized Spatial Coherence; https://www.coherent.com/lasers/laser/braggstar-m

[95] Fused silica cylindrical lens, UVFS Mounted Plano-Convex Round; https://www.thorlabs.de/thorproduct.cfm?partnumber=LJ4709RM

[96] Kafka K., Talisa N., Tempea G., Austin D., Neacsu C., Chowdhury E.; Few-cycle pulse laser induced damage threshold determination of ultra-broadband optics; Optics Express, vol. 24, issue 25, pp. 28858-28868, 2016 [97]. Wood R.; Laser-Induced Damage of Optical Materials, August 1, CRC Press,

2003

[98] Test methods for laser-induced damage threshold http://www.iso.org/ iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=43001

133

[99] Deng W., Jin Ch.; Laser induced damage threshold testing of DUV optical substrates; Chinise Opt. Lett., S10702, 2013

[100] Said A. A., Xia T., Dogariu A., Hagan D. J., Soileau M. J., Van Stryland E. W.,Mohebi M.; Measurement of the optical damage threshold in fused quartz; Applied Optics Vol. 34, Issue 18, pp. 3374-3376, 1995

[101] Carr C. W., Radousky H. B.,Demos S. G.; Wavelength Dependence of Laser-Induced Damage: Determining the Damage Initiation Mechanisms; Phys. Rev. Lett. 91, 127402, 2003

[102] Transmission High Power Gratings damage threshold http://ibsen.com/ products/transmission-gratings/high-power-gratings/

[103] Photosensitive Single Mode GF1B Fiber https://www.thorlabs.de/ drawings/45c3fc5f7883ddfa-0DDB8507-5056-2306-D951C3828BAA7DF3/ GF1B-SpecSheet.pdf

[104] Photosensitive Single Mode GF1 Fiber https://www.thorlabs.de/ drawings/45c3fc5f7883ddfa-0DDB8507-5056-2306-D951C3828BAA7DF3/ GF1-SpecSheet.pdf

[105] Kok-Sing L., Hang-Zhou Y., Wu-Yi Ch., Yew-Ken Ch., Chin-Hong L., Norfizah M., Harith A.; Axial contraction in etched optical fiber due to internal stress reduction; Optics Express Vol. 21, Issue 3, pp. 2551-2562, doi: 10.1364/OE.21.002551, 2013

[106] Rollinson C.; Microscopic and Spectral Characterisation of Optical Fibre Bragg Gratings;, PhD thesis, Victoria University Melbourne, 2012

[107] Kannan S., Guo J., Lemaire P.; Thermal Stability Analysis of UV-Induced Fiber Bragg Gratings; Journal of Lightwave Technology, vol. 15, NO. 8, 1997

[108] Lima M., Nogueira R., Silva J., Teixeira A., Andre P., Rocha J., Kalinowski H., Pinto J.; Comparison of the temperature dependence of different types of Bragg gratings; Microwave and Optical Technology Letters, vol. 45, Issue 4, pp. 305–307, 2005

[109] Tenderenda T., Murawski M., Szymanski, Szostkiewicz L., Becker M., Rothhardt M., Bartelt H., Mergo P., Poturaj K., Makara M., Skorupski K., Marc P., Jaroszewicz L., Nasilowski T.; Longitudinal strain sensing with photonic crystal fibers and fiber Bragg gratings; Proceedings of SPIE - The International Society for Optical Engineering, 8982, art. no. 898219, 2014

134

[110] Kisała P., Pawlik E., Wójcik J., Wójcik W.; Strain sensors based on fiber Bragg gratings; Proceedings of SPIE, 5576, art. no. 46, pp. 261-269, 2004 [111] Othonos A., Lee X.; Novel and Improved Methods of Writing Bragg

Gratings with Phase Masks; IEEE Photonics Technology Letters, vol. 7, no. 10, 1995

[112] Cheng R., Xia L., Sima Ch., Ran Y., Rohollahnejad J., Zhou J., Wen Y., Yu C.; Ultra-short FBG based distributed sensing using shifted optical Gaussian filters and microwave-network analysis; Optics Express, vol. 24, issue 3, pp. 2466-2484, 2016

135

Streszczenie

Niniejsza praca dotyczy zagadnień związanych z technologią wytwarzania światłowodowych siatek Bragga. W szczególności podjęto w niej zadanie zaprojektowania oraz realizacji kompletnego układu do zapisu struktur periodycznych wytwarzanych we włóknach światłowodowych. Do realizacji układu wykorzystano metodę maski fazowej, w której głównym elementem jest laser ekscymerowy o długości fali 248nm.

W pierwszej części pracy zawarto teoretyczne podstawy światłowodowych siatek Bragga w tym podział struktur periodycznych oraz ich charakterystykę. Następnie przedstawiono zjawisko fotoczułości włókien światłowodowych ze szkła kwarcowego domieszkowanych tlenkiem germanu. Kolejno podjęty został

W dokumencie Index of /rozprawy2/11191 (Stron 122-138)