• Nie Znaleziono Wyników

SKRÓTY I OZNACZENIA

7. WNIOSKI I KIERUNKI DALSZYCH BADAŃ

7.3. Proponowane kierunki dalszych badań

Przeprowadzone badania nie wyczerpują przedstawionej problematyki oceny ekologiczności autobusów miejskich. Na podstawie wniosków sformułowano kierunki dalszych działań:

 badania reaktorów katalitycznych w celu zmniejszenia poziomu emisji CO oraz THC w autobusach zasilanych CNG,

 ocena wielkości emitowanych zanieczyszczeń w aspekcie procedur dotyczących pomiaru emisji w rzeczywistych warunkach eksploatacji według testu europejskiego UE 582/2011 i amerykańskiego NTE,

 badania mające na celu określenie emisji cząstek stałych PM, w zakresie ich stężeń, liczby oraz rozkładu średnic,

 opracowanie testu jezdnego odzwierciedlającego eksploatację w aglomeracji poznańskiej autobusów miejskich zasilanych CNG.

Literatura

[1] Amann C. A.: The Stretch for better Passenger Car Fuel Economy: A Citical Look. Automotive Engineering, nr 3, 1998.

[2] AVL, Regulations & Standards, Current and Future Exhaust Emission Legislation AVL, Graz 05.2003.

[3] Bernhardt M.: Paliwa gazowe – zastosowanie do zasilania silników samochodowych, Paliwa, Oleje i Smary w Eksploatacji nr 36 i 37,1997.

[4] Budzik G.: Zasilanie silników autobusów komunikacji miejskiej sprężonym gazem ziemnym. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2006.

[5] Chen Y., Sun F., Zhang Z.: Motion Simulation of an Electric Vehicle with Two Independent Motors. AVEC International Symposium on Advanced Vehicle Control, Hiroshima 2002.

[6] Chłopek Z.: "Ekologiczne i ekonomiczne aspekty eksploatacji silników o zapłonie samoczynnym na paliwo bioetanolowe." Transport Samochodowy 2008.

[7] Czerwinski J., Pétermann J.-L., Ulrich A., Mueller G., Wichser A.: Particle emissions of a TDI-engine with different lubrication oils. Combustion Engines, no. 2, 2005.

[8] Czerwinski J., Zimmerli Y., Mayer A.: Experiences about retrofitting of city busses with DPF’s. Combustion Engines, no. 1 (124), 2006.

[9] Daisuke Kawano, Hajime Ishii and Yuichi Goto: Effect of Biodiesel Blending on Emission Characteristics of Modern Diesel Engine. SAE Paper 2008-01-2384.

[10] Durbin T.D., Cocker III D.R., Sawant A.A., Johnson K., Miller J.W., Holden B.B., Helgeson N.L. and Jack J.A.: Regulated Emissions from Biodiesel Fuels from On/Off-Road Applications. Atmospheric Environment no 41 (2007).

[11] Elektryczne wspomaganie układu kierowniczego, AutoMotoSerwis, nr 7–8, 2000.

[12] Engeljehringer K.: Automotive emission testing and certification. Past, present and future. 2nd International Exhaust Emissions Symposium, Bielsko-Biała 2011.

[13] Flekiewicz M., Król E.: Gaz ziemny jako paliwo do napędu pojazdów samochodowych – doświadczenia i perspektywy, Nafta–Gaz, nr 7–8, 1997.

[14] Fontaras G., Karavalakis G., Kousoulidou M., Tzamkiozis T., Ntziachristos L., Bakeas E., Stournas S. and Samaras Z.: Effects of Biodiesel on Passenger Car Fuel Consumption, Regulated and Non-Regulated Pollutant Emissions over Legislated and Real-World Driving Cycles. Fuel no 88 (2009).

[15] Forster J.: Entwicklungreserven des Verbrennungsmotors zur Schonung von Umwelt, Teil 1. Autotechnische Zeitschrift, nr 5, 1991.

[16] Fujia Wu, Jianxin Wang, Wenmiao Chen and Shijin Shuai: A Study on Emission Performance of a Diesel Engine Fueled with Five Typical Methyl Ester Biodiesels. Atmospheric Environment no 43 (2009).

[17] Gao, Y., Checkel, M.D.: Emission factors analysis for multiple vehicles using an on-board, in-use emissions measurement system, SAE Technical Paper Series 2007-01-1327.

[18] Graboski M.S. and McCormick R.L.: Combustion of Fat and Vegetable Oil Derived Fuels in Diesel Engines. Prog. Energy Combust. Sci. Vol. 24 (1998).

