• Nie Znaleziono Wyników

WPŁYW WYLESIENIA NA ZMIANY UDZIAŁU JONÓW W SKŁADZIE CHEMICZNYM WÓD MALINOWSKIEGO POTOKU WZDŁUŻ PODŁUŻNYCH PROFILI HYDROCHEMICZNYCH

N/A
N/A
Protected

Academic year: 2021

Share "WPŁYW WYLESIENIA NA ZMIANY UDZIAŁU JONÓW W SKŁADZIE CHEMICZNYM WÓD MALINOWSKIEGO POTOKU WZDŁUŻ PODŁUŻNYCH PROFILI HYDROCHEMICZNYCH"

Copied!
16
0
0

Pełen tekst

(1)

DOI: http://dx.doi.org/10.15576/ASP.FC/2019.18.3.97

www.acta.urk.edu.pl/pl ISSN 1644-0765

O R I G I N A L PA P E R Accepted: 04.11.2019

IMPACT OF DEFORESTATION ON CHANGES OF ION SHARE

IN CHEMICAL COMPOSITION OF WATERS OF THE MALINOWSKI

STREAM ALONG LONGITUDINAL HYDROCHEMICAL PROFILES

Amanda Kosmowska

Institute of Geography and Spatial Management, Jagiellonian University in Kraków, ul. Gronostajowa 7, 30-387 Kraków ABSTRACT

Aim of the study

The aim of the study was to determine the changes of ion share in chemical composition of water with the catchment area increase along longitudinal hydrochemical profiles in an area affected by an ecological di-saster.

Material and methods

The research was conducted in the Malinowski stream catchment in the Skrzyczne massif in the Silesian Beskid mountain range from 2013 to 2014. The catchment was divided into smaller sub-catchments (depen-dent and indepen(depen-dent) and 6 longitudinal profiles were separated along the catchment with the increase in the catchment area surface. Water samples were collected in catchments with a different deforestation level

on a monthly basis and its physical and chemical features (pH, EC25°C, Tw) were measured. The chemical

composition of water was determined with the ion chromatography method (DIONEX 2000) in the range of

14 ions (Ca2+, Mg2+, Na+, K+, NH

4+, Li+, HCO3–, SO42–, Cl–, NO2–, NO3–, PO43–, Br–, F–).

Results and conclusions

The conducted research showed the impact of deforestation on the ion share in the chemical composition of

water. In the deforested catchments, an increase in the share of SO42–, and a decrease in the share of HCO

3–

were observed. The share of SO42– in the waters that were draining the deforested catchment was so high that

it occured in the first position in the water’s hydrochemical type, while the concentration of HCO3– was so low

that its share was minimal. The analysis of hydrochemical types changes along longitudinal profiles showed the difference in chemical composition of waters draining the upper, deforested zone in comparison to the

lower, forested zone. As the catchment area increases, the importance of NO3– decreases and the importance

of HCO3– increases. If the research was conducted exclusively in the profile that closes the Malinowski stream

catchment it would show that the catchment is a typical Carpathian catchment in hydrochemical terms, where bicarbonates are in the first place in water chemical composition. The analysis of water chemical composition conducted in the longitudinal profiles enables the identification of hydrochemical effects of the degradation of forest stand in mountain catchment.

Keywords: stream water chemistry, deforestation, acidic atmospheric deposition, concentration of NO3– and

(2)

Kosmowska, A. (2019). Impact of deforestation on changes of ion share in chemical composition of waters of the Malinowski stream along longitudinal... Acta Sci. Pol., Formatio Circumiectus, 18 (3), 97–112. DOI: http://dx.doi.org/10.15576/ASP.FC/2019.18.3.97

98 www.acta.urk.edu.pl/pl

INTRODUCTION

The chemical composition of stream waters in catch-ment according to Macioszczyk (1987), Pazdro and Kozerski (1990), Chełmicki (2012) is determined by an array of environmental factors. National factors such as geological structure, susceptibility to weath-ering and leaching, total precipitation play a dominant role. Also, it is strongly influenced by vegetation and plant root systems that, on one hand, collect water from the system, and on the other, change physico-chemical conditions of the soil layer (or ground and residual soil layers), and promote the passage of chemical ingredients into soil solution. Even minor surface changes in terms of land use conditions (e.g. deforestation) in seepage spring area can strongly in-fluence water’s chemical composition (Czop et al., 2008). Today, in the period of a growing anthropo-pressure, human economic activity plays increasingly important role (Chełmicki, 2012). Atmospheric pol-lution has a negative impact on forest ecosystems as it is a direct cause of acid rainfalls (Bytnerowicz et al., 2002; Małek et al., 2005), it disturbs the natural chemistry of precipitation, surface and underground waters as well as soil (Małek and Gawęda, 2006a, 2006b; Małek, 2010; Borg and Sundbom, 2014). In the Silesian Beskid range it was shown that strong an-thropopressure led to dying of forest stand in moun-tain areas (Małek and Krakowian, 2012; Kosmowska et al., 2016), and aggradation of sulphur and nitrogen compounds may cause disturbances in proper func-tioning of water and land ecosystems (Moldan and Schnoor, 1992; Borg and Sundbom, 2014).

The aim of the study was to determine the chang-es of ion share in chemical composition of water with the catchment area increase along longitudinal hydro-chemical profiles in an area affected by an ecological disaster of dying of spruce.

RESEARCH SITE

The research on changes in a chemical composition of waters was conducted in the Malinowski stream catchment . The catchment is located in the Skrzyczne massif, the highest peak (1257 m a.s.l.) in the Silesian Beskid range. It is designated by the side ridge of the Skrzyczne massif, which stretches southwest through

Małe Skrzyczne (1211 m a.s.l.), Kopa Skrzyczańska (1189 m a.s.l.) up to Malinowska Skała (1152 m a.s.l.) (see: Fig. 1). In terms of physical and geographical regionalisation, the area belongs to the Western Car-pathians province, the Outer CarCar-pathians sub–prov-ince, the Western Beskid macroregion and the Silesian Beskid mesoregion (Balon and Jodłowski, 2014).

These mountains were uplifted during the Al-pine orogeny in the late Paleogene and the Miocene (Oszczypko, 1995). The glaciation that occurred in the Quaternary had a great impact on the relief of the area. As a result of intensive periglacial processes, charac-teristic gentle slopes and peaks formed that are inter-sected by deep valleys. The current landform of the Silesian Beskid is formed mainly as a result of water erosion. Landslides on slopes and valleys, which are the result of undercutting slopes by water erosion, play a major role in the evolution of the landform (Małek and Gawęda, 2004). Mountain ranges of the Silesian Beskid are formed of the Godula sandstone with a low content slates (Alexandrowicz, 1999; Geologiczna Mapa Polski 1:50000 1966a, 1966b).

