• Nie Znaleziono Wyników

3. Wyniki i dyskusja 35

3.3. Porównanie z modelem TDGC-LSER

Ostatnim krokiem podczas opracowywania nowego modelu było porównanie zdolno´sci korelacyjnych/predykcyjnych z modelem TDGC-LSER (ang. temperature-dependent group contribution LSER opublikowanym przez Muteleta i współpracowników [68]. Do porów-nania wybrano ten a nie inny model, poniewa˙z oparty jest on na idei udziałów grupowych i metodologii LSER. Ponadto opisuje stosunkowo szeroki zakres struktur (szczególnie je´sli chodzi o kationy) i dlatego cechuje si˛e do´s´c dobrymi mo˙zliwo´sciami predykcyjnymi.

Zgodnie z zało˙zeniami TDGC-LSER, równanie (2.1) przedstawia si˛e w formie uogólnio-nej na udziały grupowe i zale˙zno´s´c temperaturow ˛a:

logKL= C0+C1

T (3.2)

gdzie C0jest pewn ˛a stał ˛a, natomiast C1jest typowym wyra˙zeniem typy LSER

C1= c + eE + sS + aA + bB + lL (3.3)

Współczynnik podziału KL bardzo łatwo przeliczy´c na γ12, zgodnie z wzorem:

γ12= RT

KLP20V1 (3.4)

gdzie R stał ˛a gazow ˛a, P20 jest pr˛e˙zno´sci ˛a pary nasyconej solutu, a V1 obj˛eto´sci ˛a molow ˛a cieczy jonowej. Mutelet i współpracownicy zaproponowali, ˙zeby współczynniki c, e, s, a, b, l(charakterystyczne dla cieczy jonowych) wyrazi´c jako sumy czynników pochodz ˛acych od ró˙znego rodzaju grup funkcyjnych, tzn.:

x=

i

nixi x∈ {c, e, s, a, b, l} (3.5)

gdzie ni oznacza liczb˛e wyst ˛apie´n grupy i w strukturze kationu lub anionu, a xi jest od-powiednim udziałem tej˙ze grupy do współczynnika x. Autorzy Ci zaproponowali podział kationów i anionów ł ˛acznie na 21 grup, w tym 12 opisuj ˛acych kationy oraz 9 opisuj ˛acych aniony. Aniony zostały potraktowane jako odr˛ebne grupy funkcyjne. Współczynniki xi wy-znaczono metod ˛a regresji liniowej na podstawie bazy danych zawieraj ˛acej 6990 punktów eksperymentalnych.

Do porównania wybrano kilka rodzin cieczy jonowych reprezentowanych przez oba mo-dele. Wyniki oblicze´n przedstawia Rysunek 3.6. Jako miar˛e dokładno´sci przyj˛eto AARD,

Im Py Pyr Pip N P 0

20 40 60 80 100 120

AARD(γ 12

)

GC LSER ANN TDGC LSER

~ 1250 %

~ 1250 %

Rysunek 3.6: Porównanie AARD, równanie (3.1a), γ12dla ró˙znych rodzin cieczy jonowych obliczonych za pomoc ˛a modelu opracowanego w tej pracy opracowanego oraz obliczonych za pomoc ˛a modelu TDGC-LSER [68]. Klucz rozwini˛e´c skrótów został podany w stopce tabeli 2.1

.

równanie (3.1a). Jak łatwo mo˙zna zauwa˙zy´c, w przypadku wszystkich rodzin cieczy jono-wych metoda opracowana na potrzeby tej pracy pozwala na o wiele bardziej dokładny opis danych γ12.

Metodologia zaproponowana przez Muteleta i współpracowników zawodzi szczególne w przypadku amoniowych i fosfoniowych cieczy jonowych. Mo˙ze by´c to spowodowane nie-wystarczaj ˛ac ˛a liczb ˛a danych eksperymentalnych u˙zytych podczas tworzenia modelu (zaled-wie 3 ciecze amoniowe i tylko 1 fosfoniowa).

Ostateczne warto´sci AARD uwzgl˛edniaj ˛ace wszystkie rodziny cieczy jonowych wynio-sło 8.2% w przypadku modelu opracowanej w ramach tej pracy oraz 112% w przypadku modelu TDGC-LSER. Po wykluczeniu z porównania amoniowych cieczy jonowych AARD modelu Muteleta jest dalej istotnie wy˙zsze, bo wynosi ok. 35%.

46

Rozdział 4

Podsumowanie i wnioski

W ramach niniejszej pracy in˙zynierskiej pokazano, ˙ze podej´scie ł ˛acz ˛ace ide˛e udzia-łów grupowych, metod˛e LSER oraz sztuczne sieci neuronowe daje w rezultacie interesu-j ˛ace narz˛edzie, pozwalainteresu-j ˛ace na odtworzenie zło˙zonych zale˙zno´sci pomi˛edzy dowoln ˛a liczb ˛a zmiennych wej´sciowych i wyj´sciowych, pod warunkiem dost˛epu do du˙zej ilo´sci danych.

