• Nie Znaleziono Wyników

Na podstawie poczynionych obserwacji można wywnioskować, że zaproponowane w rozprawie podejście badawcze umożliwia wszechstronną analizę mechanizmów rządzących zaangażowaniem Cx43 w mikroewolucję raka prostaty i GBM. W szczególności można z nich wyciągnąć następujące wnioski:

1. Istnieją bezpośrednie związki między ekspresją białek Snail-1 oraz Cx43 w nowotworach tak od siebie odległych pod względem pochodzenia i przebiegu jak rak prostaty i GBM.

2. Opisana w pracy rola Snail-1 w mikroewolucji inwazyjnych sub-populacji komórek GBM umożliwia stosowanie go jako markera złośliwości glejaków.

3. Stwierdzone podobieństwa między mikroewolucją komórek raka prostaty i GBM i między rolą Cx43 w procesie mikroewolucji inwazyjnych sub-populacji komórek obu typów nowotworów wskazują na istnienie podobnych mechanizmów rządzących procesem nowotworzenia w różnych tkankach.

4. Nowe fakty na temat roli Snail-1 oraz Cx43 w regulacji potencjału inwazyjnego komórek raka prostaty i glejaków pozwalają na uzyskanie pełniejszego obrazu rozwoju obu typów nowotworów. Glejaki nie wywodzą się z komórek nabłonkowych, więc w ich przypadku nie można mówić o procesie przejścia epitelialno-mezenchymalnego. Jednak ekspresja białka Snail-1 oraz związane z nią zmiany fenotypowe świadczą

126 o zaangażowaniu w progresję glejaków procesu podobnego do EMT. Proces ten nie był do tej pory przedmiotem pogłębionych analiz.

127

7 LITERATURA

1. Albanese, I., Scibetta, A. G., Migliavacca, M., Russo, A., Bazan, V., Tomasino, R. M., Colomba, P., Tagliavia, M., La Farina, M.

(2004). Heterogeneity within and between primary colorectal carcinomasand matched metastases as revealed by analysis of Ki-ras and p53 mutations. Biochem Biophys Res Commun. 325,784-791.

2. Alderton, G. K. (2011). Tumorigenesis: the origins of glioma. Nature Reviews Cancer, 11(9), 627-627. fatal tumor interacting with the parenchyma.

Life sciences, 89(15), 532-539.

6. Arumugam, T., Ramachandran, V., Fournier, K. F., Wang, H., Marquis, L., Abbruzzese, J. L., Choi, W. (2009).

Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer research, 69(14), 5820-5828.

7. Artale, S., Sartore-Bianchi, A., Veronese, S.

M., Gambi, V., Sarnataro, C. S., Gambacorta, M., Lauricella, C., Siena, S.

(2008). Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer. J Clin Oncol.

Cancer stem cells, pluripotency, and cellular

heterogeneity: a WNTer perspective. Curr Top Dev Biol, 107, 373-404.

10. Badeaux, M. A., Tang, D. G. (2014).

Prostate Cancer Cell Heterogeneity and Prostate Cancer Stem Cells. Cancer Stem Cells, 183-191.

11. Bagley, R. G., Weber, W., Rouleau, C., Teicher, B. A. (2005). Pericytes and endothelial precursor cells: cellular interactions and contributions to

malignancy. Cancer research, 65(21), 9741-9750.

12. Barcellos-Hoff, M. H., Lyden, D., Wang, T.

C. (2013). The evolution of the cancer niche during multistage carcinogenesis. Nature Reviews Cancer, 13(7), 511-518.

13. Barrandon Y., Green H. (1987). Three clonal types of keratinocyte with different capacities for multiplication. Proceedings of the National Academy of Sciences of the United States of America, Apr; 84(8):2302-2306.

14. Baum B., Settleman J., Quinlan M. (2008).

Transitions between epithelial and mesenchymal states in development and disease, Seminars in Cell & Developmantal Biol, 19,294-308.

15. Baylin, S. B., Ohm, J. E. (2006). Epigenetic gene silencing in cancer–a mechanism for early oncogenic pathway addiction?. Nature Reviews Cancer, 6(2), 107-116.