This area is covered with a forest stand charac-terised by a high share of the Istebna spruce that grows mainly in monocultures (Barszcz and Małek, 2015). This spruce, however, is not a native species in the Silesian Beskid, hence its share in natural forest stands was low in the past. In the 18th century, along with the increase in the development of industry and agriculture, robbery of wood resources (beech and sycamore) increased. Natural lower subalpine forests were destroyed and replaced with monocultures of spruce of foreign origin, which with time began to disintegrate (Małek, 2015). The main reason for the dying out of forest stands in the research site was the bad condition of forest caused by the immission of industrial pollution from the Czech Republic and the Silesian–Cracow agglomeration. The dying out con-cerned mainly forests located in the ridge parts of the highest hills, most exposed to weather conditions (Capecki, 1994; Kosmowska et al., 2016; Małek et al., 2012a, 2012b).

The Malinowski stream catchment is limited by a stream gauge of the Polish Institute of Meteorolo-gy and Water Management (IMGW) in Lipowa, and it was monitored by the IMGW until 1983. In the 1974 to 1983 hydrological decade, the average discharge of the

(3)

Malinowski stream was 0.64 m3 ∙ s–1 and ranged from

Qmin = 0.04 m3 ∙ s–1 11.11.1983 r. to Qmax = 12.4 m3 ∙ s–1

20.01.1974 r. (Hydrologiczny rocznik wód powierzch-niowych, 1974–1983). Average annual rainfall in the Silesian Beskid is 1400 mm and average annual air temperature in the lower subalpine forest is 5.6°C. The

average duration of the growing season is 192 days (Durło, 2012).

The Malinowski stream catchment has an area of 21.39 km2. Sub-catchments located in the upper, ridge

forest zone are independent and are characterised by a small area not exceeding 0.1 km2. These catchments

Fig. 1. Study area – Malinowski stream catchment 1 – independent catchments closing profiles, 2 – dependent catchments closing profiles, 3 – peaks, 4 – catchment boundaries, 5 – streams, 6 – young forest, 7 – high forest, 8 – deforested area

(4)

Kosmowska, A. (2019). Impact of deforestation on changes of ion share in chemical composition of waters of the Malinowski stream along longitudinal... Acta Sci. Pol., Formatio Circumiectus, 18 (3), 97–112. DOI: http://dx.doi.org/10.15576/ASP.FC/2019.18.3.97

100 www.acta.urk.edu.pl/pl

are the most deforested, from 1.3% of the forest cov-er in catchment no. 2 to 52.0% in catchment no. 1. Catchment no. 4 is deforested in 85.3% and is current-ly covered by young forest. Catchments (dependent and independent) located in the middle forest zone are characterised by a larger area ranging from 0.34 km2

to 1.62 km2 and much greater afforestation ranging

from 44.2% to 85.9%. Catchments located in the low-er forest zone are mostly dependent and they limit hy-drochemical systems. They cover area ranging from 1.63 km2 to 21.9 km2, and their ranges from 57.1% to

69.9% (see: Table 1). Table 1. Characteristics of sub-catchments of the Malinowski stream

Forest zones ID catchmentType of Area

Forest cover

Average slope

Young forest High forest Total

[km2] [%] [%] [%] [o] Upper 1 I 0.09 13.9 38.1 52.0 15.9 2 I 0.03 1.2 0.1 1.3 15.4 3 I 0.04 27.1 22.9 50.0 12.9 4 I 0.05 12.8 1.9 14.7 24.2 Middle 5 I 0.34 3.7 40.5 44.2 9.9 6 D 1.00 7.1 41.0 48.1 7.6 7 D 1.39 22.5 47.1 69.6 9.2 8 D 1.13 37.8 32.8 70.6 7.8 9 D 1.62 19.2 48.3 67.5 8.2 10 I 1.00 2.1 83.8 85.9 7.3 Lower 11 I 10.60 7.1 50.0 57.1 21.0 12 D 1.63 8.5 61.4 69.9 20.7 13 D 3.31 11.1 49.9 61.0 20.5 14 D 4.79 16.8 44.2 61.0 19.7 15 D 7.12 15.3 49.5 64.8 19.9 16 D 8.36 12.2 56.3 68.5 18.6 Malinowski Potok 17 D 21.39 8.2 54.6 62.8 15.1

Data source: own research – completed table (Kosmowska et at. 2016).

RESEARCH METHODS: FIELD, LABORATORY AND DATA ANALYSIS

Field methods

In order to determine the impact of deforestation on changes of ion share in chemical composition of wa-ters in the Malinowski stream catchment, research was conducted from November 2013 to October 2014. The research was conducted in 17 sub-catchments of the Malinowski stream. In 7 independent catchments (I) (spring or divergent ones) and 10 dependent (D) (catchments partially covering areas of other

catch-ments) (Ozga-Zielińska and Brzeziński, 1994). In each catchment, the physical and chemical properties of the water were measured monthly with the Professional YSI PLUS multi–parameter meter (YSI Inc., USA): water temperature, conductivity (EC25°C) and pH, and a water sample was taken to determine the chemical composition (n = 204).

Laboratory methods

Physical properties and chemical composition of water were analysed in the Hydrological and Chemical Lab-oratory of the Institute of Geography and Spatial

(5)

Man-agement of the Jagiellonian University (IGiGP UJ). In order to verify the values of EC and pH obtained with YSI meter in the field, they were analysed again in the laboratory. Subsequently, water samples were fil-tered through a syringe filter with a PTFE membrane (0.45 μm) to prepare them for the chromatography anal-ysis. Chemical composition analysis of water samples was conducted with the ion chromatography method with the DIONEX ICS 2000 system (Dionex Corpora-tion, USA). 14 ions were determined in the range of: 1) main ions of: calcium (Ca2+), magnesium (Mg2+),

sodium (Na+), potassium (K+), bicarbonate ions

(HCO3–), sulphate (VI) (SO42–), chloride (Cl–);

2) biogenic compounds of: ammonium ions (NH4+),

nitrate (III) (NO2–), nitrate (V) (NO3–),

orthophos-phate (V) (PO43–);

3) microelements of: lithium ions (Li+), bromide (Br),

fluoride (F–).

The correctness of chemical analyses was verified based on the analysis of certified reference materials (Trios–94 [batch number 306]) and with the ion balance method (PN–89/C–04638/02). A detailed description of the progress of the laboratory procedure and meth-odology is presented in the monograph by Żelazny (Czasowo–przestrzenna zmienność cech fizykochem-icznych wód Tatrzańskiego Parku Narodowego, 2012). For interpretation, the main ions and NO3– were

se-lected, and other ions (Li+, NH

4+, Br–, PO43–, NO2–, F–)

were ignored in table comparisons due to their low con-centration (often below detection limit) (see: Table 2).

Table 2. Ion detection limits [LOD]

Cation LOD Anion LOD

[mg · dm–3] [mg · dm–3] Ca2+ 0.005 HCO 3– 0.025 Mg2+ 0.005 SO 42– 0.01 Na+ 0.01 NO 3– 0.0025 K+ 0.005 NO 2– 0.0025 NH4+ 0.005 Cl0.0025 Li+ 0.005 F0.001 Br– 0.005 PO43– 0.01 Data analysis

In order to determine the impact of deforestation on changes of ion share in chemical composition of water along longitudinal hydrochemical profiles:

– 6 longitudinal profiles (I, II, III, IV, V, VI) were de-signated along the catchment area (1–17) with the area increase. Profile I: 1–9–16–15–17, profile II: 2–7–13–14–15–16–17, profile III: 3–8–14–15–16– –17, profile IV: 4–6–12–13–14–15–16–17, profile V: 5–12–13–14–15–16–17, profile VI: 10–16–17; – for each sub-catchment, the degree of forest

co-verage, including young forest, and deforestation were calculated on the basis of aerial photographs taken in 2014;

– the average slope and catchment area were calcu-lated for each sub-catchment;

– the chemical composition of waters was interpre-ted due to the share of ions in the chemical com-position of water, expressed in (% mval · dm–3).

