• Nie Znaleziono Wyników

1. Domieszkowanie ceramiki BaTiO3 lantanem w ilości 0,4 mol.% wywołuje:

gigantyczną wartość przenikalności elektrycznej, przy stosunkowo niskim pozio‑

mie strat dielektrycznych, co predysponuje otrzymany materiał do zastosowania jako alternatywne wypełnienie ultrakondensatorów;

pojawienie się właściwości piezorezystywnych w temperaturze pokojowej, co po‑

zwala przypuszczać, że ceramika BLT4 stanowi materiał bazowy do potencjalnych zastosowań w piezorezystywnych czujnikach ciśnienia;

pojawienie się właściwości półprzewodnikowych, a powyżej temperatury Curie

— właściwości pozystorowych, co może zaowocować zastosowaniem otrzymanej ceramiki w termistorach PTCR.

2. Wprowadzenie jonów żelaza do ceramiki tytanianu baru lantanu poprawia właściwoś‑

ci piezoelektryczne, a 0,3 mol.% Fe3+ powoduje znaczny wzrost piezoelektrycznego współczynnika d33, co plasuje omawianą ceramikę w grupie materiałów bezołowio‑

wych stanowiących konkurencję dla ceramiki typu ‑PZT, które mogą być wykorzysta‑

ne do bezołowiowych piezoelektryków.

3. Dodatkowym atutem zsyntezowanych materiałów, których właściwości zostały omó‑

wione na kartach niniejszej pracy, jest ekonomiczna i przyjazna środowisku technolo‑

gia otrzymywania. Dyskutowane materiały konstrukcyjne z powodzeniem znajdą za‑

stosowanie w innowacyjnych elementach elektronicznych, dedykowanych do aplikacji w nowoczesnych układach mechatronicznych i automatycznych.

Bibliografia

[1] Z. Surowiak: Elektroceramika ferroelektryczna. Wydawnictwo Uniwersytetu Śląskiego, Ka‑

towice 2004.

[2] M. adamczyk-HabrajSka: Synteza i badania właściwości ceramiki BaBi2NbO9. Wydawnic‑

two Gnome, Wydawnictwo Uniwersytetu Śląskiego, Katowice 2012.

[3] R.M. Hazen: Perovskites. “Scientific American” 1988, vol. 258, No. 6, p. 74—81.

[4] J. Hańderek: Własności i zastosowanie wybranych ferroelektryków. Prace Fizyczne, nr 4.

Wydawnictwo Uniwersytetu Śląskiego, Katowice 1976.

[5] G.A. SmoleńSki, N.N. krajnik: Ferroelektryki i antyferroelektryki. PWN, Warszawa 1971.

[6] C. Hagendorf, K.M. ScHindler, T. doege, H. neddermeyer: An STM, XPS and LEED inve‑

stigation of the BaTiO3 (111) surface. “Surface Science” 1998, vol. 402—404, p. 581—585.

[7] K. kinoSHita, A. yamaji: Grain‑size effects on dielectric properties in barium titanate ce‑

ramics. “Journal of Applied Physics” 1976, vol. 47, p. 371—373.

[8] T. HiramatSu, T. tamura, N. wada, H. tamura, Y. Sakabe: Effects of grain boundary on dielectric properties in fine-grained BaTiO3 ceramics. “Materials Science and Engineering B”

2005, vol. 120, p. 55—58.

[9] K. ucHino, E. Sadanaga, K. ooHaSHi, T. moroHaSHi, H. yamamura: Particle/grain size de‑

pendence of ferroelectricity. “Ceramic Transaction” 1989, vol. 8, p. 107—115.

[10] G. arlt, D. HenningS, G. de witH: Dielectric properties of fine-grained barium titanate ceramics. “Journal of Applied Physics” 1985, vol. 58, p. 1619.

[11] Y. Sakabe, N. wada, Y. Hamaji: Grain size effects on dielectric properties and crystal structure of fine-grained BaTiO3 ceramics. “Journal of the Korean Physical Society” 1998, vol. 32, p. 260—264.

[12] I. nitta: X‑sen Kesshougaku Ge. “X‑ray crystallography” 1961, vol. 2, p. 618.

[13] W. luan, L. gao, J. guo: Size effect on dielectric properties of fine-grained BaTiO3 ceramics.

“Ceramics International” 1999, vol. 25, p. 727—729.

[14] Y. Su, N. liua, G.J. weng: A phase field study of frequency dependence and grain-size effects in nanocrystalline ferroelectric polycrystals. “Acta Materialia” 2015, vol. 87, p. 293—308.

[15] J.P. HeatH, J.S. dean, J.H. Harding, D.C. Sinclair: Simulation of impedance spectra for core-shell grain structures using finite element modeling. “Journal of the American Ceramic Society” 2015, vol. 98, No. 6, p. 1925—1931.