W szczególno´sci zaproponowano now ˛a korelacj˛e empiryczn ˛a umo˙zliwiaj ˛ac ˛a przewidywa-nie γ12 w układach {ciecz jonowa + zwi ˛azek molekularny}. Baza danych u˙zyta w procesie opracowywania modelu stanowi najobszerniejsze tego typu zestawienie, spo´sród innych opi-sanych w literaturze.

W procesie uczenia sieci wykorzystano blisko 22500 punktów eksperymentalnych. Wia-rygodno´s´c i rzetelno´s´c opracowanego modelu zostały potwierdzone poprzez wewn˛etrzn ˛a jak i zewn˛etrzn ˛a walidacj˛e (odpowiednio zbiór waliduj ˛acy i testuj ˛acy). Wielko´s´c AARD dla wy-ników uzyskanych za pomoc ˛a obszernej bazy danych opisanej w pracy jest ni˙zsza ni˙z 10%, co nale˙zy potraktowa´c jako wynik wysoce zadowalaj ˛acy. Dodatkowo, wykazano równie˙z zdecydowan ˛a popraw˛e wyników oblicze´n γ12w porównaniu z najlepszym modelem opubli-kowanym w literaturze.

Na koniec nale˙zy zaznaczy´c, ˙ze nadal istniej ˛a pewne ograniczenia zaproponowanej me-tody. Ograniczenia te wynikaj ˛a z pewnych charakterystyk samych sztucznych sieci neurono-wych oraz procesu uczenia. Ze wzgl˛edu na normalizacj˛e danych wej´scioneurono-wych i wyj´scioneurono-wych do zakresu [−1, 1], nie jest zaleca si˛e stosowania opisanego modelu do ekstrapolacji. Innymi słowy, zaleca si˛e, aby do rezultatów przewidywania dla danych wej´sciowych spoza zakre-su danych zastosowanych w procesie uczenia sieci podchodzi´c z pewn ˛a doz ˛a nieufno´sci.

Niemniej jednak, opracowany model obejmuje szeroki zakres temperatury (243–413 K), jak równie˙z pozostałych parametrów wej´sciowych. Dla typowych zastosowa´n układów {ciecz jonowa + solut} w przemy´sle chemicznym, zakresy te powinny by´c wystarczaj ˛ace.

48

Bibliografia

[1] Anastas, P. T.; Warner, J. P., Green Chemistry: Theory and Practise, Oxford University Press, 1998.

[2] Earle, M. J.; Seddon, K. R., Ionic Liquids. Green Solvents for the Future, Pure Appl.

Chem. 2000, 72, 1391–1398.

[3] Krossing, I.; Slattery, J. M.; Daugenet, C.; Dyson, P. J.; Oleinikova, A.; Weingärtner, H., Why Are Ionic Liquid? A Simple Explanation Based on Lattice and Solvation Energy, J. Am. Chem. Soc. 2006, 128, 13427–13434.

[4] Fremantle, M., An Introduction to Ionic Liquids, RSC Publishing, 2010.

[5] Plechkova, N. V.; Seddon, K. R., Applications of ionic liquids in the chemical industry, Chem. Soc. Rev. 2010, 37, 123–150.

[6] Ufnalski, W., Wprowadzenie do termodynamiki chemicznej, Oficyna Wydawdnicza PW, 2008.

[7] Gow, A. S., Calculation of Vapor-Liquid Equilibria from Infinite-Dilution Excess En-thalpy Data Using the Wilson or NRTL Equation, Ind. Eng. Chem. Res. 1993, 32, 3150–3161.

[8] Meindersma, G. W.; de Haan, A. B., Conceptual process design for aromatic/aliphatic separation with ionic liquids, Chem. Eng. R. and D. 2008, 86, 745–752.

[9] Francisco, M.; Arce, A.; Soto, A., Ionic liquids on desulfurization of fuel oils, Fluid Phase Equilib. 2010, 294, 39–48.

[10] Davis, S. E.; Morton, S. A., Investigation of Ionic Liquids for the Separation of Buta-nol and Water, Sep. Sci. TechButa-nol. 2008, 43, 2460–2472.

[11] Sandler, S. I., Infinite Dilution Activity Coefficients in Chemical, Environmental and Biochemical Engineering, Fluid Phase Equilib. 1996, 116, 343–353.

[12] Everett, D. H., Effect of Gas Imperfection on GLC Measurements: A Refined Method for Determining Activity Coefficients and Second Viral Coefficients, Trans. Faraday Soc 1965, 61, 1637–1639.

[13] Cruickshank, A. J. B.; Gainey, B. W.; Hicks, C. P.; Letcher, T. M.; Moody, R. W.;

Young, C. L., Gas–Liquid Chromatographic Determination of Cross-Term Second Vi-ral Coefficients Using Glycerol. Benzene + Nitrogen and Benzene + Carbon Dioxide at 50oC, Trans. Faraday Soc 1969, 65, 1014–1031.