The share of ions was calculated assuming that the marked cations and anions constitute 100% of the chemical composition of water. It was assumed that anions and cations constitute 50% mval · dm–3

each so the total of anions = the total of cations. For the above assumption to be met, the spread of balance error was used (Ratajczak and Witczak, 1983 after: Witczak et al., 2013). The general mi-neralisation of waters was assumed as the total of determined ions;

– in order to present the synthetic chemical compo-sition of waters the commonly used in hydroche-mistry Szczukariew–Prikłoński classification was used (after: Macioszczyk, 1987). It assumes that the chemical features of natural waters are decided by 6 main ions (HCO3–, SO42–, Cl–, Ca2+, Mg2+, Na+)

share of which is not lower than 10% mval · dm–3,

and the name of a type starts with an anionic part in order from largest to smallest share. Due to the fact that the share of NO3 in chemical composition

of water sometimes exceeded 10% mval · dm–3,

NO3 was included in the classification and it was

written in the short name of the hydrochemical type in square brackets;

– the share of ions in the chemical compositions was expressed with hydrochemical types;

– the seasonal change of chemical composition of waters was defined based on two criteria:

(6)

Kosmowska, A. (2019). Impact of deforestation on changes of ion share in chemical composition of waters of the Malinowski stream along longitudinal... Acta Sci. Pol., Formatio Circumiectus, 18 (3), 97–112. DOI: http://dx.doi.org/10.15576/ASP.FC/2019.18.3.97

102 www.acta.urk.edu.pl/pl

• time and volume of the share of NO3– in the

structure of the chemical composition, ex-pressed by the graph of the monthly coefficient of variation of the share of NO3 in the structure

of the chemical composition of water. It is the quotient of the monthly concentration of NO3

(% mval · dm–3) to the average annual

concen-tration (Cmonth/Cannual avg.),

• the variability of the NO3– share marked with

the coefficient of variation (Cv) that expresses the ratio of the standard deviation to the aver-age, expressed as a percentage. The following criterion was adopted: Cv < 10% – equalised type, 10 < Cv < 20 – moderate type, Cv > 20 – non–equalised type;

– the chemical composition of stream waters was

cha-racterised with the following statistical measures: arithmetic mean, minimum and maximum value.

RESULTS OF THE STUDY General characteristics

Water courses draining the forested catchments of the Malinowski stream are characterised by a weak-ly alkaline reaction, while the water courses draining catchments located higher, closer to ridges, and that are more deforested, are characterised by higher acid-ification (lower pH) and belong to medium acid wa-ters [according to the division Pazdro and Kozerski (1990)]. In terms of mineralisation, these waters are low–mineralised and belong to so–called ultra–fresh waters (see: Table 3). Chemical composition analysis of waters draining forested and deforested catchments, show particularly large diversity within anions. SO42–

share in the chemical composition of waters draining independent, deforested catchments in the upper, ridge zone of the Skrzyczne massif is very large and that is

Table 3. Values of pH, electrical conductivity (EC25°C), mineral content (Mt) and coefficient of variation (Cv) in stream water

(n = 12)

Forest zones ID

pH EC25°C Mt

Min. Avg. Max. Cv Min. Avg. Max. Cv Min. Avg. Max. Cv

(pH) [%] [μS · cm–1] [%] [mg · dm–3] [%] Upper 1 6.33 6.49 6.57 1.0 43.8 47.3 51.1 5.1 27.67 31.45 35.25 6.8 2 5.71 5.81 5.98 1.5 38.3 40.0 41.8 3.0 21.86 23.91 25.83 5.7 3 6.28 6.45 6.55 1.5 44.2 49.3 52.8 5.1 29.38 35.16 41.04 9.7 4 7.04 7.14 7.37 1.4 59.2 74.3 82.8 8.6 46.93 53.69 58.04 6.1 Average value 6.34 6.47 6.62 1.4 46.4 52.7 57.1 5.5 31.46 36.05 40.04 7.1 Middle 5 7.14 7.37 7.59 1.7 73.1 83.6 91.8 7.3 56.29 61.22 67.65 6.3 6 7.05 7.25 7.38 1.2 62.1 74.2 91.2 10.3 47.21 53.92 65.85 9.4 7 7.28 7.38 7.54 0.9 74.2 83.5 88.8 5.2 56.13 61.29 68.00 7.0 8 7.09 7.23 7.33 1.0 59.0 64.8 71.5 5.2 42.75 47.06 56.72 8.4 9 7.09 7.22 7.34 1.1 65.5 73.1 78.0 5.4 46.41 52.22 57.50 6.7 10 7.15 7.32 7.56 1.6 59.3 69.8 81.2 9.5 39.95 51.44 61.99 11.9 Average value 7.13 7.30 7.46 1.3 65.5 74.8 83.8 7.2 48.12 54.53 62.95 8.3 Lower 11 7.06 7.37 7.56 1.9 64.6 76.2 82.2 6.3 51.78 56.75 65.41 7.4 12 7.17 7.26 7.36 0.9 66.3 78.1 85.3 7.2 50.20 57.41 64.03 6.9 13 6.89 7.30 7.49 2.3 48.4 77.2 85.3 15.0 40.98 56.86 65.66 13.3 14 6.93 7.26 7.52 2.4 47.6 74.5 93.4 14.7 41.76 55.06 63.03 11.4 15 6.65 7.25 7.49 3.2 41.4 73.8 90.0 15.9 34.34 53.27 60.00 12.9 16 7.11 7.31 7.54 1.6 66.9 76.2 88.3 7.5 49.77 55.11 61.06 7.0 Malinowski stream 17 7.18 7.35 7.55 1.3 67.0 76.5 81.5 6.0 50.62 56.19 62.99 7.3 Average value 7.00 7.30 7.50 1.9 57.5 76.1 86.6 10.4 45.64 55.81 63.17 9.5 Average total 6.89 7.10 7.28 1.6 57.7 70.1 78.7 8.1 43.18 50.71 57.65 8.5

(7)

20.72% mval · dm–3 on average, and in catchment no. 2

(almost totally deforested) is up to 31.58% mval · dm–3,

while in forested catchments in the middle and lower zone of the Skrzyczne massif it is much lower (avg. = 14.30% mval · dm–3 and avg. = 14.38% mval · dm–3).

Average share of NO3 in waters from ridge zone is

twice as high (avg. = 10.19% mval · dm–3) as in

for-ested catchments in the middle and lower zones (avg. = 5.42% mval · dm–3 and avg. = 4.62% mval · dm–3).

However, the average share of HCO3– in the chemical

composition of waters is almost twice as high in for-ested catchments (avg. = 28.32% mval · dm–3 and avg.