[16] T. wang, H. Hao, M. liu, D. zHou, Z. yao, M. cao, H. liu: X9R BaTiO3‑based dielectric ceramics with multilayer core‑shell structure produced by polymer‑network gel coating me‑

thod. “Journal of the American Ceramic Society” 2015, vol. 98, p. 690—693.

[17] M. liua, H. Haoa, W. cHena, D. zHoua, M. appiaHa, B. liua, M. caoa, Z. yaoa, H. liua, Z. zHang: Preparation and dielectric properties of X9R core-shell BaTiO3 ceramics coated by BiAlO3‑BaTiO3. “Ceramics International” 2016, vol. 42, p. 379—387.

[18] L. wu, X. wang, L. li: Core‑shell BaTiO3@BiScO3 particles for local graded dielectric ceramics with enhanced temperature stability and energy storage capability. “Journal of Alloys and Compounds” 2016, vol. 688, p. 113—121.

[19] R. ma, B. cui, M. SHangguan, S. wang, Y. wang, Z. cHang, Y. wang: A novel double‑co‑

ating approach to prepare fine-grained BaTiO3@La2O3@SiO2 dielectric ceramics for energy storage application. “Journal of Alloys and Compounds” 2017, vol. 690, p. 438—445.

[20] H. gHayour, M. abdellaHi: A brief review of the effect of grain size variation on the electrical properties of BaTiO3‑based ceramics. “Powder Technology” 2016, vol. 292, p. 84—93.

[21] D.Y. lu, Y.Y. peng, X.Y. yu, X.Y. Sun: Dielectric properties and defect chemistry of La and Tb co‑doped BaTiO3 ceramics. “Journal of Alloys and Compounds” 2016, vol. 681, p. 128—138.

[22] S. oSawa, A. furuzawa, N. fujikawa: Effect of the manganese valence state on the electrical conductivity of barium titanate. “Journal of the American Ceramic Society”, 1993, vol. 76, p. 1191—1194.

[23] G. datta, H.S. maiti, A. paul: Materials science monograph. “Journal of Materials Science Letters” 1987, vol. 6, p. 787.

[24] M. rajendran, M. Subbarao: Formation of BaTiO3 from citrate precursor. “Journal of Solid State Chemistry” 1994, vol. 113, p. 239.

[25] K. nieSz, t. ould-ely, H. tSukamoto, d.e. morSe: Engineering grain size and electrical properties of donor‑doped barium titanate ceramics. “Ceramics International” 2011, vol. 37, p. 303—311.

[26] X.G. tang, J. wang, X.X. wang, H.L.W. cHan: Effects of grain size on the dielectric pro‑

perties and tunabilities of sol‑gel derived Ba(Zr0.2Ti0.8)O3 ceramics. “Solid State Communi‑

cations” 2004, vol. 131, p. 163—168.

[27] X.H. wang, R.Z. cHen, Z.L. gui, L.T. li: The grain size effect on dielectric properties of BaTiO3 based ceramics. “Materials Science and Engineering B” 2003, vol. 99, p. 199—202.

[28] X. zHao, W. liun, W. cHen, S. li: Preparation and properties of BaTiO3 ceramics from the fine ceramic powder. “Ceramics International” 2015, vol. 41 p. 111—116.

[29] W.R. bueSSen, L.E. croSS, A.K. goSwami: Phenomenological theory of high permittivity in fine-grained barium titanate. “Journal of the American Ceramic Society” 1966, vol. 49, p. 33—36.

[30] A. yamaja, E. enomoto, K. kinoSHita, T. murakami: Preparation, characterization and properties of Dy‑doped small‑grained BaTiO3 ceramics. “Journal of the American Ceramic Society” 1977, vol. 60, p. 97—101.

[31] K. ucHino, E. Sadanaga, T. HiroSe: Dependence of the crystal structure on particle size in barium titanate. “Journal of the American Ceramic Society” 1989, vol. 72, p. 1555—1558.

[32] D. HenningS, S. ScHreinemacHer: Characterization of hydrothermal barium titanate. “Jour‑

nal of the European Ceramic Society” 1992, vol. 9, p. 41—46.

[33] G. cabocHe, J.C. niepce: Dielectric ceramics: processing, properties, and applications. “Ce‑

ramic Transaction” 1992, vol. 32, p. 339.

[34] B.D. begg, K.S. finnie, E.R. Vance: Raman study of the relationship between room-tem‑

perature tetragonality and the curie point of barium titanate. “Journal of the American Ceramic Society” 1996, vol. 79, p. 2666.