[14] Doma´nska, U.; Marciniak, A., Activity Coefficients at Infinite Dilution Measurements for Organic Solutes and Water in the Ionic Liquid 1-Ethyl-3-Methylimidazolium Tri-fluoroacetate, J. Phys. Chem. B 2007, 111, 11984–11988.

[15] Doma´nska, U.; Marciniak, A., Activity Coefficients at Infinite Dilution Measurements for Organic Solutes and Water in the Ionic Liquid 1-Butyl-3-Methylimidazolium Tri-fluoromethanesulfonate, J. Phys. Chem. B 2008, 112, 11100–11105.

[16] Doma´nska, U.; Marciniak, A., Measurements of Activity Coefficients at Infinite Dilu-tion of Aromatic and Aliphatic Hydrocarbons, Alcohols, and Water in the New Ionic Liquid [EMIM][SCN] Using GLC, J. Chem. Thermodyn. 2008, 40, 860–866.

[17] Doma´nska, U.; Laskowska, M., Measurements of Activity Coefficients at Infinite Di-lution of Aliphatic and Aromatic Hydrocarbons, Alcohols, Thiophene, Tetrahydrofu-ran, MTBE, and Water in Ionic Liquid [BMIM][SCN] Using GLC, J. Chem. Thermo-dyn. 2009, 41, 645–650.

[18] Doma´nska, U.; Marciniak, A., Activity Coefficients at Infinite Dilution Me-asurements for Organic Solutes and Water in the 1-Hexyloxymethyl-3-Methyl-Imidazolium and 1,3-Dihexyloxymethyl-1-Hexyloxymethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)-Imide Ionic Liquids-the Cation Influence, Fluid Phase Equilib. 2009, 286, 154–161.

[19] Doma´nska, U.; Marciniak, A., Activity Coefficients at Infinite Dilution Measurements for Organic Solutes and Water in the Ionic Liquid 4-Methyl-N-Butyl-Pyridinium Bis(trifluoromethylsulfonyl)-Imide, J. Chem. Thermodyn. 2009, 41, 1350–1355.

[20] Doma´nska, U.; Marciniak, A., Activity Coefficients at Infinite Dilution Measu-rements for Organic Solutes and Water in the Ionic Liquid Triethylsulphonium Bis(trifluoromethylsulfonyl)imide, J. Chem. Thermodyn. 2009, 41, 754–758.

[21] Doma´nska, U.; Redhi, G. G.; Marciniak, A., Activity Coefficients at Infinite Dilu-tion Measurements for Organic Solutes and Water in the Ionic Liquid 1-Butyl-1-Methylpyrrolidinium Trifluoromethanesulfonate Using GLC, Fluid Phase Equilib.

2009, 278, 97–102.

[22] Doma´nska, U.; Marciniak, A., Physicochemical Properties and Activity Coefficients at Infinite Dilution for Organic Solutes and Water in the Ionic Liquid 1-Decyl-3-Methylimidazolium Tetracyanoborate, J. Phys. Chem. B 2010, 114, 16542–16547.

[23] Doma´nska, U.; Królikowska, M., Measurements of Activity Coefficients at Infinite Dilution in Solvent Mixtures with Thiocyanate-Based Ionic Liquids Using GLC Tech-nique, J. Phys. Chem. B 2010, 114, 8460–8466.

50

[24] Doma´nska, U.; Królikowski, M., Determination of Activity Coefficients at Infinite Dilution of 35 Solutes in the Ionic Liquid, 1-Butyl-3-Methylimidazolium Tosylate, Using Gas– Liquid Chromatography, J. Chem. Eng. Data 2010, 55, 4817–4822.

[25] Doma´nska, U.; Paduszy´nski, K., Gas–Liquid Chromatography Measurements of Ac-tivity Coefficients at Infinite Dilution of Various Organic Solutes and Water in Tri-Iso-Butylmethylphosphonium Tosylate Ionic Liquid, J. Chem. Thermodyn. 2010, 42, 707–711.

[26] Doma´nska, U.; Marciniak, A.; Królikowska, M.; Arasimowicz, M., Activity Coef-ficients at Infinite Dilution Measurements for Organic Solutes and Water in the Io-nic Liquid 1-Hexyl-3-Methylimidazolium Thiocyanate, J. Chem. Eng. Data 2010, 55, 2532–2536.

[27] Doma´nska, U.; Paduszy´nski, K., Measurements of Activity Coefficients at In-finite Dilution of Organic Solutes and Water in 1-Propyl-1-Methylpiperidinium Bis(trifluoromethyl)sulfonylimide Ionic Liquid Using G.L.C., J. Chem. Thermodyn.

2010, 42, 1361–1366.