[19] Higgins P. A.T., Mohleji S.: Weather and Climate in the FY 2016 Budget. AAAS - The World's Largest General Scientific Society. Disciplinary Budgets: Chapter twenty two.

[20] Jackiewicz J., Czech P., Barcik J.: Sposoby rozliczania usług w transporcie miejskim, Zeszyty Naukowe Politechniki Śląskiej, Seria: TRANSPORT z. 68, 2010.

[21] Korhonen, P.: "Late fields of the magnetocardiographic QRS complex as indicators of propensity to sustained ventricular tachycardia after myocardial infarction." Journal of cardiovascular electrophysiology 2000.

[22] Kowalewicz A.: Podstawy procesów spalania. WNT, Warszawa 2000.

[23] Kowalewicz A.: Systemy spalania szybkoobrotowych silników spalinowych, WKiŁ, Warszawa 1990.

[24] Kruse K.: Nordic Swan Initiative for Fuel Labelling. Nordic Biogas Conference 2010.

[25] Lanning J.G., Wardale D.: The Development of a Glass Ceramic Axial Flow Regenerator. ASME Paper 66–GT–107.

[26] Lauperta M., Armas O. and Rodriguez-Fernandez J.: Effect of Biodiesel Fuels on Diesel Engine Emissions. Progress in Energy and Combustion Science no 34 (2008).

[27] Lei Zhu, Wugao Zhang, Wei Liu and Zhen Huang: Experimental Study on Particulate and NOx Emissions of a Diesel Engine Fueled with Ultra Low Sulfur Diesel, RME-Diesel Blends and PME-Diesel Blends. Science of the Total Environment no 408 (2010).

[28] Lotko W., Luft S.: Wpływ paliwa roślinnego na podstawowe osiągi silnika, Auto–

Technika Motoryzacyjna, nr 2, 1995.

[29] Materiały firmy AVL List GmbH: www.avl.com [30] Materiały firmy Cummins: www.cummins.com [31] Materiały firmy Fiat: www.fiat.de

[32] Materiały firmy Iveco: www.iveco.com

[33] Materiały firmy Mercedes: www.mercedes-benz.de [34] Materiały firmy Renault: www.corporate.renault-trucks.pl [35] Materiały firmy Scania: www.scania.com

[36] Merkisz, J., Fuc, P., Lijewski, P., Bielaczyc, P.: The Comparison of the Emissions from Light Duty Vehicle in On-road and NEDC Tests (No. 2010-01-1298). SAE Technical Paper 2010.

[37] Merkisz J., Kozak M.: Wpływ składu mieszanek biopaliw z paliwami konwencjonalnymi na emisje toksycznych składników spalin, Eksploatacja i Niezawodność, nr 3, 2003.

[38] Merkisz J., Pielecha I.: Alternatywne napędy pojazdów. Wydawnictwo Politechniki Poznańskiej, Poznań 2006.

[39] Merkisz J., Pielecha I., Pielecha J., Szukalski M.: Emisja dwutlenku węgla przez silniki pojazdów specjalnych w rzeczywistych warunkach ruchu. Transport Samochodowy, nr 2, 2010.

[40] Merkisz J., Pielecha J.: Analysis of Particle Concentrations and Smoke in Common-Rail Diesel Engine, SAE Technical Paper Series 2008-01-1743.

[41] Merkisz J., Radzimirski S.: Stan obecny i przewidywanie w Europejskich przepisach o emisji zanieczyszczeń z samochodów ciężarowych i autobusów.

Transport Samochodowy, nr 2, 2009.

[42] Nigro F., Trielli M. and Costa C.: Emission Characteristics of a Diesel Engine Operating with Biodiesel and Blends. SAE Paper 2007-01-2635.

[43] Nowak M., Rymaniak Ł.: CNG i LPG jako paliwa do silników spalinowych.

Combustion Engines – Silniki Spalinowe nr 1/2012 (148), PTNSS-2012-SS1-130, s. 105-108, Bielsko-Biała 2013.

[44] Opracowano na podstawie: www.exquicity.be [45] Opracowano na podstawie: www.uitp.org

[46] Pągowski Z.: Paliwa alternatywne z roślin oleistych, Auto–Technika Motoryzacyjna, nr 3, 1997.

[47] Reglitzky A.A., Schneider H., Krumm H.: Chancen zur Emissionsminderung durch konwentionelle und alternative Kraftstoffe. VDI Berichte nr 1020, 1992.

[48] Rykowski R.A., Nam E.K., Hoffman G.: On-road testing and characterization of fuel economy of light-duty vehicles. SAE Technical Paper Series 2005-01-0677.