169 Bibliografia

[35] S. wada, T. Suzuki, T. noma: The effect of the particle sizes and the correlational sizes of dipoles introduced by the lattice defects on the crystal structure of barium titanate fine particles. “The Japanese Journal of Applied Physics” 1995, vol. 34, p. 5368—5379.

[36] J.M. mcHale, P.C. mcintyre, K.E. SickafuS, N.V. coppa: Nanocrys‑talline BaTiO3 from fre‑

eze‑dried nitrate solutions. “Journal of Materials Research” 1996, vol. 11, p. 1199—1209.

[37] H. HSiang, F. yen: Effect of crystallite size on the ferroelectric domain growth of ultrafine BaTiO3 powders. “Journal of the American Ceramic Society” 1996, vol. 79, p. 1053.

[38] T. takeucHi, K. ado, T. aSai, H. kageyama, Y. Saito, C. maSqueiler, O. nakamura: Thick‑

ness of cubic surface phase on barium titanate single‑crystalline grains. “Journal of the American Ceramic Society” 1994, vol. 77, p. 1665—1668.

[39] G. arlt: The influence of microstructure on the properties of ferroelectric ceramics. “Fer‑

roelectrics” 1990, vol. 104, p. 217.

[40] M.H. frey, D.A. payne: Grain‑size effect on structure and phase transformations for barium titanate. “Physical Review B” 1996, vol. 54, p. 3158.

[41] R.P.S.M. lobo, N.D.S. moHallem, R.L. moreira: Grain‑size effects on diffuse phase trans‑

itions of sol‑gel prepared barium titanate ceramics. “Journal of the American Ceramic Society” 1995, vol. 78, p. 1343—1346.

[42] R.N. ViSwanatH, S. ramaSamy: Preparation and ferroelectric phase‑transition studies of nanocrystalline BaTiO3. “Nanostructured Materials” 1997, vol. 8, p. 155—162.

[43] N. wada, H. tanaka, Y. Hamaji, Y. Sakabe: Microstructures and dielectric properties of fine-grained BaTiO3 ceramics. “Japanese Journal of Applied Physics” 1996, vol. 35, p. 5141—5144.

[44] X. liu, W.Y. SHiH, W.H. SHiH: 99th Annual Meeting Abstract of “Journal of the American Ceramic Society”, 1997, p. 110.

[45] L. curecHeriu, M.T. buScaglia, V. buScaglia, Z. zHao, L. mitoSeriu: Grain size effect on the nonlinear dielectric properties of barium titanate ceramics. “Applied Physics Letters”

2010, vol. 97, p. 2429090—2429093.

[46] Z. zHao, V. buScaglia, M. ViViani, M.T. buScaglia, L. mitoSeriu, A. teStino, M. nygren, M. joHnSSon, P. nanni: Grain‑size effects on the ferroelectric behavior of dense nanocrystal‑

line BaTiO3 ceramics. “Physical Review B” 2004, vol. 70, p. 0241070—0241078.

[47] L. moreno, I.M. dominguez, A. montoya, L. Vicente, T. ViVeroS: Synthesis and charac‑

terization of MTiO3 (M = Mg, Ca, Sr, Ba) sol‑gel. “Journal of Materials Chemistry” 1995, vol. 5, p. 509—512.

[48] H. SHimooka, M. kuwabara: Preparation of dense BaTiO3 ceramics from sol‑gel‑derived monolithic gels. “Journal of the American Ceramic Society” 1995, vol. 78, p. 2849—2852.

[49] V.W. day, T.A. eberSpacHer, W.G. klemperer, S. liang: Synthesis and characterization of BaTi(OC6H5)6 · 2DMF, a single‑source sol‑gel precursor to BaTiO3 gels, powders, and thin films. “Chemistry of Materials” 1995, vol. 7, p. 1607—1608.

[50] B.C. lacourSe, V.R.W. amarakoon: Characterization of the firing schedule for positive tem‑

perature coefficient of resistance BaTiO3. “Journal of the American Ceramic Society” 1995, vol. 78, p. 3352—3356.

[51] W. li, Z. Xu, R. cHu, P. fu, J. Hao: Structure and electrical properties of BaTiO3 prepared by sol‑gel process. “Journal of Alloys and Compounds” 2009, vol. 482, p. 137—140.

[52] Y. gao, V.V. SHVartSman, A. elSukoVab, D.C. lupaScu: Low‑temperature synthesis of crystalline BaTiO3 nanoparticles by one‑step “organosol” — precipitation. “Journal of Materials Chemistry” 2012, vol. 22, p. 17573.

[53] M. bao, W. li, P. zHu: Study on the dielectric properties of oxide‑doped Ba(Ti,Sn)O3 ceramics prepared from ultrafine powder. “Journal of Materials Science” 1993, vol. 28, p. 6617—6621.