= 29.20% mval · dm–3) than in deforested catchments

(avg. = 16.59% mval · dm–3) (see: Table 4). Hydrochemical types

In terms of hydrochemistry, three–ion waters dominate in each of dependent and independent catchments, and they are described with the HCO3–SO4–Ca type

(n = 166; 81%). In the ridge zone, the hydrochemi-cal types of waters are more varied (n = 48). Four–ion waters of the HCO3–SO4–[NO3]–Ca type dominate (n = 23; 48%), next are three–ion waters of the HCO3– SO4–Ca type (n = 13; 27%) and some waters of the following types: SO4–[NO3]–Ca–Mg (n = 6; 13%), SO4–Ca–Mg (n = 3; 6%), SO4–[NO3]–Ca (n = 1; 2%), and two–ion waters of the SO4–Ca type (n = 2; 4%). In

the middle and lower catchment, waters of the HCO3–

SO4–Ca type dominate (n = 153; 98%). The HCO3–

SO4–[NO3]–Ca type (n = 1; 0,6%) was observed only

once in the middle zone, and in the lower the HCO3–

Ca type (n = 2; 1,4%) was observed twice (see: Ta-ble 5). The occurrence of this different hydrochemical type of water in the lower zone is probably related to the rapid, one–hour rainfall that occurred during the field research and water sampling.

Longitudinal profiles

Analysis of changes in the share of ions in the chem-ical composition of water shows that along the lon-gitudinal hydrochemical profiles two different phe-nomena can be observed: enrichment and depletion of water into single ions, which results in an increase or decrease in the share of some ions expressed in % mval · dm–3 in the chemical composition of water

in sub-catchments of the Malinowski stream. In the case of NO3–, a decrease of their share in the chemical

composition of water usually occurs, in the direction away from ridge catchments toward stream mouths (profiles: I, II, IV, V). HCO3 act differently as with

an increase of catchment area, their share in chemical composition of water increases (profile II). SO42– act

irregularly as both their increase and decrease in the chemical composition of water can be observed (see: Fig. 2).

Seasonal changes in the structure of the chemical composition of waters

Analysis of seasonal changes in the share of ions in the chemical composition of water shows no changes expressed in hydrochemical types of water for most catchments (n = 12). In four catchments, one change of hydrochemical type of water was observed in a year and several changes in catchment no. 2 – the most de-forested one. In catchment no. 2, chemical composi-tion of water is more complex in winter and spring – four–ion waters SO4–[NO3]–Ca–Mg, while in

sum-mer and autumn more diverse hydrochemical types of water can be observed: two–ion waters SO4–Ca and three–ion waters: SO4–[NO3]–Ca, SO4–Ca–Mg (see: Table 5).

Analysing changes in the share of NO3 in the

chem-ical composition of water during the year, the changes observed were in line with expectations and opposite to expected. In most catchments (1, 2, 5, 6, 7, 8, 12, 13, 14, 17), a bigger share of NO3– in the chemical

compo-sition of water was observed in winter, while a smaller one in summer (see: Fig. 3). It is associated with the accumulation of nitrogen by plants during the growing season. At the time, the concentration of NO3– in waters

decreases and their share in the chemical composition of water also decreases. A different phenomenon was observed in some heavily forested catchments (3, 9, 10) – in summer there was more NO3– in the chemical

composition of water, while in winter there was less (see: Fig. 3). This may indicate a continuous break-down of the forest stand in the catchment of the Ma-linowski stream. In some catchments (4, 11, 15, 16), no clearly oriented changes can be observed.

Analysing the variability of NO3 expressed with

the variability coefficient, it was observed that it is mostly moderate (in nine catchments). The remaining, extreme types – equalised and non–equalised – occur each of four. Diversity of types shows that the forest

(8)

Table 4.

The share of ions in the chemical composition of water

[% mval

· dm

–3] and coefficient of variation (Cv) in stream water (n = 12)