16. Beavon I.R.G. (2000). The E-cadherin-catenin compex in tumour metastasis:

structure, function and regulation, European Journal of Cancer 36;1607-1620.

17. Beyer, E. C., Paul, D. L., Goodenough, D.

A. (1990). Connexin family of gap junction proteins. Journal of Membrane Biology, 116(3), 187-194.

18. Bissell, M.J., Labarge, M.A. (2005).

Context, tissue plasticity, and cancer: aree tumor stem cells also regulated by the

128

microenvironment? Cancer Cell. Jan;

7(1):17-23.

19. Bogenrieder, T., Herlyn, M. (2003). Axis of evil: molecular mechanisms of cancer metastasis. Oncogene, 22(42), 6524-6536.

20. Bonavia, R., Mukasa, A., Narita, Y., Sah, D.

W., Vandenberg, S., Brennan, C., Furnari, F.

(2010). Tumor heterogeneity is an active process maintained by a mutant

(1990). Tumor cell invasion and gap junctional communication. I. Normal and malignant cells confronted in monolayer cultures. Invasion Metastasis 10, 18-30.

23. Brauner, T., Hulser, D.F. Tumor cell invasion and gap junctional communication.

II. Normal and malignant cells confronted in multicell spheroids (1990).

24. Brimo, F., Montironi, R., Egevad, L., Erbersdobler, A., Lin, D. W., Nelson, J. B., Epstein, J. I. (2013). Contemporary grading for prostate cancer: implications for patient care. European urology, 63(5), 892-901.

25. Brutovsky, B., Horvath, D. (2013), Structure of Intratumor Heterogeneity: Is Cancer Hedging Its Bets? arXiv:1307.0607 [q-bio.PE].

26. Brock A, Chang H, Huang S.(2009). Non-genetic heterogeneity-a mutation-independent driving force for the somatic evolution of tumours. Nat Rev Genet. 2009 May;10(5):336-342.

27. Brown, K. A., Aakre, M. E., Gorska, A. E., Price, J. O., Eltom, S. E., Pietenpol, J. A., Moses, H. L. (2004). Induction by transforming growth factor-beta1 of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res, 6(3), 215-231.

28. Bruzzone, S., Guida, L., Zocchi, E., Franco, L., De Flora, A. (2001). Connexin 43 hemi channels mediate Ca2+-regulated

transmembrane NAD+ fluxes in intact cells.

The FASEB Journal, 15(1), 10-12.

29. Burrell, R. A., McGranahan, N., Bartek, J., Swanton, C. (2013). The causes and consequences of genetic heterogeneity in

cancer evolution. Nature, 501(7467), 338-345.

30. Calvo, F., Sahai, E. (2011). Cell

communication networks in cancer invasion.

Current opinion in cell biology, 23(5), 621-629.

31. Clarke, M. F., Fuller, M. (2006). Stem cells and cancer: two faces of eve. Cell, 124(6), 1111-1115.

32. Chaffer C.L., Brennan J.P., Slavin J.L., Blick T., Thompson E.W., Williams E.D.

(2006). Mesenchymal-to-epithelial Transition Facilitates Bladder Cancer Metastasis: Role of Fibroblast Growth Factor Receptor-2, Cancer Res 66:23.

33. Chaffer, C.L., Thompson, E.W., Williams, E.D. (2007). Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs 185: 7-19.

34. Chambers, A. F., Groom, A. C., MacDonald, I. C. (2002). Metastasis:

dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563-572.

35. Chen, C. S., Tan, J., Tien, J. (2004).

Mechanotransduction at cell-matrix and cell-cell contacts. Annu. Rev. Biomed. Eng., 6, 275-302.

36. Chen, K. G., Sikic, B. I. (2012). Molecular pathways: regulation and therapeutic implications of multidrug resistance.

Clinical Cancer Research, 18(7), 1863-1869.

37. Chen C.L., Mahalingam D., Osmulski P., Jadhav R.R., Wang C.M., Leach R.J., Chang T.C., Weitman S.D., Kumar A.P., Sun L., Gaczynska M.E., Thompson I.M., Huang T.H. (2013). Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of EMT-related genes in metastatic prostate cancer. Prostate. 2013 breast cells but is insufficient to induce an epithelial-mesenchymal transition. BMC cancer, 14(1), 552.