[28] Doma´nska, U.; Królikowski, M.; Acree, W. E., Thermodynamics and Activity Coef-ficients at Infinite Dilution Measurements for Organic Solutes and Water in the Ionic Liquid 1-Butyl-1-Methylpyrrolidinium Tetracyanoborate, J. Chem. Thermodyn. 2011, 43, 1810–1817.

[29] Doma´nska, U.; Królikowski, M., Thermodynamics and Activity Coefficients at Infini-te Dilution Measurements for Organic SoluInfini-tes and WaInfini-ter in the Ionic Liquid N-Hexyl-3-methylpyridinium Tosylate, J. Phys. Chem. B 2011, 115, 7397–7404.

[30] Doma´nska, U.; Królikowska, M.; Acree, W. E.; Baker, G. A., Activity Coefficients at Infinite Dilution Measurements for Organic Solutes and Water in the Ionic Liquid 1-Ethyl-3-Methylimidazolium Tetracyanoborate, J. Chem. Thermodyn. 2011, 43, 1050–

1057.

[31] Doma´nska, U.; Zawadzki, M.; Królikowska, M.; Marc Tshibangu, M.; Ramjugernath, D.; Letcher, T. M., Measurements of Activity Coefficients at Infinite Dilution of Or-ganic Compounds and Water in Isoquinolinium-Based Ionic Liquid [C8iQuin][NTf2] Using GLC, J. Chem. Thermodyn. 2011, 43, 499–504.

[32] Doma´nska, U.; Królikowska, M., Measurements of Activity Coefficients at In-finite Dilution for Organic Solutes and Water in the Ionic Liquid 1-Butyl-1-Methylpiperidinium Thiocyanate, J. Chem. Eng. Data 2011, 56, 124–129.

[33] Doma´nska, U.; Lukoshko, E. V., Measurements of Activity Coefficients at In-finite Dilution for Organic Solutes and Water in the Ionic Liquid 1-Butyl-1-Methylpyrrolidinium Tricyanomethanide, J. Chem. Thermodyn. 2013, 66, 144–150.

[34] Doma´nska, U.; Królikowski, M.; Acree, W. E.; Baker, G. A., Physicochemical Pro-perties and Activity Coefficients at Infinite Dilution for Organic Solutes and Water in a Novel Bicyclic Guanidinium Superbase–Derived Protic Ionic Liquid, J. Chem.

Thermodyn. 2013, 58, 62–69.

[35] Doma´nska, U.; Lukoshko, E. V., Thermodynamics and Activity Coefficients at Infinite Dilution for Organic Solutes and Water in the Ionic Liquid 1-Butyl-1-Methylmorpholinium Tricyanomethanide, J. Chem. Thermodyn. 2014, 68, 53–59.

[36] Doma´nska, U.; Papis, P.; Szydłowski, J., Thermodynamics and Activity Coefficients at Infinite Dilution for Organic Solutes, Water and Diols in the Ionic Liquid Choline Bis(trifluoromethylsulfonyl)imide, J. Chem. Thermodyn. 2014, 77, 63–70.

[37] Mutelet, F.; Butet, V.; Jaubert, J.-N., Application of Inverse Gas Chromatography and Regular Solution Theory for Characterization of Ionic Liquids, Ind. Eng. Chem. Res.

2005, 44, 4120–4127.

[38] Mutelet, F.; Jaubert, J.-N., Accurate Measurements of Thermodynamic Properties of Solutes in Ionic Liquids Using Inverse Gas Chromatography, J. Chromatogr. A 2006, 1102, 256–267.

[39] Mutelet, F.; Jaubert, J.-N.; Rogalski, M.; Boukherissa, M.; Dicko, A., Thermodynamic Properties of Mixtures Containing Ionic Liquids: Activity Coefficients at Infinite Dilu-tion of Organic Compounds in 1-Propyl Boronic Acid-3-Alkylimidazolium Bromide and 1-Propenyl-3-Alkylimidazolium Bromide Using Inverse Gas Chromatography, J.

Chem. Eng. Data 2006, 51, 1274–1279.

[40] Mutelet, F.; Jaubert, J.-N., Measurement of Activity Coefficients at Infinite Dilution in 1-Hexadecyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquid, J. Chem. Ther-modyn. 2007, 39, 1144–1150.

[41] Mutelet, F.; Jaubert, J.-N.; Rogalski, M.; Harmand, J.; Sindt, M.; Mieloszyn-ski, J.-L., Activity Coefficients at Infinite Dilution of Organic Compounds in 1-(Meth)acryloyloxyalkyl-3-Methylimidazolium Bromide Using Inverse Gas Chroma-tography, J. Phys. Chem. B 2008, 112, 3773–3785.

[42] Mutelet, F.; Hassan, E.-S. R. E.; Stephens, T. W.; Acree, W. E.; Baker, G. A., Activity Coefficients at Infinite Dilution for Organic Solutes Dissolved in Three 1-Alkyl-1-Methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquids Bearing Short Linear Alkyl Side Chains of Three to Five Carbons, J. Chem. Eng. Data 2013, 58, 2210–2218.