Forest zones ID Ca 2+ Mg 2+ Na + K + HCO 3 – SO 4 2– NO 3 – Cl – Min. Avg. Max. Cv Min. Avg. Max. Cv Min. Avg. Max. Cv Min. Avg. Max. Cv Min. Avg. Max. Cv Min. Avg. Max. Cv Min. Avg. Max. Cv Min. Avg. Max. Cv [% mval · dm –3] [%] [% mval · dm –3] [%] [% mval · dm –3] [%] [% mval · dm –3] [%] [% mval · dm –3] [%] [% mval · dm –3] [%] [% mval · dm –3] [%] [% mval · dm –3] [%] Upper 1 34.96 36.09 37.30 2.0 6.18 6.55 6.94 3.0 5.33 5.87 7.15 7.6 0.40 1.40 2.78 49.6 10.99 14.52 17.08 11.3 17.99 20.06 21.96 6.2 10.43 12.34 14.70 9.4 1.79 2.89 3.66 18.7 2 27.44 28.76 29.43 1.9 9.76 10.14 10.68 2.3 7.86 8.38 8.66 3.0 1.92 2.43 4.38 26.3 2.54 5.16 9.38 43.9 28.0 31.58 34.2 6.4 8.87 10.54 12.92 13.3 1.65 2.56 3.04 16.9 3 34.05 35.32 36.16 1.8 6.85 7.18 7.57 2.5 5.44 5.72 6.10 3.3 0.95 1.61 2.75 34.6 18.94 23.05 27.74 11.1 15.39 18.58 21.09 8.9 4.55 5.68 6.98 14.0 1.57 2.48 2.98 17.9 4 33.81 34.36 34.82 0.9 9.12 9.42 9.86 2.5 4.80 4.96 5.23 2.8 1.06 1.23 1.53 9.1 21.53 23.62 26.86 7.0 11.84 12.67 13.31 3.1 9.59 12.18 14.12 10.5 0.83 1.38 1.68 20.1 Average value 32.57 33.63 34.43 1.7 7.98 8.32 8.76 2.6 5.86 6.23 6.79 4.2 1.08 1.67 2.86 20.9 13.50 16.59 20.27 18.3 18.31 20.72 22.64 6.2 8.36 10.19 12.20 11.8 1.46 2.33 2.84 18.4 Middle 5 34.79 37.08 37.80 2.4 7.25 7.49 8.24 3.5 3.88 4.29 5.75 11.9 0.93 1.10 1.81 23.1 24.80 27.67 32.00 7.1 11.31 12.92 13.75 6.0 5.69 7.89 10.22 16.7 0.84 1.38 2.22 25.9 6 33.75 35.13 37.35 2.4 7.49 8.09 8.40 2.8 4.13 5.54 6.32 9.3 1.01 1.18 1.58 13.0 26.69 28.36 31.99 6.1 12.07 13.67 15.1 1 7.3 4.49 6.03 9.44 20.1 1.12 1.80 2.45 19.4 7 35.71 36.41 36.79 0.9 7.59 7.73 7.96 1.4 4.53 4.74 5.13 3.9 1.01 1.09 1.20 4.6 27.63 29.56 32.13 4.4 12.54 14.12 15.37 5.6 4.02 4.82 5.35 7.8 0.80 1.34 1.80 20.9 8 34.77 35.36 36.71 1.6 7.62 8.10 8.44 2.7 4.56 5.15 5.51 5.8 1.08 1.35 1.82 12.8 26.03 28.66 31.98 6.4 13.64 16.09 17.73 8.3 2.84 3.50 4.74 17.8 0.98 1.57 2.02 21.4 9 34.18 34.82 35.60 1.2 8.05 8.37 8.72 2.3 5.02 5.42 5.74 3.9 1.25 1.35 1.60 6.4 23.05 24.51 26.59 4.6 13.71 14.98 16.50 5.9 6.88 8.25 9.49 11.9 1.84 2.07 2.31 6.4 10 34.01 34.61 35.38 1.2 8.07 8.27 8.58 2.2 5.01 5.49 5.98 4.6 1.48 1.60 1.80 5.1 28.06 31.16 34.12 5.7 11.52 14.00 16.20 10.8 1.44 2.00 3.05 20.9 2.09 2.68 3.37 13.2 Average value 34.54 35.57 36.61 1.6 7.68 8.01 8.39 2.5 4.52 5.1 1 5.74 6.6 1.13 1.28 1.64 10.8 26.04 28.32 31.47 5.7 12.47 14.30 15.78 7.3 4.23 5.42 7.05 15.9 1.28 1.81 2.36 17.9 Lower 11 32.91 33.67 34.62 1.5 8.65 8.92 9.20 1.7 5.33 6.02 6.72 7.7 1.1 1 1.35 1.50 9.7 26.62 29.38 32.71 6.5 12.97 15.60 18.01 8.4 2.28 3.08 4.72 20.1 0.96 1.78 2.52 27.4 12 34.91 36.05 36.74 1.3 7.58 7.79 8.05 1.7 4.63 4.97 5.60 5.4 0.99 1.12 1.56 13.6 26.08 28.19 31.90 6.3 11.71 13.37 14.65 6.5 5.22 6.75 7.85 10.7 0.99 1.55 2.26 22.2 13 35.08 36.01 36.66 1.4 7.63 7.78 7.93 1.3 3.97 4.80 5.1 1 6.1 1.02 1.32 2.53 33.5 26.63 29.58 35.89 8.3 9.72 13.89 16.05 12.0 2.64 4.94 6.21 23.1 0.92 1.44 1.73 15.8 14 32.85 35.49 36.42 2.9 7.39 7.90 8.56 3.6 3.95 5.04 6.28 10.6 1.08 1.39 2.53 35.9 26.42 29.84 36.25 8.4 9.75 14.14 16.59 12.1 2.60 4.22 4.92 14.8 0.92 1.57 2.48 24.8 15 31.96 35.40 36.20 3.2 6.95 7.93 8.85 5.3 4.78 5.07 5.46 3.9 1.09 1.46 3.12 39.3 26.29 28.79 31.67 5.4 12.97 14.47 16.14 7.3 3.48 4.89 5.58 11.9 1.09 1.70 2.15 15.6 16 35.00 35.54 36.12 0.9 7.74 7.98 8.26 1.9 4.86 5.17 5.40 3.0 1.16 1.28 1.62 11.5 27.27 29.13 31.49 5.0 12.70 14.33 15.71 7.0 4.02 4.67 5.22 8.5 1.07 1.73 2.25 18.5 Mali- nowski 17 34.05 34.55 35.34 1.1 8.20 8.45 8.71 1.7 5.16 5.65 6.05 4.4 1.19 1.32 1.41 4.7 26.95 29.46 32.42 6.3 12.36 14.86 16.77 8.5 3.15 3.76 4.64 10.9 1.06 1.77 2.39 21.2 Average value 33.82 35.24 36.01 1.8 7.73 8.1 1 8.51 2.5 4.67 5.25 5.80 5.9 1.09 1.32 2.04 21.2 26.61 29.20 33.19 6.6 11.74 14.38 16.27 8.8 3.34 4.62 5.59 14.3 1.00 1.65 2.25 20.8

(9)

Table 5. Hydrochemical types of water in the Malinowski stream catchment

Seasons Winter Spring Summer Autumn Hydrochemical type

Forest zones ID XI XII I II III IV V VI VII VIII IX X

HCO 3 –SO 4 –Ca HCO 3 –Ca HCO 3 –SO 4 –[NO 3 ]–Ca SO4 –[NO 3 ]–Ca–Mg SO4 –[NO 3 ]–Ca SO4 –Ca–Mg SO–Ca4 Upper 1 12 2 6 1 3 2 3 12 4 1 11 Middle 5 11 1 6 12 7 12 8 12 9 12 10 12 Lower 11 12 12 12 13 11 1 14 11 1 15 12 16 12 17 12 Hydrochemical type

HCO3–SO4–Ca 9 8 9 9 9 9 9 9 8 9 9 9

HCO3–Ca 2

HCO3–SO4–[NO3]–Ca 2 3 2 2 2 2 2 2 1 2 2 2

SO4–[NO3]–Ca–Mg 1 1 1 1 1 1

SO4–[NO3]–Ca 1

SO4–Ca–Mg 1 1 1

(10)

Kosmowska, A. (2019). Impact of deforestation on changes of ion share in chemical composition of waters of the Malinowski stream along longitudinal... Acta Sci. Pol., Formatio Circumiectus, 18 (3), 97–112. DOI: http://dx.doi.org/10.15576/ASP.FC/2019.18.3.97

106 www.acta.urk.edu.pl/pl

Fig. 2. Longitudinal hydrochemical profiles (I, II, III, IV, V, VI) in the Malinowski stream catchment (1–17 numbers of sub-catchments)

(11)

stand in the Malinowski stream catchment continu-ously breaks down. It is worth noticing that in defor-ested catchments, the variability of NO3 in a year is

higher (Cv = 13.3%; catchment no. 2) than in forested catchments (Cv = 9.4%; catchment no. 1) (see: Ta-ble 4). Deforested catchments are characterised most-ly by moderate type, while forested ones: moderate and equalised. The most significant changes occur in

catchments in which degradation of the forest stand (3, 9, 10) or its reconstruction (no. 4 – covered by young forest) can be observed.

SUMMARY AND DISCUSSION

The consequence of deforestation of the slopes in the Silesian Beskid range is a change of the sequence of anions in the chemical composition of water, which is reflected in the hydrochemical types of waters, which are their synthetic image. Share of SO42– ions in the

chemical composition of water in a stream that drains a catchment that is almost totally deforested (no. 2) was so significant that it was in the first place in this water’s hydrochemical type: SO4–[NO3]–Ca–Mg,

SO4–Ca–Mg, SO4–Ca, and SO4–[NO3]–Ca.