39. Chinoy, N. J. (2010). Second Messengers in Signal Transduction and Cell Signaling.

Cellular and Biochemical Science, 151.

40. Cho H.J., Baek K.E., Saika S., Jeong M.J.

(2007). Snail is required for transforming growth factor-β-induced epithelial-mesenchymal transition by activating PI3

129 PSA-independent risk factor for prostate cancer in African American men: Results from a pilot study. Cancer letters, 331(2), 154-157.

42. Christiansen, J. J., Rajasekaran, A. K.

(2006). Reassessing epithelial to

mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer

(2006). Cancer stem cells – perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res, 66: 9339-9344.

45. Clevers, H. (2011). The cancer stem cell:

premises, promises and challenges. Nature medicine, 313-319.

46. Cohnheim J. (1875). Congenitales, quergestreiftes Muskelsarkon der Nireren, AFM-based analysis of human metastatic cancer cells. Nanotechnology, 19(38), 384003.

49. Czyż, J. (2008). The stage-specific function of gap junctions during tumourigenesis.

Cellular & molecular biology letters, 13(1), 92-102.

50. Czyż, J., Szpak, K., Madeja, Z. (2012). The role of connexins in prostate cancer promotion and progression. Nature Reviews Urology, 9(5), 274-282.

51. Dai, P., Nakagami, T., Tanaka, H., Hitomi, T., Takamatsu, T. (2007). Cx43 mediates TGF-β signaling through competitive Smads binding to microtubules. Molecular biology of the cell, 18(6), 2264-2273.

52. Dang, X., Doble, B. W., Kardami, E.

(2003). The carboxy-tail of connexin-43

localizes to the nucleus and inhibits cell growth. Molecular and cellular transition, cancer stem cells and treatment resistance. Breast Cancer Res, 14(1), 202.

55. De Boer, T. P., Van Veen, T. A.,

(2014). Connexins, gap junctions and tissue invasion. FEBS letters, 588(8), 1331-1338.

57. de Feijter, A. W., Matesic, D. F., Ruch, R.

J., Guan, X., Chang, C. C., Trosko, J. E.

(1996). Localization and function of the connexin 43 gap-junction protein in normal and various oncogene-expressing rat liver epithelial cells. Molecular carcinogenesis, 16(4), 203-212.

58. Dehouck, M. P., Jolliet‐Riant, P., Brée, F., Fruchart, J. C., Cecchelli, R., Tillement, J.

P. (1992). Drug Transfer Across the Blood‐Brain Barrier: Correlation Between In Vitro and In Vivo Models. Journal of neurochemistry, 58(5), 1790-1797.

59. Dexter, D. L., Kowalski, H. M., Blazar, B.

A., Fligiel, Z., Vogel, R., Heppner, G. H.

(1978). Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer

Unraveling cell populations in tumors by single-cell mass cytometry. Current Opinion in Biotechnology.

62. DiMeo, T. A., Anderson, K., Phadke, P., Fan, C., Perou, C. M., Naber, S., Kuperwasser, C. (2009). A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Res. 69,5364-5373.

63. Djulbegovic, M., Beyth, R. J., Neuberger, M. M., Stoffs, T. L., Vieweg, J.,

130 single-cell-based model of tumor growth in vitro:

monolayers and spheroids. Physical biology, 2(3), 133.

65. Donnenberg, V. S., Donnenberg, A. D.

(2005). Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis.

The Journal of Clinical Pharmacology, 45(8), 872-877.

66. Duflot-Dancer, A., Mesnil, M., Yamasaki, H. (1997). Dominant-negative abrogation of

68. Dunning, W. F. (1963). Prostatic cancer in rat. Natl. Cancer Inst. Monogr., 12: 351-369.

69. Elzarrad, M. K., Haroon, A., Willecke, K., Dobrowolski, R., Gillespie, M. N., Al-Mehdi, A. B. (2008). Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium.

BMC medicine, 6(1), 20.

70. Egeblad, M., Nakasone, E. S., Werb, Z.

(2010). Tumors as organs: complex tissues that interface with the entire organism.

Developmental cell, 18(6), 884-901.