[54] P.K. dutta, P.K. gallagHer, J. twu: Raman spectroscopic study of the formation of ba‑

rium titanate from an oxalate precursor. “Chemistry of Materials” 1993, vol. 5, p. 1739—

1743.

[55] M. StockenHuber, H. mayer, J.A. lercHer: Preparation of barium titanates from oxalates.

“Journal of the American Ceramic Society” 1993, vol. 76, p. 1185—1190.

[56] S. kim, M. lee, T. noH, C. lee: Preparation of barium titanate by homogeneous precipita‑

tion. “Journal of Materials Science” 1996, vol. 31, p. 3643—3645.

[57] J.H. cHoy, Y.S. Han, J.T. kim, Y.H. kim: Citrate route to ultra-fine barium polytitana‑

tes with microwave dielectric properties. “Journal of Materials Chemistry” 1995, vol. 5, p. 57—63.

[58] J. gao, H. SHi, H. dong, R. zHang, D. cHen: Factors influencing formation of highly di‑

spersed BaTiO3 nanospheres with uniform sizes in static hydrothermal synthesis. “Journal of Nanoparticle Research” 2015, vol. 17, No. 286, p. 1—17.

[59] G. buSca, V. buScaglia, M. leoni, P. nanni: Solid‑state and surface spectroscopic characte‑

rization of BaTiO3 fine powders. “Chemistry of Materials” 1994, vol. 6, p. 955—961.

[60] K. HayaSHi, T. yamamoto, T. Sakuma: Grain orientation dependence of the PTCR effect in niobium‑doped barium titanate. “Journal of the American Ceramic Society” 1996, vol. 79, p. 1669—1672.

[61] T. Xu, Ch.A. wang: Effect of two‑step sintering on micro‑honeycomb BaTiO3 ceramics pre‑

pared by freeze‑casting process. “Journal of the European Ceramic Society” 2016, vol. 36, p. 2647—2652.

[62] O.B. milošević, M.K. mirković, D.P. USkoković: Characteristics and formation mechanism of BaTiO3 powders prepared by twin-fluid and ultrasonic spray-pyrolysis methods. “Journal of the American Ceramic Society” 1996, vol. 79, p. 1720—1722.

[63] A.A. kHort, K.B. podbolotoV: Preparation of BaTiO3 nanopowders by the solution combu‑

stion method. “Ceramics International” 2016, vol. 42, p. 15343—15348.

[64] A.K. ray: Synthesis and characterization of BaTiO3 powder prepared by combustion syn‑

thesis process. Thesis (BTech), Department of Ceramic Engineering, National Institute of Technology, Rourkela 2007.

[65] H.H. nerSiSyan, J.H. leea, C.W. won: SH‑synthesis of ceramic powders in the fusion salts of alkali metal. “Journal of Ceramic Processing Research” 2005, vol. 6, No. 1, p. 41—47.

[66] C.C. ge, F.R. Hu: Self-propagating low-temperature synthesis of ultrafine BaTiO3 powders.

“Key Engineering Materials” 2002, vol. 217, p. 185—192.

[67] D. lV, R. zuo, S. Su: Processing and morphology of (111) BaTiO3 crystal platelets by a two‑step molten salt method. “Journal of the American Ceramic Society” 2012, vol. 95, No. 6, p. 1838—1842.

[68] M.J. cHrunika, S. kłoSowicz, P. perkowSki, M. mrukiewicz, P. morawiak, D. zaSada: The infuence of microstructure and lattice strain on tetragonality factor and dielectric proper‑

ties of ferroelectric ceramics BaTiO3. “Acta Physica Polonica A” 2013, vol. 124, No. 6A, p. 1034—1038.

[69] T. al-naboulSi, M. bouloS, Ch. tenailleau, P. dufour, M. zakHour, S. guillemet-fritScH: Colossal and frequency stable permittivity of barium titanate nanoceramics derived from mechanical activation and SPS sintering. “International Journal of Engineering Research &

Science (IJOER)” 2015, vol. 1, No. 7, p. 25—33.

[70] M.T. buScaglia, V. buScaglia, M. ViViani, J. petzelt, M. SaVinoV, L. mitoSeriu, A. teStino, P. nanni, C. Harnagea, Z. zHao, M. nygren: Ferroelectric properties of dense nanocrystal‑

line BaTiO3 ceramics. “Nanotechnology” 2004, vol. 15, p. 1113—1117.

171 Bibliografia

[71] S. yoon, J. dornSeiffer, Y. Xiong, D. grüner, Z. SHen, S. iwaya, Ch. pitHan, R. waSer: Spark plasma sintering of nanocrystalline BaTiO3‑powders. Consolidation behavior and dielectric characteristics. “Journal of the European Ceramic Society” 2011, vol. 31, p. 1723—1731.