[43] Mutelet, F.; Alonso, D.; Stephens, T. W.; Acree, W. E.; Baker, G. A., Infinite Dilution Activity Coefficients of Solutes Dissolved in Two Trihexyl(tetradecyl)phosphonium Ionic Liquids, J. Chem. Eng. Data 2014, 59, 1877–1885.

52

[44] Heintz, A.; Kulikov, D. V.; Verevkin, S. P., Thermodynamic Properties of Mixtures Containing Ionic Liquids. 1. Activity Coefficients at Infinite Dilution of Alkanes, Al-kenes, and Alkylbenzenes in 4-Methyl-N-Butylpyridinium Tetrafluoroborate Using Gas–Liquid Chromatography, J. Chem. Eng. Data 2001, 46, 1526–1529.

[45] Heintz, A.; Kulikov, D. V.; Verevkin, S. P., Thermodynamic Properties of Mixtu-res Containing Ionic Liquids. 2. Activity Coefficients at Infinite Dilution of Hy-drocarbons and Polar Solutes in 1-Methyl-3-Ethyl-Imidazolium Bis(trifluoromethyl-Sulfonyl) Amide and in 1,2-Dimethyl-3-Ethyl-Imidazolium Bis(Trifluoromethyl-Sulfonyl) Amide Using Gas–Liquid Chromatography, J. Chem. Eng. Data 2002, 47, 894–899.

[46] Heintz, A.; Kulikov, D. V.; Verevkin, S. P., Thermodynamic Properties of Mixtures Containing Ionic Liquids. Activity Coefficients at Infinite Dilution of Polar Solutes in 4-Methyl-N-Butyl-Pyridinium Tetrafluoroborate Using Gas–Liquid Chromatography, J. Chem. Thermodyn. 2002, 34, 1341–1347.

[47] Heintz, A.; Verevkin, S. P., Thermodynamic Properties of Mixtures Containing Ionic Liquids. 6. Activity Coefficients at Infinite Dilution of Hydrocarbons, Alcohols, Es-ters, and Aldehydes in 1-Methyl-3-Octyl-Imidazolium Tetrafluoroborate Using Gas-Liquid Chromatography, J. Chem. Eng. Data 2005, 50, 1515–1519.

[48] Heintz, A.; Vasiltsova, T. V.; Safarov, J.; Bich, E.; Verevkin, S. P., Thermodyna-mic Properties of Mixtures Containing Ionic Liquids. 9. Activity Coefficients at Infinite Dilution of Hydrocarbons, Alcohols, Esters, and Aldehydes in Trimethyl-Butylammonium Bis(trifluoromethylsulfonyl) Imide Using Gas-Liquid Chromatogra-phy and Static Method, J. Chem. Eng. Data 2006, 51, 648–655.

[49] Heintz, A.; Verevkin, S. P.; Ondo, D., Thermodynamic Properties of Mixtu-res Containing Ionic Liquids. 8. Activity Coefficients at Infinite Dilution of Hydrocarbons, Alcohols, Esters, and Aldehydes in 1-Hexyl-3-Methylimidazolium Bis(trifluoromethylsulfonyl) Imide Using Gas-Liquid Chromatography, J. Chem. Eng.

Data 2006, 51, 434–437.

[50] Heintz, A.; Verevkin, S. P.; Lehmann, J. K.; Vasiltsova, T. V.; Ondo, D., Activity Co-efficients at Infinite Dilution and Enthalpies of Solution of Methanol, 1-Butanol, and 1-Hexanol in 1-Hexyl-3-Methyl-Imidazolium Bis(trifluoromethyl-Sulfonyl) Imide, J.

Chem. Thermodyn. 2007, 39, 268–274.

[51] Verevkin, S. P.; Zaitsau, D. H.; Tong, B.; Welz-Biermann, U., New for Old. Password to the Thermodynamics of the Protic Ionic Liquids, Phys. Chem. Chem. Phys. 2011, 13, 12708–12711.

[52] Blahut, A.; Sobota, M.; Dohnal, V.; Vrbka, P., Activity Coefficients at Infinite Dilution of Organic Solutes in the Ionic Liquid 1-Ethyl-3-Methylimidazolium Methanesulfo-nate, Fluid Phase Equilib. 2010, 299, 198–206.

[53] Blahut, A.; Dohnal, V., Interactions of Volatile Organic Compounds with the Ionic Liquid 1-Butyl-1-Methylpyrrolidinium Dicyanamide, J. Chem. Eng. Data 2011, 56, 4909–4918.

[54] Blahut, A.; Dohnal, V.; Vrbka, P., Interactions of Volatile Organic Compounds with the Ionic Liquid 1-Ethyl-3-Methylimidazolium Tetracyanoborate, J. Chem. Thermo-dyn. 2012, 47, 100–108.