(1999). Connexins are expressed in primary brain tumors and enhance the bystander effect in gene therapy. Neurosurgery, 44(2), 361-368.

73. Fabregat, I., Roncero, C., Fernández, M.

(2007). Survival and apoptosis: a

dysregulated balance in liver cancer. Liver International, 27(2), 155-162.

(2008). Measurement of elastic properties of prostate cancer cells using AFM. Analyst, 133(11), 1498-1500.

76. Fernandez, N., Wu, M., Das, S. (2012). The role of the epithelial-mesenchymal transition in the maintenance of stemness in neural and glioma stem cells. Cancer Research, 72(8 Supplement), 347.

77. Franco, O. E., Jiang, M., Strand, D. W., Peacock, J., Fernandez, S., Jackson, R. S., Hayward, S. W. (2011). Altered TGF-β signaling in a subpopulation of human stromal cells promotes prostatic carcinogenesis. Cancer research, 71(4), 1272-1281.

78. Fleshner, N. E., Kapusta, L., Donnelly, B., Tanguay, S., Chin, J., Hersey, K., Parulekar, W. R. (2011). Progression from high-grade prostatic intraepithelial neoplasia to cancer:

a randomized trial of combination vitamin-E, soy, and selenium. Journal of Clinical Oncology, 29(17), 2386-2390.

79. Friedl, P., Alexander, S. (2011). Cancer invasion and the microenvironment:

plasticity and reciprocity. Cell, 147(5), 992-1009.

80. Fujii, H., Marsh, C., Cairns, P., Sidransky, D., Gabrielson, E., (1996). Genetic divergence in the clonal evolution of breast cancer. Cancer Res. 56,1493-1497.

81. Fuxe, J., Karlsson, M. C. (2012). TGF-β-induced epithelial-mesenchymal transition: a link between cancer and inflammation. In Seminars in cancer biology. Academic Press, Vol. 22, No. 5, 455-461.

82. Gavert, N., Ben-Ze’ev, A. (2008).

Epithelial–mesenchymal transition and the invasive potential of tumors. Trends in molecular medicine, 14(5), 199-209.

83. Gey, G. (1954-1955). Some aspects of the constitution and behavior of normal and malignant cells maintained in continuous culture. The Harvey Lectures, Series L: 154-229.

84. Giannoni, E., Bianchini, F., Masieri, L., Serni, S., Torre, E., Calorini, L., Chiarugi, P., (2010). Reciprocal activation of prostate cancer cells and cancer-associated

fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res. 70,6945-6956.

85. Giard, D. J., Aaronson, S. A., Todaro, G. J., Arnstein, P., Kersey, J. H., Dosik, H., Parks, W. P. (1973). In vitro cultivation of human

131

tumors: establishment of cell lines derived from a series of solid tumors. Journal of the National Cancer Institute, 51(5), 1417-1423.

86. Goldberg, G.S., Bechberger, J.F., Tajima, Y., Merritt, M., Omori, Y., Gawinowicz, M.A., Narayanan, R., Tan, Y., Sanai, Y., Yamasaki, H., Naus, C.C., Tsuda, H., Nicholson, B.J. (2000). Connexin43 suppresses MFG-E8 while inducing contact growth inhibition of glioma cells. Cancer Res. 60, 6018-6026.

87. Graff, J. R., Herman, J. G., Lapidus, R. G., Chopra, H., Xu, R., Jarrard, D. F., Baylin, S.

B. (1995). E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Research, 55(22), 5195-5199.

88. Guarino M. (2007). Epithelial-mesenchymal transition and tumor invasion, The

International Journal of Biochemistry &

Cell Biology 39: 2153-2160.

89. Gupta, P. B., Chaffer, C. L., Weinberg, R.

A. (2009). Cancer stem cells: mirage or reality?. Nature medicine, 15(9), 1010-1012.

90. Gupta, P.B., Fillmore, C.M., Jiang, G., Shapira, S.D., Tao, K., Kuperwasser, C.

Lander, E.S. (2011), Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells.

Cell 146, 633–644.

91. Haass, N. K., Smalley, K. S., Herlyn, M.

(2004). The role of altered cell–cell communication in melanoma progression.