[72] X. zHiguo, W. Haidou, Z. lina, Z. Xinyuan, H. yanfei: Properties of the BaTiO3 coating prepared by supersonic plasma spraying. “Journal of Alloys and Compounds” 2014, vol.

582, p. 246—252.

[73] R. epHerre, J. leSSeur, M. albino, P. Veber, A. weibel, G. cHeVallier, M. maglione, D. bernard, C. eliSSalde, C. eStournèS: Adjustable dielectric properties of BaTiO3 conta‑

ining MgO inclusions deformable under spark plasma sintering. “Scripta Materialia” 2016, vol. 110, p. 82—86.

[74] D.A. neumayer, D.B. Studebaker, B.J. HindS, C.L. Stern, T.J. markS: New precursors for barium metal‑organic chemical vapor deposition. In situ growth of epitaxial barium titanate films using a liquid barium precursor. “Chemistry of Materials” 1994, vol. 6, p. 878—880.

[75] M. arima, M. kakiHana, M. yaSHima, M. yoSHimura: Polymerized complex synthesis of pure BaTiO3 at reduced temperature. “European Journal of Solid State and Inorganic Chemistry” 1995, vol. 32, p. 863—871.

[76] V.W. day, T.A. eberSpacHer, M.H. frey, W.G. klemperer, S. liang, D.A. payne: Barium titanium glycolate. A new barium titanate powder precursor. “Chemistry of Materials” 1996, vol. 8, p. 330.

[77] L.R. prado, N.S. de reSende, R.S. SilVa, S.M.S. egueS, G.R. Salazar-banda: Influence of the synthesis method on the preparation of barium titanate nanoparticles. “Chemical Engineering and Processing” 2016, vol. 103, p. 12—20.

[78] B. mojić-lanté, R. djenadić, V.V. Srdić, H. HaHn: Direct preparation of ultrafine Ba‑

TiO3 nanoparticles by chemical vapor synthesis. “Journal of Nanoparticle Research” 2014, vol. 2618.

[79] B. mojić-lanté, R. djenadić, V.S.K. cHakraVadHanula, Ch. kubel, V.V. Srdić, H. HaHn: Chemical vapor synthesis of FeOx‑BaTiO3 nanocomposites. “Journal of the American Cera‑

mic Society” 2015, vol. 98, No. 6, p. 1724—1730.

[80] A. kareiVa, S. tautkuS, R. rapalaViciute, J.E. jorgenSen, B. lundtoft: Sol‑gel synthe‑

sis and characterization of barium titanate powders. “Journal of Materials Science” 1999, vol. 34, p. 4853—4857.

[81] A. yamaji, Y. enomoto, K. kinoSHita, T. murakami: Preparation, characterization, and properties of Dy‑doped small‑grained BaTiO3 ceramics. “Journal of the American Ceramic Society” 1977, vol. 60, p. 97—101.

[82] M. kaHm: Preparation of small‑grained and large‑grained ceramics from Nb‑doped BaTiO3.

“Journal of the American Ceramic Society” 1971, vol. 54, p. 452—454.

[83] V.S. tiwari, N. SingH, D. pandey: Structure and properties of (Ba,Ca)TiO3 ceramics prepa‑

red using (Ba,Ca)TiO3 precursors: 1. Crystallographic and microstructural studies. “Journal of the American Ceramic Society” 1994, vol. 77, p. 1813—1818.

[84] W.Y. Howng, C. mccutcHeon: Electrical properties of semiconducting BaTiO3 by liquid-phase sintering. “American Ceramic Society Bulletin” 1983, vol. 62, No. 2, p. 231.

[85] O.Z. yancHeVSkii, O.I. VyunoV, A.G. belouS: Fabrication and properties of semiconducting barium lead titanate ceramics containing low‑melting glass additions. “Inorganic Materials”

2003, vol. 39, No. 6, p. 645—651.

[86] Y. young-Sung, K. jeong-joo, K. doH-yeon: Effect of heating rate on the microstructural evolution during sintering of BaTiO3. “Journal of the American Ceramic Society” 1987, vol. 70, No. 11, p. C‑322.

[87] M. drofenik: Oxygen partial pressure and grain growth in donor‑doped BaTiO3. “Journal of the American Ceramic Society” 1987, vol. 70, No. 5, p. 311.

[88] Yu.N. VeneVtSeV, E.D. politoVa, S.A. iVanoV: Segneto‑ i antisegnetoelektriki semeistva titanata baria. Moskwa 1985.

[89] J. Senderacka: Dielektryki ceramiczne i ich zastosowanie. WNT, Warszawa 1967.