Mean-while, the concentration of HCO3– ions was so low that

their share in the chemical composition of water was minimal. Analogous hydrochemical environments in which SO42– dominated over HCO

3– were described by

Michalik (2008) and Michalik et al. (2012) in waters draining quartzite sandstones in the Świętokrzyskie Mountains, and by Kosmowska et al. (2015) and (2018) in the Malinowski stream catchment in the Silesian Beskid range. In the above catchments, the occurrence of SO42– in the first place in the

hydrochem-ical type of water is extremely rare for natural waters, especially since the Godula sandstones, that are the geological base of the above catchments, cannot be their source and the origin of SO42– must be

anthropo-genic. In the Tatras, Wolanin et al. (2017) described an unusual chemical composition of a spring, that was dominated by SO42– (28.12% mval ∙ dm–3) but it was

probably genetically connected to gypsum or anhy-drite rocks. A significant, and sometimes dominant, share of SO42– in the chemical composition of water

is associated with atmospheric supply of pollutants in the second half of the 20th century. It resulted in SO42– accumulation in the residual soil, and now they

are leached from the soil, which was discussed by Jasik and Małek (2013), Kosmowska et al. (2016) and (2018). In the waters draining the lower zone of the Skrzyczne massif and at the closing profile of the Ma-linowski stream catchment in Lipowa, a sequence of anions can be observed in the chemical composition of water that is typical for waters draining sedimentary rocks in the temperate climate, which is dominated by

Fig. 3. The course of NO3– regime [% mval ∙ dm–3] in

(12)

Kosmowska, A. (2019). Impact of deforestation on changes of ion share in chemical composition of waters of the Malinowski stream along longitudinal... Acta Sci. Pol., Formatio Circumiectus, 18 (3), 97–112. DOI: http://dx.doi.org/10.15576/ASP.FC/2019.18.3.97

108 www.acta.urk.edu.pl/pl

HCO3–, with a smaller share of SO42–, Cl– and NO3–. It

can be observed in the hydrochemical type of water in which HCO3 are in the first place: HCO

3–SO4–Ca.

This kind of ion sequence, in which HCO3 dominate

and are in the first place, was obtained by Drużkow-ski and Szczepanowicz (1988) in a small catchment called Wierzbanówka in the Carpathian Foothills, Maultz (1972) in big catchments of the upper Wisła (Soła, Skawa), Welc (1985) in the catchment of the Bystrzanka stream, Żelazny (1995) and (2005) in catchments in the Wiśnicz Foothills, Siwek (2012) in small catchments at Carpatian Foothills (catchments of Stara Rzeka, Kubaleniec and Leśny Potok), Żelazny et al. (2017a) and (2017b) in the Kościeliski stream catchment in the Tatras. Also, research conducted in the Kościeliska valley in the Western Tatras confirm it (Żelazny et al., 2013; Kosmowska et al., 2018), as well as several years of observations of 23 streams in the Polish Tatras where Żelazny (2012) showed that HCO3– dominates among anions in the chemical

com-position of water regardless of hydrometeorological and lithological conditions. It is worth mentioning that in the Tatra catchments the mineralisation of water was strongly differentiated depending on the litholog-ical structure. In the waters of streams draining catch-ments built up low–soluble granites, mineralisation was very low (avg. = 17.70 mg ∙ dm–3 in the Roztoka

catchment), while in catchments built up sedimentary rocks it was much higher (avg. = 301.45 mg ∙ dm–3 in

the Wielkie Koryciska catchment) (Żelazny, 2012). Multidimensional PCA analysis carried out for wa-ters that drain the Malinowski stream catchment did not show the expected seasonal variability of biogenes concentration, e.g. NO3–, i.e. higher in winter, and

lower in summer (Kosmowska, 2016). However, the analysis of seasonal variability in the course of NO3–

concentration in waters from individual sub-catch-ments (% mval ∙ dm–3) showed typical variability. It

is worth noting that among these catchments, also an unusual phenomenon was observed – in summer there is a higher concentration of NO3– than in winter

(catchments no. 3, 9, 10). This should be explained by the intensive degradation of the forest stand in these catchments. This applies to catchments heav-ily transformed due to anthropopressure. According to Vitousek and Reiners (1975), Murdoch and Stod-dard (1992), Swank and Vose (1997) this indicates a

progressive degradation of the damaged forest stand, which behaves similarly to an aging forest stand and with time loses the ability to actively absorb NO3 in

the growing season. Vitousek and Reiners (1975) showed a multiple difference between NO3

concen-tration in streams draining successional forest catch-ments (about Avg. = 5 μEQ ∙ dm–3

July 1973) and oldeged

forest catchments (about Arg. = 55 μEQ ∙ dm–3

July 1973).

For most catchments located in the middle and low-er zones of the Skrzyczne massif, a typical course of NO3– concentration was observed – higher

concentra-tion in winter, and lower in summer. Similar results – NO3– concentration increase in non–growing period,

and decrease in growing period – were obtained in the Tatras by Żelazny (2012), Wolanin (2013), Gromadz-ka et al. (2015), Sajdak et al. (2018), in the Babia Góra National Park by Malata (2015), in the Gorce range by Jasik et al. (2017), in the Silesian Beskid and the Żywiec Beskid by Astel et al. (2008), as well as in small agricultural catchments in the Lower Silesia by Pulikowski et al. (2005) and (2011). Similar seasonal variation in NO3– was observed in a small urbanised

catchment in England by Worrall and Burt (1998) and in the UK by Jarvie et al. (2010).

Analysing the changes in the hydrochemical types of waters along the longitudinal profiles in the Ma-linowski stream catchment, attention should be paid to the differences expressed in hydrochemical types in the chemical composition of the water draining the deforested upper zone of the Skrzyczne massif in comparison to the lower zone. As the catchment area increases, the share of NO3– in the chemical

compo-sition of water decreases, and the share of HCO3–

in-creases. Unique hydrochemical types of waters that drain the upper zone of the Skrzyczne massif (catch-ment no. 2) – SO4–[NO3]–Ca–Mg, SO4–Ca–Mg, SO4–

Ca, and SO4–[NO3]–Ca – are the result of the forest

stand degradation. Also, the methodological aspect related to the analysis of longitudinal hydrochemical profiles is important. The analysis of the ion share in the chemical composition of water that was carried out in the longitudinal hydrochemical profiles allows the identification of the hydrochemical effects of the degradation of the forest stand in the mountain catch-ment. It is worth noting that if the tests were carried out exclusively in the closing profile of the Malinows-ki stream catchment in Lipowa, then this catchment

(13)

would be a typical Carpathian catchment in terms of hydrochemistry, where HCO3– is in the first place in the

anionic part of the chemical composition. This would “mask” the impact of anthropogenic influence on the hydrochemical functioning of the catchment.

ACKNOWLEDGEMENTS

The research was conducted within the 2011/01/B/ NZ9/04615 grant by the National Science Centre – „The impact of deforestation caused by ecological disaster on the spatial variation and changes in the chemistry of source and surface waters in the Silesian Beskid.”

REFERENCES

Alexandrowicz, S.W. (1999). Budowa geologiczna. In: L. Starkel (red.). Geografia Polski. Środowisko przy-rodnicze. Warszawa: PWN, 221–242.

Astel, A., Małek, S., Krakowian, K. (2008). Sustainable af-forestation as a tool of spring water sources protection in the mountain ecosystem. Pol. J. Environ. Stud., 17(3a), 22–27.

Balon, J., Jodłowski, M. (2014). Regionalizacja fizyczno-geograficzna Karpat Zachodnich – studium metodo-logiczne. In: W. Ziaja, M. Jodłowski (red.). Struktura środowiska przyrodniczego a fizjonomia krajobrazu. Kraków: IGiGP UJ, 85–105.