Journal of molecular histology, 35(3), 309-318.

92. Hanahan, D., Weinberg, R. A. (2000). The hallmarks of cancer. cell, 100(1), 57-70.

93. Hanahan, D., Weinberg, R. A. (2011).

Hallmarks of cancer: the next generation.

Cell, 144(5), 646-674.

94. Haslehurst, A. M., Koti, M., Dharsee, M., Nuin, P., Evans, K., Geraci, J., Feilotter, H.

(2012). EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC cancer, 12(1), 91.

95. Heddleston, J. M., Li, Z., McLendon, R. E., Hjelmeland, A. B., Rich, J. N. (2009). The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle, 8(20), 3274-3284.

96. Heldin, C. H., Landström, M., Moustakas, A. (2009). Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial–

99. Heppner, G. (1984). Tumor heterogeneity, Cancer research,44:2259-2265.

100. Hirschi, K.K., Xu, C.E., Tsukamoto, T., Sager, R. (1996). Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary carcinoma cells and restore differentiation potential.

Cell Growth Differ. 7, 861-870.

101. Hirschhaeuser, F., Menne, H., Dittfeld, C., West, J., Mueller-Klieser, W., Kunz-Schughart, L. A. (2010). Multicellular tumor spheroids: an underestimated tool is catching up again. Journal of biotechnology, 148(1), 3-15.

102. Huang, G. Y., Wessels, A., Smith, B. R., Linask, K. K., Ewart, J. L., Lo, C. W.

(1998). Alteration in connexin 43 gap junction gene dosage impairs conotruncal heart development. Developmental biology, 198(1), 32-44.

103. Huang, S. (2012). Tumor progression:

chance and necessity in Darwinian and Lamarckian somatic (mutationless) evolution. Progress in biophysics and molecular biology, 110(1), 69-86.

104. Huang, S. (2013). Genetic and non-genetic instability in tumor progression: link between the fitness landscape and the epigenetic landscape of cancer cells. Cancer and Metastasis Reviews, 32(3-4), 423-448.

105. Hugo, H., Ackland, M.L., Blick, T., Lawrence, M.G., Clements, J.A., Williams, E.D., Thompson, E.W. (2007) Epithelial-mesenchymal and Epithelial-mesenchymal epithelial transitions in carcinoma progression. J Cell Physiol 213: 374-383.

106. Hynes, R. O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion.

Cell, 69(1), 11-25.

107. Isaacs, J. T., Coffey, D. S. (1981).

Adaptation vs. selection as the mechanisms responsible for the relapse of prostatic cancer to androgen ablation as studied in the

132 coupled to clonal selection as a mechanism for tumor progression in the Dunning R-3327 rat prostatic adenocarcinoma system.

Cancer Res., 42. 2353-2361.

111. Ishii, H., Iwatsuki, M., Ieta, K., Ohta, D., Haraguchi, N., Mimori, K., Mori, M.

(2008). Cancer stem cells and

chemoradiation resistance. Cancer science, 99(10), 1871-1877.

112. Jin, J. K., Dayyani, F., Gallick, G. E. (2011).

Steps in prostate cancer progression that lead to bone metastasis. International Journal of Cancer, 128(11), 2545-2561.

113. Jones, P. A., Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature reviews genetics, 3(6), 415-428.

114. Jones, S., Zhang, X., Parsons, D. W., Lin, J.

C., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Kamiyama, H., Jimeno, A., Hong, S. M., Fu, B., Lin, M. T., Calhoun, E.

S., Kamiyama, M., Walter, K., Nikolskaya, T., Nikolsky, Y., Hartigan, J., Smith, D. R., Hidalgo, M., Leach, S. D., Klein, A. P., Jaffee, E. M., Goggins, M., Maitra, A., Iacobuzio Donahue, C., Eshleman, J. R., Kern, S. E., Hruban, R. H., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V. E., Kinzler, K. W., (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801-1806.

115. Kahlert, U. D., Maciaczyk, D., Doostkam, S., Orr, B. A., Simons, B., Bogiel, T., Maciaczyk, J. (2012). Activation of canonical WNT/β-catenin signaling enhances in vitro motility of glioblastoma cells by activation of ZEB1 and other activators of epithelial-to-mesenchymal transition. Cancer letters, 325(1), 42-53.