[90] J. dudek, B. wodecka-d, Z. Surowiak: Efekt pozystorowy w półprzewodnikowej cera‑

mice (Ba0,5Pb0,5 )TiO3 domieszkowanej szkłem specjalnym. „Fizyka i Chemia Metali” 2000, nr 1(16), s. 109—128.

[91] Y. Xu: Ferroelectric materials and their applications. North‑Holland, Amsterdam 1991.

[92] H. kiSHi, N. koHzu, Y. igucHi, J. Sugino, M. kato, H. oHSato, T. okuda: Occupational sites and dielectric properties of rare‑earth and Mn substituted BaTiO3. “Journal of the European Ceramic Society” 2001, vol. 21, p. 1643—1647.

[93] B. wodecka-d, A. liSińSka-czekaj, T. orkiSz, M. adamczyk, K. oSińSka, L. kozielSki, D. czekaj: The sol‑gel synthesis of barium strontium titanate ceramics. “Materials Science

— Poland” 2007, vol. 25, No. 3, p. 791—799.

[94] B. wodecka-d, D. czekaj: Otrzymywanie i właściwości dielektryczne ceramiki tytanianu baru domieszkowanej La3+. „Ceramika/Ceramics” 2008, nr 101, s. 115—123.

[95] J. SucHanicz: Bezołowiowe tytaniany ferroelektryczne. Wydawnictwo Naukowe UP, Kra‑

ków 2016.

[96] B. jaffe, W.R. cook, H. jaffe: Piezoelektriczeskaya keramika. Izd. Mir, Moskva 1974.

[97] T. Suzuki, M. ueno, Y. niSHi, M. fujimoto: Dislocation loop formation in nonstoichiome‑

tric (Ba,Ca)TiO3 and BaTiO3 ceramics. “Journal of the American Ceramic Society” 2001, vol. 84, No. 1, p. 200—206.

[98] Z. yu, C. ang, R. guo, A.S. bHalla: Piezoelectric and strain properties of Ba(Ti1−xZrx)O3 ceramics. “Journal of Applied Physics” 2002, vol. 92, p. 1489.

[99] W. liu, X. ren: Large piezoelectric effect in Pb‑free ceramics. “Physical Review Letters”

2009, vol. 103, p. 2576021—2576024.

[100] T. maiti, R. guo, A.S. bHalla: Electric field dependent dielectric properties and high tunability of BaZrxTi1−xO3 relaxor ferroelectrics. “Applied Physics Letters” 2006, vol. 89, No. 12, p. 122909—1229011.

[101] L. Hozer: Półprzewodnikowe materiały ceramiczne z aktywnymi granicami ziarn. PWN, Warszawa 1990.

[102] J.B. maccHeSney, P.K. gallagHer, F.V. dimarcello: Stabilized barium titanate ceramics for capacitor dielectrics. “Journal of the American Ceramic Society” 1963, vol. 46, No. 5, p. 197—202.

[103] W. maiSon, R. kleeberg, R.B. Heimann, S. pHanicHpHant: Phase content, tetragonality, and crystallite size of nanoscaled barium titanate synthesized by the catecholate process: effect of calcinations temperature. “Journal of the European Ceramic Society” 2003, vol. 23, p. 127—132.

[104] S. SHarmaa, R.K. patela, C. prakaSHb, P. kumar: Structural, dielectric and ferroelectric study of microwave sintered lanthanum substituted BaTiO3 ceramics. “Materials Chemistry and Physics” 2011, vol. 130, p. 191—195.

[105] J.B. Xu, J.W. zHai, X. yao: Structure and dielectric nonlinear characteristics of BaTiO3 thin films prepared by low temperature process. “Journal of Alloys and Compounds” 2009, vol. 467, p. 567—571.

[106] F.D. morriSon, D.C. Sinclair, J.M. Skakle, A.R. weSt: Novel doping mechanism for very‑

high‑permittivity barium titanate ceramics. “Journal of the American Ceramic Society”

1998, vol. 81, No. 7, p. 1957—1960.

173 Bibliografia

[107] F.D. morriSon, D.C. Sinclair, A.R. weSt: Electrical and structural characteristics of lanthanum‑doped barium titanate ceramics. “Journal of Applied Physics” 1999, vol. 86, p. 6355—6366.

[108] F.D. morriSon, A.M. coatS, D.C. Sinclair, A.R. weSt: Charge compensation mechanisms in La‑doped BaTiO3. “Journal of Electroceramics” 2001, vol. 6, p. 219—232.

[109] R. weSt, T. adamS, F. morriSon, D. Sinclair: Novel high capacitance materials: BaTiO3: La and CaCu3Ti4O12. “Journal of the European Ceramic Society” 2004, vol. 24, p. 1439—

1448.