Barszcz, J. Małek, S. (2015). Przyczyny zamierania świer-czyn. In: S. Małek (ed.), Ekologiczne i hodowlane uwa-runkowania przebudowy drzewostanów świerkowych w Beskidzie Śląskim i Beskidzie Żywieckim. Kraków: Wyd. Uniwersytetu Rolniczego w Krakowie.

Borg, H., Sundbom, M. (2014). Long–term trends of water chemistry in mountain streams in Sweden – slow reco-very from acidification. Biogeosciences 11, 173–184. Bytnerowicz, A., Godzik, B., Frączek, W., Grodzińska, K.,

Krywult, M., Badea, O., Barančok, P., Blum, O., Černy, M., Godzik, S., Mankovska, B., Manning, W., Moravčik, P., Musselman, R., Oszlányi, J., Postelnicu, D., Szdzuj, J., Varšavova, M., Zota, M. (2002). Distribution of ozone and other air pollutants in forests of the Carpathian Mo-untains in central Europe. Environ. Pollut., 116(1), 3–25. Capecki, Z. (1994). Rejony zdrowotności lasów zachodniej

części Karpat. Prace Inst. Bad. Leśn., A 781, 83–191. Chełmicki, W. (2012). Woda. Zasoby, degradacja, ochrona.

Warszawa: PWN.

Czop, M., Motyka, J., Rajchel, L. (2008). Zagrożenia śro-dowiska wód mineralnych rejonu Piwnicznej przez

tu-rystykę narciarską. In: M. J. Kotarba (red.), Przemiany środowiska naturalnego a rozwój zrównoważony. Kra-ków: Wyd. TBPŚ „Geosfera”, 175−188.

Drużkowski, M., Szczepanowicz, B. (1988). Migracja pierwiastków w wodach powierzchniowych i opadach atmosferycznych na obszarze małej zlewni Pogórza Karpackiego. Folia Geographica, seria Geographica– Phisyca 20, 101–120.

Durło, G. (2012). Wpływ obserwowanych i prognozowa-nych warunków klimatyczprognozowa-nych i obserwowaprognozowa-nych na stabilność drzewostanów górskich w Beskidzie Śląskim. Kraków: Wyd. Uniwersytetu Rolniczego w Krakowie. Geologiczna Mapa Polski 1:50000. (1966a). Region

Kar-pat i Przedgórza. Arkusz M34–87 A: Milówka. Instytut Geologiczny Oddział Karpacki, Wydawnictwa Geolo-giczne.

Geologiczna Mapa Polski 1:50000. (1966b). Region Kar-pat i Przedgórza. Arkusz M34–86 B: Wisła. Instytut Geologiczny Oddział Karpacki, Wydawnictwa Geolo-giczne.

Gromadzka, M., Wolanin, A., Żelazny, M., Pęksa, Ł. (2015). Physical and chemical properties of the Goryczkowe and Bystrej Górne vaucluse springs in the Tatra Moun-tains. Hydrology Research, 46(6), 954–968.

Hydrologiczny rocznik wód powierzchniowych. (1974– –1983). Instytut Meteorologii i Gospodarki Wodnej, Wyd. Komunikacji i Łączności.

Jasik, M., Małek, S. (2013). Quality assessment of spring wa-ter from the area of the Łysogóry Mts. In Świętokrzyski National Park in 2010. Folia For. Pol., Ser. A, Leśn., 55(1), 27–32.

Jasik, M., Małek, S., Żelazny, M. (2017). Effect of water stage and tree stand composition on spatiotemporal differentiation of spring water chemistry draining Car-pathian flysch slopes (Gorce Mts). Science of the Total Environment, 599–600, 1630–1637.

Jarvie, H.P., Withers, P. J.A., Bowes, M.J., Palmer-Felgate, E.J., Harper, D.M., Wasiak, K., Wasiak, P., Hodgkinson, R.A., Bates, A., Stoate, C., Neal, M., Wickham, H.D., Harman, S.A., Armstrong, L.K. (2010). Streamwater phosphorus and nitrogen across a gradient in rural–agri-cultural land use intensity. Agriculture, Ecosystems and Environment 135, 238–252.

Kosmowska, A., Żelazny, M., Małek, S., Siwek, J. P. (2015). Wpływ wylesień na krótkoterminowe zmiany składu chemicznego wody w zlewni Potoku Malinowskiego (Beskid Śląski). Sylwan, 159(9), 778−790.

Kosmowska, A., Żelazny, M., Małek, S., Siwek, J.P., Jelon-kiewicz, Ł. (2016). Effect of deforestation on stream water chemistry in the Skrzyczne massif (the Beskid

(14)

Kosmowska, A. (2019). Impact of deforestation on changes of ion share in chemical composition of waters of the Malinowski stream along longitudinal... Acta Sci. Pol., Formatio Circumiectus, 18 (3), 97–112. DOI: http://dx.doi.org/10.15576/ASP.FC/2019.18.3.97

110 www.acta.urk.edu.pl/pl

Śląski Mountains in the southern Poland). Science of the Total Environment, 568, 1044–1053.

Kosmowska, A., Żelazny, M., Małek, S., Stańczyk, T. (2018). Impact of deforestation on water chemistry in the Western Tatras and Beskid Śląski range in the Po-lish Carpathians. Acta Sci. Pol. Formatio Circumiectus, 18(3), 89–99.

Macioszczyk, A. (1987). Hydrogeochemia. Warszawa: Wy-dawnictwa Geologiczne.

Malata, M. (2015). Sezonowa zmienność fizyko–chemiczna źródeł Babiogórskiego Parku Narodowego. Prz. Nauk. Inż. Kszt. Środ., 67, 26–39.

Małek, S. (2010). Nutrient fluxes in planted Norway spru-ce stands of different age in Southern Poland. Water Air Soil Pollut., 209(1), 45–59.

Małek, S. (2015). Obieg biogeochemiczny w małych zlewniach leśnych z dużym udziałem świerka. In: S. Małek (ed.), Ekologiczne i hodowlane uwarunko-wania przebudowy drzewostanów świerkowych w Be-skidzie Śląskim i BeBe-skidzie Żywieckim. Kraków: Wyd. Uniwersytetu Rolniczego w Krakowie.

Małek, S., Gawęda, T. (2004). The characteristic of surface water of Potok Dupniański and Olza drainage area in Beskid Śląski. Zeszyty Naukowe, Inżynieria Środowi-ska 131(12), 257–264.

Małek, S., Gawęda, T. (2006a). Charakterystyka chemiczna wód powierzchniowych zlewni Potok Dupniański w Be-skidzie Śląskim. Sylwan, 150(2), 29–36.

Małek, S., Gawęda, T. (2006b). Charakterystyka chemicz-na źródeł Potoku Dupniańskiego w Beskidzie Śląskim. Sylwan, 150(3), 39–46.

Małek, S., Krakowian, K. (2012). The effect of deforestation on spring water chemistry on Skrzyczne (Silesian Beskid Mountains, Poland). J. For. Sci., 58(7), 308–313. Małek S., Barszcz, J., Kędziora, B. (2012b). Factors

influen-cing silvicultural value of cultures of silver fir Abies alba Mill. at higher altitudes in the Beskid Śląski and Beskid Żywiecki Mountains. Folia Forestalia Polonica series A 54 (3), 145–152.