116. Klarmann, G. J., Hurt, E. M., Mathews, L.

A., Zhang, X., Duhagon, M. A., Mistree, T., Farrar, W. L. (2009). Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature.

Clinical & experimental metastasis, 26(5), 433-446.

117. Kahlert, U. D., Nikkhah, G., Maciaczyk, J.

(2013). Epithelial-to-mesenchymal (-like) transition as a relevant molecular event in malignant gliomas. Cancer letters, 331(2), 131-138.

118. Kalikaki, A., Koutsopoulos, A., Trypaki, M., Souglakos, J., Stathopoulos, E., Georgoulias, V., Mavroudis, D., Voutsina, A. (2008). Comparison of EGFR and K-RAS gene status between primary tumours and corresponding metastases in NSCLC. Br J Cancer. 99, 923-929.

119. Kameritsch, P., Khandoga, N., Pohl, U., Pogoda, K. (2013). Gap junctional communication promotes apoptosis in a connexin-type-dependent manner. Cell death & disease, 4(4), e584.

120. Kandouz, M., Batist, G. (2010). Gap junctions and connexins as therapeutic targets in cancer. Expert opinion on therapeutic targets, 14(7), 681-692.

121. Kang, Y., Massaque, J. (2004). Epithelial-Mesenchymal Ytansitions: Twist in clonally unrelated metastases may arise in patients with cutaneous melanoma. Am J Surg Pathol. 31,1029-1037.

123. Kauffman, E. C., Ng, C. K., Rinker-Schaeffer, C. (2013). Murine Models of Prostate Cancer. In Prostate Cancer: A Comprehensive Perspective. Springer London,81-106.

124. Kim, J. B. (2005). Three-dimensional tissue culture models in cancer biology. In Seminars in cancer biology. Academic stem cells in normal lung and lung cancer.

Cell. 121,823-835.

126. Kirschner, M. (2013). Beyond Darwin:

evolvability and the generation of novelty.

BMC biology, 11(1), 110.

133

127. Klaunig, J. E., Ruch, R. J. (1990). Role of inhibition of intercellular communication in carcinogenesis. In Pathology Reviews.

Humana Press., 205-216.

128. Kleihues, P., Soylemezoglu, F., Schäuble, B., Scheithauer, B. W., Burger, P. C. (1995).

Histopathology, classification, and grading of gliomas. Glia, 15(3), 211-221.

129. Klein, G., Klein, E. (1956). Conversion of solid neoplasms into ascites tumors. Ann.

NY Acad. Sci. 63: 640-661.

130. Klonisch, T., Wiechec, E., Hombach-Klonisch, S., Ande, S. R., Wesselborg, S., Schulze-Osthoff, K., Los, M. (2008). Cancer stem cell markers in common cancers– myocytes. Journal of molecular and cellular cardiology, 32(10), 1859-1872.

132. Korkaya, H., Wicha, M. S. (2007). Selective Targeting of Cancer Stem Cells. BioDrugs, 21(5), 299-310.

133. Korohoda W., Madeja Z. (1997). Contact of sarcoma cells with fibroblasts accelerates their displacement: copmuter assisted analysis of tumor cell locomotion in co-culture. Bichem Cell Biol 75, 263-276.

134. Kreso A., O’Brien C.A., Galen P., Gan O.I., Notta F., Brown A.M.K., Ng K., Ma J., Wienholds E., Dunant C., Pollett A., Gallinger S., McPherson J., Mullighan C.G., Shibata D., Dick J.E. (2013). Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer.

Science 339, 543.

135. Krutovskikh, V. A., Troyanovsky, S. M., Piccoli, C., Tsuda, H., Asamoto, M., Yamasaki, H. (2000). Differential effect of subcellular localization of communication impairing gap junction protein connexin43 on tumor cell growth in vivo. Oncogene, 19(4), 505-513.

136. Krutovskikh, V.A., Piccoli, C., Yamasaki, H. (2002). Gap junction intercellular communication propagates cell death in cancerous cells. Oncogene, 21:1989-99.