[110] A. ianculeScu, Z.V. mocanu, L.P. curecHeriu, L. mitoSeriu, L. padurariu, R. truSca: Dielectric and tunability properties of La‑doped BaTiO3 ceramics. “Journal of Alloys and Compounds” 2011, vol. 509, p. 10040—10049.

[111] B. wodecka-d, D. czekaj: Właściwości elektryczne modyfikowanej elektroceramiki na bazie tytanianu baru. „Ceramika/Ceramics” 2008, nr 103/1, s. 241—246.

[112] J.Q. qi, W.P. cHen, Z.T. zHang, Z.L. tang: Acceptor compensation in (Sb, Y)‑doped semi‑

conducting Ba1−xSrxTiO3. “Journal of Materials Science” 1997, vol. 32, p. 713—717.

[113] W. caia, Ch. fu, Z. lin, X. deng, W. jiang: Influence of lanthanum on microstructure and dielectric properties of barium titanate ceramics by solid state reaction. “Advanced Mate‑

rials Research” 2012, vol. 412, p. 275—279.

[114] M.D. glincHuk, I.P. bykoV, S.M. kornienko, V.V. laguta, A.M. Slipenyuk, A.G. bilouS, O.I. V’yunoV, O.Z. yancHeVSkii: In uence of impurities on the properties of rare‑earth‑doped barium titanate ceramics. “Journal of Materials Chemistry” 2000, vol. 10, p. 941—947.

[115] H. beltran, E. cordoncillo, P. eScribano: Insulating properties of lanthanum‑doped Ba‑

TiO3 ceramics prepared by low‑temperature synthesis. “Journal of the American Ceramic Society” 2004, vol. 87, No. 11, p. 2132—2134.

[116] Y. liu, Y. feng, X. wu, X. Han: Microwave absorption properties of La doped barium titanate in X‑band. “Journal of Alloys and Compounds” 2009, vol. 472, p. 441—445.

[117] T. ramoSka, J. banyS, R. SobieStianSkaS, M. vijatović Petrović, J. BoBić, B. Stojanović: Dielectric investigations of La‑doped barium titanate. “Processing and Application of Ce‑

ramics” 2010, vol. 4, p. 3193—3198.

[118] M.M. vijatović Petrović, J.D. BoBić, R. grigalaitiS, B.D. Stojanović, J. banyS: La‑doped and La/Mn‑co‑doped barium titanate ceramics. “Acta Physica Polonica A” 2013, vol. 124, No. 1, p. 155—160.

[119] M.M. vijatović, B.D. Stojanović, J.D. BoBić, T. ramoSka, P. bowen: Properties of lantha‑

num doped BaTiO3 produced from nanopowders. “Ceramics International” 2010, vol. 36, p. 1817—1824.

[120] Z.Z. lazarević, M.M. vijatović, B.D. Stojanović, M.J. romcević, N.Z. romcević: Structu‑

re study of nanosized La‑ and Sb‑doped BaTiO3. “Journal of Alloys and Compounds” 2010, vol. 494, p. 472—475.

[121] S.M. bobade, D.D. gulwade, A.R. kulkarni, P. gopalan: Dielectric properties of A‑ and B‑site‑doped BaTiO3 (I): La — and Al‑doped solid solutions. “Journal of Applied Physics”

2005, vol. 97, p. 1—8.

[122] D. mancić, V. PaUnović, M. vijatović, B. Stojanović, Lj. zivković: Electrical characteri‑

zation and impedance response of lanthanum doped barium titanate ceramics. “Science of Sintering” 2008, vol. 40, p. 283—294.

[123] K.E. oczoś: Kształtowanie ceramicznych materiałów technicznych. Wydawnictwo Poli‑

techniki Rzeszowskiej, Rzeszów 1996.

[124] J.R. groza: Nanosintering. “Nanostructured Materials” 1999, vol. 12, p. 987—992.

[125] H.T. kim, Y.H. Han: Sintering of nanocrystalline BaTiO3. “Ceramics International” 2004, vol. 30, p. 1719—1723.

[126] S.B. narang, D. kaur, S. baHel: Dielectric properties of lanthanum substituted barium titanate microwave ceramics. “Materials Letters” 2006, vol. 60, p. 3179—3182.

[127] Z. Valdez-naVa, S. guillemet-fritScH, Ch. tenailleau, T. lebey, B. durand, J.Y. cHane --cHing: Colossal dielectric permittivity of BaTiO3‑based nanocrystalline ceramics sintered by spark plasma sintering. “Journal of Electroceramics” 2009, vol. 22, p. 238—244.

[128] N.E. Horr, Z. Valdez-naVa, C. tenailleau, S. guillemet-fritScH: Microstructure of Ba1−xLaxTiO3−δ ceramics sintered by Spark Plasma Sintering. “Journal of the European Ceramic Society” 2011, vol. 31, p. 1087—1096.