[55] Blahut, A.; Dohnal, V., Interactions of Volatile Organic Compounds with the Ionic Liquids Methylpyrrolidinium Tetracyanoborate and 1-Butyl-1-Methylpyrrolidinium Bis(oxalato)borate, J. Chem. Thermodyn. 2013, 57, 344–354.

[56] Órf ao, E. F.; Dohnal, V.; Blahut, A., Infinite Dilution Activity Coeffi-cients of Volatile Organic Compounds in Two Ionic Liquids Composed of the Tris(pentafluoroethyl)trifluorophosphate ([FAP]) Anion and a Functionalized Cation, J. Chem. Thermodyn. 2013, 65, 53–64.

[57] Diedenhofen, M.; Eckert, F.; Klamt, A., Prediction of Infinite Dilution Activity Co-efficients of Organic Compounds in Ionic Liquids Using COSMO-RS, J. Chem. Eng.

Data 2003, 48, 475–479.

[58] Jork, C.; Kristen, C.; Pieraccini, D.; Stark, A.; Chiappe, C.; Beste, Y. A.; Arlt, W., Tailor-made ionic liquids, J. Chem. Thermodyn. 2005, 37, 537–558.

[59] Wang, J.; Sun, W.; Li, C.; Wang, Z., Correlation of infinite dilution activity coefficient of solute in ionic liquid using UNIFAC model, Fluid Phase Equilib. 2008, 264, 235–

241.

[60] Lei, Z.; Zhang, J.; Li, Q.; Chen, B., UNIFAC Model for Ionic Liquids, Industrial &

Engineering Chemistry Research 2009, 48, 2697–2704.

[61] Alevizou, E. I.; Pappa, G. D.; Voutsas, E. C., Prediction of phase equilibrium in mixtu-res containing ionic liquids using UNIFAC, Fluid Phase Equilib. 2009, 284, 99–105.

[62] Chen, C.-C.; Simoni, L. D.; Brennecke, J. F.; Stadtherr, M. A., Correlation and Pre-diction of Phase Behavior of Organic Compounds in Ionic Liquids Using the Nonran-dom Two-Liquid Segment Activity Coefficient Model, Ind. Eng. Chem. Res. 2008, 47, 7081–7093.

[63] Eike, D.; Brennecke, J. F.; Maginn, E. J., Predicting Infinite-Dilution Activity Coeffi-cients of Organic Solutes in Ionic Liquids, Ind. Eng. Chem. Res. 2004, 43, 1039–1048.

[64] Tämm, K.; Burk, P., QSPR analysis for infinite dilution activity coefficients of organic compounds, J. Mol. Model 2006, 12, 417–421.

[65] Minitz, C.; Acree Jr., W. E., Partition coefficient correlations for transfer of solutes from gas phase and water to room temperature ionic liquids, Phys. Chem. Liq. 2007, 45, 241–249.

54

[66] Ge, M. L.; Xiong, J. M.; S., W. L., Theoretical prediction for the infinite dilution activity coefficients of organic compounds in ionic liquids, Chinese Science Bulletin 2009, 54, 2226–2229.

[67] Xi, L.; Sun, H.; Li, J.; Liu, H.; Yao, X.; Gramatica, P., Prediction of Infinite-Dilution Activity Coefficients of Organic Solutes in Ionic Liquids Using Temperature-Dependent Quantitative Structure–Property Relationship Method, Chem. Eng. J.

2010, 163, 195–201.

[68] Mutelet, F.; Ortega-Villa, V.; Moïse, J. C.; Jaubert, J. N.; Acree Jr., W. E., Prediction of Partition Coefficients of Organic Compounds in Ionic Liquids Using a Temperature-Dependent Linear Solvation Energy Relationship with Parameters Calculated through a Group Contribution Method, J. Chem. Eng. Data 2011, 56, 3598–3606.

[69] Todeschini, R.; Consonni, V., Molecular Descriptors for Chemoinformatics, Wiley, 2009.

[70] Nami, F.; Deyhimi, F., Prediction of activity coefficients at infinite dilution for organic solutes in ionic liquids by artificial neural network, J. Chem. Thermodyn. 2011, 43, 22–27.

[71] Passos, H.; Khan, I.; Mutelet, F.; Oliveira, M. B.; Carvalho, P. J.; Santos, L. M. N.

B. F.; Held, C.; Sadowski, G.; Freire, M. G.; Coutinho, J. a. A. P., Vapor–Liquid Equili-bria of Water + Alkylimidazolium-Based Ionic Liquids: Measurements and Perturbed-Chain Statistical Associating Fluid Theory Modeling, Ind. Eng. Chem. Res. 2014, 53, 3737–3748.

[72] Marcinkowski, L.; Kloskowski, A.; Namie´snik, J., Measurement of Activity Co-efficients at Infinite Dilution of Organic Solutes in the Ionic Liquid 1-Hexyl-1,4-Diaza[2.2.2]bicyclooctanium Bis(trifluoromethylsulfonyl)imide Using Gas–Liquid Chromatography, J. Chem. Thermodyn. 2014, 71, 84–90.