137. Kumar, S., Weaver, V. M. (2009).

Mechanics, malignancy, and metastasis: the

force journey of a tumor cell. Cancer and Metastasis Reviews, 28(1-2), 113-127.

138. Kumar, N. M., Gilula, N. B. (1996). The gap junction communication channel. Cell, 84(3), 381-388.

139. Kuukasjarvi, T., Karhu, R., Tanner, M., Kahkonen, M., Schaffer, A., Nupponen, N., Pennanen, S., Kallioniemi, A., Kallioniemi, O. P., Isola, J. (1997). Genetic heterogeneity and clonal evolution underlying

development of asynchronous metastasis in human breast cancer. Cancer Res. 57,1597-1604.

140. Laerum, O. D., Bjerkvig, R., Steinsvåg, S.

K., de Ridder, L. (1984). Invasiveness of primary brain tumors. Cancer and

142. Laird, D.W. (2006). Life cycle of connexins in health and disease. Biochem. J. 394, 527-543.

143. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M. A., Dick, J. E. (1994). A cell initiating human acute myeloid leukaemia after signalilng, development, and disease, The J of Cell Biol, vol.172,no.7,973-981.

145. Leithe, E., Sirnes, S., Omori, Y., Rivedal, E.

(2006). Downregulation of gap junctions in cancer cells. Crit Rev. Oncog. 12, 225-256.

146. Lekka, M., Gil, D., Pogoda, K., Dulińska-Litewka, J., Jach, R., Gostek, J., Laidler, P.

(2012). Cancer cell detection in tissue sections using AFM. Archives of biochemistry and biophysics, 518(2), 151-156.

147. Lengauer, C., Kinzler, K. W., Vogelstein, B.

(1998). Genetic instabilities in human cancers. Nature, 396(6712), 643-649.

148. Levan, A., Hauschka, T.S. (1953).

Endomitotic reduplication mechanisms in ascites tumors of the mouse. J. Natl. Cancer Inst. 14: 1-21.

134

149. Lindsley, R. C., Gill, J. G., Kyba, M., Murphy, T. L., Murphy, K. M. (2006).

Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development, 133(19), 3787-3796.

150. Liu, Z. C., Chen, X. H., Song, H. X., Wang, H. S., Zhang, G., Wang, H., Du, J. (2014).

Snail regulated by PKC/GSK-3β pathway is crucial for EGF-induced

epithelial-mesenchymal transition (EMT) of cancer cells. Cell and Tissue Research, 1-12.

151. Loewenstein, W.R., Kanno, Y. (1966).

Intercellular communication and the control of tissue growth: lack of communication between cancer cells. Nature 209, 1248-1249.

152. Loewenstein, W.R., Kanno, Y. (1967).

Intercellular communication and tissue growth. I. Cancerous growth. J. Cell Biol.

33, 225-234.

153. Lorico, A., Rappa, G. (2011). Phenotypic heterogeneity of breast cancer stem cells.

Journal of oncology, 2011. Article ID 135039.

154. Lorusso, G., Rüegg, C. (2008). The tumor microenvironment and its contribution to Wong, E. T. (2011). The natural history of extracranial metastasis from glioblastoma multiforme. Journal of neuro-oncology, 105(2), 261-273.

157. Lyons, J. G., Lobo, E., Martorana, A. M., Myerscough, M. R. (2008). Clonal diversity in carcinomas: its implications for tumour progression and the contribution made to it by epithelial-mesenchymal transitions.

Clinical & experimental metastasis, 25(6), 665-677.

158. MacPherson, M. R., Molina, P.,

Souchelnytskyi, S., Wernstedt, C., Martin-Pérez, J., Portillo, F., Cano, A. (2010).

Phosphorylation of serine 11 and serine 92 as new positive regulators of human Snail1 function: potential involvement of casein kinase-2 and the cAMP-activated kinase protein kinase A. Molecular biology of the cell, 21(2), 244-253.

159. Maeda, S., Tsukihara, T. (2011). Structure of the gap junction channel and its implications for its biological functions.

Cellular and Molecular Life Sciences, 68(7), 1115-1129.