[129] B. peSzko, T. niedoba, M. SzymańSka-czaja: Składanie rozkładów wielkości ziaren otrzymanych z różnych metod pomiarowych. „Górnictwo i Geoinżynieria” 2006, nr 3(1), s. 279—293.

[130] B. wodecka-d, Z. Surowiak: Otrzymywanie i właściwości fizyczne elektroceramiki (Ba0,6Pb0,4 )TiO3 domieszkowanej szkłem specjalnym. „Ceramika/Ceramics” 2003, nr 80, s. 433—438.

[131] R. pampucH, K. Haberko, M. kordek: Nauka o procesach ceramicznych. PWN, Warszawa 1992.

[132] W. Szczepaniak: Metody instrumentalne w analizie chemicznej. Wydawnictwo Naukowe PWN, Warszawa 2004.

[133] D. ScHultze: Termiczna analiza różnicowa. PWN, Warszawa 1974.

[134] W. nocUń-wczelik: Laboratorium materiałów wiążących. AGH UWND, Kraków 2003.

[135] J. goldStein, D.E. newbury, D.C. joy, C.E. lyman, P. ecHlin, E. lifSHin, L. Sawyer, J.R. micHael: Scanning electron microscopy and X‑ray microanalysis. Kluwer Academic, Plenum Publishers, New York 2003.

[136] W. zHou, Z.L. wang: Scanning microscopy for nanotechnology, techniques and applica‑

tions. Springer Science+Business Media, LLC, New York 2006.

[137] A. Szummer: Podstawy ilościowej mikroanalizy rentgenowskiej. Warszawa 1994.

[138] W. krauS, G. nolze: Powder cell — a program for the representation and manipula‑

tion of crystal structures and calculation of the resulting X‑ray powder patterns. “Journal of Applied Crystallography” 1996, vol. 29, p. 301.

[139] W. krauS, G. nolze: PowderCell as teching tool. “CPD Newsletter” 1988, vol. 20, p. 27.

[140] A. laSia: Electrochemical impedance spectroscopy and it’s applications, “Modern aspects of electrochemistry”. Kluver Academic, Plenum Publishers, New York 1999, vol. 32, p. 143—248.

[141] A. liSińSka-czekaj: Wielofunkcyjne materiały ceramiczne na osnowie tytanianu bizmutu.

Wydawnictwo Gnome, Wydawnictwo Uniwersytetu Śląskiego, Katowice 2012.

[142] W. boguSz, F. krok: Elektrolity stałe. Właściwości elektryczne i sposoby ich pomiaru.

WNT, Warszawa 1995.

[143] M. nocUń: Wprowadzenie do spektroskopii impedancyjnej w badaniach materiałów cera‑

micznych. Wydawnictwo Naukowe Akapit, Kraków 2003.

[144] A.R. weSt, D.C. Sinclair, N. HiroSe: Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy. “Journal of Electroceramics” 1997, vol. 1, No. 1, p. 65—71.

[145] B.A. baukamp: Electrochemical impedance spectroscopy in solid state ionics: recent advances. “Solid State Ionics” 2004, vol. 169, p. 65—73.

175 Bibliografia

[146] E.J. abram, D.C. Sinclair, A.R. weSt: A strategy for analysis and modeling of impedance spectroscopy data of electroceramics: Doped lanthanum gallate. “Journal of Electrocera‑

mics” 2003, vol. 10, p. 165—177.

[147] D.C. Sinclair, A.R. weSt: Effect of atmosphere on the PTCR properties of BaTiO3 cera‑

mics. “Journal of Materials Science” 1994, vol. 29, no. 23, p. 6661—6668.

[148] B.A. baukamp: Practical application of the Kramers—Kronig transformation on impedan‑

ce measurement in solid state electrochemistry. “Solid State Ionic” 1993, vol. 62, p. 131—

[149] B.A. b141. aukamp: A nanolinear least squares fit procedure for analysis of immittance data of electrochemical systems. “Solod State Ionics” 1986, vol. 20, p. 31—44.

[150] T. krajewSki: Zagadnienia fizyki dielektryków. Wydawnictwo Komunikacji i Łączności, Warszawa 1970.

[151] J. antoniewicz: Właściwości dielektryków. Wydawnictwo Naukowo‑Techniczne, Warszawa 1971.

[152] M.E. lineS, A.M. glaSS: Principles and applications of ferroelectrics and related mate‑

rials. Clarendon Press, Oxford 1977.

[153] Ch. boller: Ways and options for aircraft structural health management. “Cost” 2000,

[153] Ch. boller: Ways and options for aircraft structural health management. “Cost” 2000,