[73] Li, X.; Wang, Q.; Li, L.; Deng, L.; Zhang, Z.; Tian, L., Determination of the Thermodynamic Parameters of Ionic Liquid 1-Hexyl-3-Methylimidazolium Chloride by Inverse Gas Chromatography, J. Mol. Liq. 2014, in press, doi:10.1016/j.molliq.2014.10.015.

[74] Królikowski, M.; Królikowska, M., The Study of Activity Coefficients at Infinite Di-lution for Organic Solutes and Water in 1-Butyl-4-Methylpyridinium Dicyanamide, [B4MPy][DCA] Using GLC, J. Chem. Thermodyn. 2014, 68, 138–144.

[75] Jiang, L.-K.; Wang, L.-S.; Du, C.-J.; Wang, X.-Y., Activity Coefficients at Infinite Dilution of Organic Solutes in 1-Hexyl-3-Methylimidazolium Trifluoroacetate and Influence of Interfacial Adsorption Using Gas – Liquid Chromatography, J. Chem.

Thermodyn. 2014, 70, 138–146.

[76] Ge, M.-L.; Deng, X.-M.; Zhang, L.-H.; Chen, J.-Y.; Xiong, J.-M.; Li, W.-H., Activi-ty Coefficients at Infinite Dilution of Organic Solutes in the Ionic Liquid 1-BuActivi-tyl-3- 1-Butyl-3-Methylimidazolium Methyl Sulfate, J. Chem. Thermodyn. 2014, 77, 7–13.

[77] Carvalho, P. J.; Ventura, S. P. M.; Batista, M. L. S.; Schröder, B.; Gonçalves, F.; Espe-rança, J.; Mutelet, F.; Coutinho, J. a. A. P., Understanding the Impact of the Central Atom on the Ionic Liquid Behavior: Phosphonium Vs Ammonium Cations, J. Chem.

Phys. 2014, 140, 064505.

[78] Bensaid, Z.; Mutelet, F.; Bouroukba, M.; Negadi, A., Experimental and Theore-tical Study of Interaction Between Organic Compounds and 1-(4-Sulfobutyl)-3-Methylimidazolium Based Ionic Liquids, Fluid Phase Equilib. 2014, 378, 34–43.

[79] Bahadur, I.; Govender, B. B.; Osman, K.; Williams-Wynn, M. D.; Nelson, W. M.;

Naidoo, P.; Ramjugernath, D., Measurement of Activity Coefficients at Infinite Di-lution of Organic Solutes in the Ionic Liquid 1-Ethyl-3-Methylimidazolium 2-(2-Methoxyethoxy) Ethylsulfate at T = (308.15, 313.15, 323.15 and 333.15) K Using Gas + Liquid Chromatography, J. Chem. Thermodyn. 2014, 70, 245–252.

[80] Zawadzki, M.; Niedzicki, L.; Wieczorek, W.; Doma´nska, U., Estimation of Extraction Properties of New Imidazolide Anion Based Ionic Liquids on the Basis of Activity Coefficient at Infinite Dilution Measurements, Sep. Purif. Technol. 2013, 118, 242–

254.

[81] Yoo, B.; Afzal, W.; Prausnitz, J. M., Henry’s Constants and Activity Coefficients of Some Organic Solutes in Butyl-3-Methylimidazolium Hydrogen Sulfate and in 1-Methyl-3-Trimethylsilylmethylimidazolium Chloride, J. Chem. Thermodyn. 2013, 57, 178–181.

[82] Tumba, K.; Letcher, T. M.; Naidoo, P.; Ramjugernath, D., Activity Coefficients at Infinite Dilution of Organic Solutes in the Ionic Liquid Trihexyltetradecylphospho-nium Bis(trifluoromethylsulfonyl)imide Using Gas–Liquid Chromatography at T = (313.15, 333.15, 353.15 and 373.15) K, J. Chem. Thermodyn. 2013, 65, 159–167.

[83] Reddy, P.; Aslam Siddiqi, M.; Atakan, B.; Diedenhofen, M.; Ramjugernath, D., Ac-tivity Coefficients at Infinite Dilution of Organic Solutes in the Ionic Liquid Peg-5 Cocomonium Methylsulfate at T = (313.15, 323.15, 333.15, and 343.15) K: Expe-rimental Results and COSMO-RS Predictions, J. Chem. Thermodyn. 2013, 58, 322–

329.

[84] Paduszy´nski, K.; Doma´nska, U., Experimental and Theoretical Study on Infinite Dilu-tion Activity Coefficients of Various Solutes in Piperidinium Ionic Liquids, J. Chem.

Thermodyn. 2013, 60, 169–178.

[85] Marciniak, A.; Wlazło, M., Activity Coefficients at Infinite Dilution and Phy-sicochemical Properties for Organic Solutes and Water in the Ionic Liquid 1-(2-Methoxyethyl)-1-Methylpyrrolidinium Trifluorotris(perfluoroethyl)phosphate, J.