160. Mahabir, R., Tanino, M., Elmansuri, A., Wang, L., Kimura, T., Itoh, T., Tanaka, S.

K., DePinho, R. A. (2001). Malignant glioma: genetics and biology of a grave matter. Genes & development, 15(11), 1311-1333.

162. Makino, S. (1956). Further evidence favoring the concept of the stem cell in ascites tumors of rats. Ann. NY Acad. Sci.

63: 818-830.

163. Mani, S. A., Guo, W., Liao, M. J., Eaton, E.

N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J., Weinberg, R. A. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133,704-715.

164. Marsh, T., Pietras, K., McAllister, S. S.

(2013). Fibroblasts as architects of cancer pathogenesis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1832(7), 1070-1078.

165. Marusyk, A., Polyak, K. (2010). Tumor heterogeneity: Causes and consequences;

Biochimica et Biophysica Acta (BBA) - Reviews on Cancer Volume 1805, Issue 1, January, Pages 105-117.

166. Marusyk, A., Almendro, V., Polyak, K.

(2012). Intra-tumour heterogeneity: a looking glass for cancer?. Nature Reviews Cancer, 12(5), 323-334.

167. Masters, J. R. (2000). Human cancer cell lines: fact and fantasy. Nature Reviews Molecular Cell Biology, 1(3), 233-236.

168. Masters, J. R. (2002). HeLa cells 50 years on: the good, the bad and the ugly. Nature Reviews Cancer, 2(4), 315-319.

169. Mattanovich, D., Borth, N. (2006).

Applications of cell sorting in

biotechnology. Microbial cell factories, 5(1), 12.

135

170. McLachlan, E., Shao, Q., Wang, H. L., Langlois, S., Laird, D. W. (2006).

Connexins act as tumor suppressors in three-dimensional mammary cell organoids by regulating differentiation and angiogenesis.

Cancer research, 66(20), 9886-9894.

171. Mehta, P.P., Perez-Stable, C., Nadji, M., Mian, M., Asotra, K., Roos, B.A. (1999).

Suppression of human prostate cancer cell growth by forced expression of connexin genes. Dev. Genet. 24, 91-110.

172. Mesnil, M., Krutovskikh, V., Piccoli, C., Elfgang, C., Traub, O., Willecke, K., Yamasaki, H. (1995). Negative growth control of HeLa cells by connexin genes:

connexin species specificity. Cancer Research, 55(3), 629-639.

173. Mikheeva, S. A., Mikheev, A. M., Petit, A., Beyer, R., Oxford, R. G., Khorasani, L., Rostomily, R. C. (2010). TWIST1 promotes invasion through mesenchymal change in human glioblastoma. Mol Cancer, 9(194), 10-1186.

174. Miki, J., Rhim, J.S. (2008). Prostate cell cultures as in vitro models for the study of normal stem cells and cancer stem cells.

Prostate Cancer and Prostatic Diseases, 11:

32-39.

175. Miner, K. M., Kawaguchi, T., Uba, G. W., Nicolson, G. L. (1982). Clonal drift of cell surface, melanogenic, and experimental Coffey, D. S. (1988). Metastatic potential prediction by a visual grading system of cell motility: prospective validation in the Dunning R-3327 prostatic adenocarcinoma model. Cancer research, 48(15), 4312-4317.

177. Momiyama, M., Omori, Y., Ishizaki, Y., Nishikawa, Y., Tokairin, T., Ogawa, J., Enomoto, K. (2003). Connexin26-mediated gap junctional communication reverses the malignant phenotype of MCF-7 breast cancer cells. Cancer Sci. 94, 501-507.

178. Moolgavkar, S. H., Luebeck, E. G. (2003).

Multistage carcinogenesis and the incidence of human cancer. Genes, chromosomes and cancer, 38(4), 302-306.

179. Moorby, C., Patel, M. (2001). Dual functions for connexins: Cx43 regulates growth independently of gap junction formation. Experimental cell research, 271(2), 238-248.

180. Musialik, E., Ryszawy, D., Madeja, Z., Korohoda, W. (2013).

Morpho-physiological heterogeneity of cells within two rat prostate carcinoma cell lines AT-2

Morpho-physiological heterogeneity of cells within two rat prostate carcinoma cell lines AT-2