[49] Sas J., Kwaśniewski K.: Gaz ziemny dla pojazdów. Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków 2004.

[50] Sawicki J.: Napęd elektryczny – o krok bliżej celu. Auto–Technika Motoryzacyjna, nr 1, 1993.

[51] Singer W., Schindler W., Linke M.: Particulate and smoke measurement on Euro 4 engines. Combustion Engines, no. 1/124, 2006.

[52] Syassen O.: Chancen und Problematik nachwasender Kraftstoffe, Teil 1 und 2, Motortechnische Zeitschrift, nr 53, 1992.

[53] Szlachta Z.: Zasilanie silników wysokoprężnych paliwami rzepakowymi. WKiŁ, Warszawa 2002.

[54] Szumanowski A.: Teoria samochodu. Akumulacja energii w pojazdach. WKŁ, Warszawa 1969.

[55] UITP – International Association of Public Transport: SORT – Standardised On-Road Test Cycles. Brksela – Belgia 2003.

[56] Tinaut F.V., Melgar A., Briceño Y., Horrillo A.: Performance of vegetable derived fuels in diesel engine vehicles. Combustion Engines, no. 2/121, 2005.

[57] Tritthart P., Zelenka P.: Oleje roślinne i alkohole – dodatkowe paliwa dla silników wysokoprężnych. Auto–Technika Motoryzacyjna, nr 11, 1990.

[58] Wodór – paliwo przyszłości. AutoExpert, nr 3, 2001.

[59] Wojewoda P.: Metodyka doboru silnika spalinowego do wybranej konfiguracji napędu hybrydowego autobusu miejskiego. Wydawnictwo Politechniki Rzeszowskiej, Rzeszów 2012.

[60] www.agilityfuelsystems.com

[61] www.bankier.pl/gospodarka/wskazniki -makroekonomiczne/on-pol [62] www.betterparts.org

[63] www.blog.mercedes-benz-passion.com [64] www.cng.auto.pl

[65] www.cnv.org [66] www.e-biopaliwa.pl [67] www.gazeo.pl

[68] www.governica.com/Koszty_transportu [69] www.media.dimler.com

[70] www.mobile.de [71] www.oilworld.biz

Summary

In Poland and in the European Union, particularly in the Nordic countries, one can note a regular and significant increase in the number of vehicles powered by compressed natural gas, which are used in public transport. It is therefore necessary to assess the environmental indicators of this group of vehicles and compare them with the commonly used conventional solutions. Another argument in favor of taking such actions are the new cognitive opportunities, resulting from the implementation of the vehicle emission tests under real operating conditions. These facts became the basis for the realization of this dissertation, whose main objective is to assess the impact of the application of natural gas on the ecological parameters of chosen means of transport.

The study begins by presenting a list of acronyms and designations used in the dissertation. The project is divided into eight chapters and contains a total of 111 pages.

The introduction provides an overview of issues that relate to the genesis of justification for undertaking this research. These issues include economic and environmental aspects that define the direction of development of the use of alternative fuels on increasingly larger scales. The second chapter describes the currently available methods of using unconventional fuels to power internal combustion engines to drive vehicles. The overview contains a detailed description of each alternative fuel - liquid and gaseous, with particular attention being paid to their ecological aspects.

The next chapter is devoted to the analysis of propulsion systems adapted for supply by gaseous fuels. Through the presentation of the current technical solutions and their operational aspects different categories of vehicles for which it is possible to use unconventional fuels as a fully eligible daily use were characterized. Closer detail was also presented on testing methods used in road tests, and their practical application regardless of the power source.

After analyzing the situation regarding the environmental aspects and trends of development of modern means of transport, the objective of the dissertation and basic research questions related to the thesis were defined. Presents the adopted assumptions based on previous research methodology used. Research subjects in the form of public buses powered by CNG and ON have been presented, which were used to assess emissions directly acquired during testing. The measured emissions of pollutants was carried out using a mobile apparatus, and the method and scope of measurements of gaseous compounds was described.

The next chapter has been dedicated to the presentation and analysis of test results. In further analyzes the results of measuring cycles for driving tests of the SORT type and on urban routes have been presented. Work time density characteristics of vehicles, internal combustion engines, and the emission characteristics were determined. The results allowed for defining emission factors for toxic exhaust components. A summary of the research performed was included at the end of this dissertation. The conclusions presented in this study were assessed through the environmental as well as economic aspects of maintenance of vehicles using compressed natural gas. The resulting analyses have a universal character thus giving the possibility for road transport applications.