Chem. Thermodyn. 2013, 60, 57–62.

56

[86] Marciniak, A.; Wlazło, M., Activity Coefficients at Infinite Dilution and Phy-sicochemical Properties for Organic Solutes and Water in the Ionic Liquid 1-(2-Methoxyethyl)-1-Methylpiperidinium Trifluorotris(perfluoroethyl)phosphate, J.

Chem. Thermodyn. 2013, 57, 197–202.

[87] Marciniak, A.; Wlazło, M., Activity Coefficients at Infinite Dilution and Phy-sicochemical Properties for Organic Solutes and Water in the Ionic Liquid 1-(2-Hydroxyethyl)-3-Methylimidazolium Trifluorotris(perfluoroethyl)phosphate, J.

Chem. Thermodyn. 2013, 64, 114–119.

[88] Królikowska, M.; Karpi´nska, M.; Królikowski, M., Measurements of Activity Coef-ficients at Infinite Dilution for Organic Solutes and Water in N-Hexylisoquinolinium Thiocyanate, [HIQUIN][SCN] Using GLC, J. Chem. Thermodyn. 2013, 62, 1–7.

[89] Hector, T.; Uhlig, L.; Gmehling, J., Activity Coefficients at Infinite Dilution of Alka-nes, AlkeAlka-nes, and Alkyl Benzenes in 1-Butyl-3-Methylimidazolium Dibutylphosphate Using Gas – Liquid Chromatography, Fluid Phase Equilib. 2013, 338, 135–140.

[90] Deng, L.; Wang, Q.; Chen, Y.; Zhang, Z.; Tang, J., Determination of the Solubili-ty Parameter of Ionic Liquid 1-OcSolubili-tyl-3-Methylimidazolium Hexafluorophosphate by Inverse Gas Chromatography, J. Mol. Liq. 2013, 187, 246–251.

[91] Xu, Q.; Su, B.; Luo, X.; Xing, H.; Bao, Z.; Yang, Q.; Yang, Y.; Ren, Q., Accurate Measurements of Infinite Dilution Activity Coefficients Using Gas Chromatography with Static-Wall-Coated Open-Tubular Columns, Anal. Chem. 2012, 84, 9109–9115.

[92] Wlazło, M.; Marciniak, A., Activity Coefficients at Infinite Dilution and Phy-sicochemical Properties for Organic Solutes and Water in the Ionic Liquid 4-(2-Methoxyethyl)-4-Methylmorpholinium Trifluorotris(perfluoroethyl)phosphate, J.

Chem. Thermodyn. 2012, 54, 366–372.

[93] Tumba, K.; Letcher, T.; Naidoo, P.; Ramjugernath, D., Activity Coefficients at Infinite Dilution of Organic Solutes in the Ionic Liquid Trihexyltetradecylphosphonium Hexa-fluorophosphate Using Gas–Liquid Chromatography at T = (313.15, 333.15, 353.15, and 363.15) K, J. Chem. Thermodyn. 2012, 49, 46–53.

[94] Marciniak, A.; Wlazło, M., Activity Coefficients at Infinite Dilution and Phy-sicochemical Properties for Organic Solutes and Water in the Ionic Liquid 4-(2-Methoxyethyl)-4-Methylmorpholinium Bis(trifluoromethylsulfonyl)-Amide, J.

Chem. Thermodyn. 2012, 47, 382–388.

[95] Marciniak, A.; Wlazło, M., Activity Coefficients at Infinite Dilution and Physi-cochemical Properties for Organic Solutes and Water in the Ionic Liquid 1-(2-Methoxyethyl)-1-Methylpyrrolidinium Bis(trifluoromethylsulfonyl)-Amide, J. Chem.

Thermodyn. 2012, 54, 90–96.

[96] Marciniak, A.; Wlazło, M., Activity Coefficients at Infinite Dilution and Physi-cochemical Properties for Organic Solutes and Water in the Ionic Liquid 1-(2-Methoxyethyl)-1-Methylpiperidinium Bis(trifluoromethylsulfonyl)-Amide, J. Chem.

Thermodyn. 2012, 49, 137–145.

[97] Kan, J.; Wang, L.-S.; Wang, X.-X.; Duan, J.-D., Activity Coefficients of Organic Solutes at Infinite Dilution in the Ionic Liquids. 2. Organic Solutes in 1-Hexyl-3-Methylimidazolium Nitrate and Gas–Liquid Partitioning and Interfacial Adsorption

[97] Kan, J.; Wang, L.-S.; Wang, X.-X.; Duan, J.-D., Activity Coefficients of Organic Solutes at Infinite Dilution in the Ionic Liquids. 2. Organic Solutes in 1-Hexyl-3-Methylimidazolium Nitrate and Gas–Liquid Partitioning and Interfacial Adsorption

Powiązane dokumenty