Małek, S., Barszcz, J., Majsterkiewicz, K. (2012a). Changes in the threat of spruce stand disintegration in the Beskid Śląski and Żywiecki Mts in the years 2007–2010. Jour-nal of Forest Science 58 (12), 519–529.

Małek, S., Martinson, L., Sverdrup, H. (2005). Modeling future soil chemistry at a highly polluted forest site at Istebna in Southern Poland using the “SAFE” model. Environmental Pollution 137(3), 568–573.

Maultz, S. (1972). Chemizm wód dopływów Górnej Wi-sły. Folia Geographica, Series Geographica–Physica, 6, 5–101.

Michalik, A. (2008). The use of chemical and cluster analysis for studying the spring water. Quality in the Świętokrzyski National Park, South–Central Poland. Po-lish Journal of Environmental Studies, 17(3), 357–362. Michalik, A., Migaszewski, Z. M. (2012). Stable sulfur and

oxygen isotope ratios of the Świętokrzyski National Park spring waters generated by natural and anthropo-genic factors (south–central Poland). Applied Geoche-mistry, 27(6), 1123–1132.

Moldan, B., Schnoor, J.L. (1992). Czechoslovakia: exami-ning a critically ill environment. Environ. Sci. Technol., 26(1), 14–21.

Murdoch, P.S., Stoddard, J.L. (1992). The role of nitrate in the acidification of streams in the Catskill Mountains of New York. Water Resour. Res., 28(10), 2707–2720. PN–89/C–04638/02. Bilans jonowy wody. Sposób

oblicze-nia bilansu jonowego wody. PKNMiJ.

Oszczypko, N. (1995). The Miocene subsidence history of the Carpathian Foredeep in Poland. Special Publications of the Geological Society of Greece 4(1), 372–379. Ozga-Zielińska, M., Brzeziński, J. (1994). Hydrologia

sto-sowana. Warszawa: Wydawnictwo Naukowe PWN. Pazdro Z., Kozerski B. (1990). Hydrogeologia ogólna.

War-szawa: Wydawnictwa Geologiczne.

Pulikowski, K., Paluch, J., Paruch A., Kostrzewa, S. (2005). Okres pojawiania się maksymalnych stężeń azotanów w wodach powierzchniowych. Zesz. Probl. Post. Nauk Rol., Warszawa 505, 339–345.

Pulikowski, K., Czyżyk, F., Pawęska, K., Strzelczyk, M. (2011). Sezonowe zmiany wielkości ładunku azotu od-pływającego z mikrozlewni użytkowanych rolniczo. Infrastruktura i ekologia terenów wiejskich, 10, PAN, Kraków, 161–171.

Ratajczak, T., Witczak, S. (1983). Mineralogia i hydroge-ochemia żelaza w kolmatacji filtrów studziennych ujmu-jących wody czwartorzędowe. Zesz. Nauk. AGH, Geo-logia 29. 229 s. Cyt. za: Witczak, S., Kania, J., Kmiecik, E. (2013). Katalog wybranych fizycznych i chemicz-nych wskaźników zanieczyszczeń wód podziemchemicz-nych i metod ich oznaczania. Biblioteka Monitoringu Środo-wiska, Warszawa.

Sajdak, M., Siwek, J., Bojarczuk, A., Żelazny, M. (2018). Hy-drological and chemical water regime in the catchments of Bystra and Sucha Woda in the Tatra National Park. Acta Sci. Pol. Formatio Circumiectus, 17(3), 161–173. Siwek, J. P. (2012). Zmienność składu chemicznego wód w

małych zlewniach na progu Pogórza Karpackiego. Kra-ków: Instytut Geografii i Gospodarki Przestrzennej UJ. Swank, W. T., Vose, J. M. (1997). Long−term nitrogen dyna-mics of Coweeta forested watersheds in the southeastern

(15)

United States of America. Global Biogeochemical Cyc-les, 11(4), 657−671.

Vitousek, P. M., Reiners, W. A. (1975). Ecosystem succes-sion and nutrient retention: a hypothesis. BioScience, 25(6), 376−381.

Welc, A. (1985). Zmienność denudacji chemicznej w Kar-patach fliszowych (na przykładzie zlewni potoku By-strzanka). Dokumentacja Geograficzna 5.

Wolanin, A. (2013). Właściwości fizykochemiczne wody potoków tatrzańskich w okresie kwiecień–listopad 2011 roku. Prace Geograficzne. Kraków: Instytut Geografii i Gospodarki Przestrzennej UJ, 133.

Wolanin, A., Chmiel, S., Żelazny, M., Jelonkiewicz, Ł., Ja-nusz, J., Hałas, S., Trembaczowski, A. (2017). Anomalia hydrogeochemiczna w Tatrach: źródło z wodami siarcza-nowymi. Przegląd Geologiczny, 65(11/1), 1025–1028. Worrall, F., Burt, T. P. (1998). Decomposition of river

wa-ter nitrate time series – comparing the agricultural and urban signs. Science of the Total Environment, 210–211, 153–162.

Żelazny, M. (1995). Chemizm wód powierzchniowych i podziemnych w zlewni Starej Rzeki (Pogórze Wielic-kie). In: L. Kaszowski (ed.). Struktura i funkcjonowa-nie środowiska przyrodniczego Progu Karpat: wyniki badań Stacji Naukowej Instytutu Geografii Uniwersy-tetu Jagiellońskiego w Łazach. Zeszyty Naukowe

Uni-wersytetu Jagiellońskiego, Prace Geograficzne, 100, 73–83.

Żelazny, M. (ed.). (2005). Dynamika związków bio-gennych w wodach opadowych, powierzchniowych i podziemnych w zlewniach o różnym użytkowaniu na Pogórzu Wiśnickim. Kraków: Instytut Geografii i Go-spodarki Przestrzennej Uniwersytetu Jagiellońskiego. Żelazny, M., (2012). Czasowo–przestrzenna zmienność

cech fizykochemicznych wód Tatrzańskiego Parku Na-rodowego. Kraków: Instytut Geografii i Gospodarki Przestrzennej UJ.

Żelazny, M., Kosmowska, A., Stańczyk, T., Mickiewicz, M. (2017 a). Effect of deforestation on water chemistry in the Kościeliska Valley in the Western Tatras in southern Poland, Annals of Warsaw University of Life Sciences– SGGW, Land Reclamation 49(3), 223–235.

Żelazny, M., Siwek, J.P., Fidelus, J., Stańczyk, T., Siwek, J., Rutkowska, A., Kruk, P., Wolanin, A., Jelonkiewicz Ł. (2017 b). Wpływ wiatrołomu i degradacji drzewostanu na zróżnicowanie chemizmu wód w zlewni Potoku Ko-ścieliskiego w obszarze Tatrzańskiego Parku Narodowe-go. Sylwan, 161(1), 27–33.

Żelazny, M., Wolanin, A., Płaczkowska, E. (2013). Hypso-metric factors for differences in chemical composition of Tatra National Park spring waters. Polish Journal of Environmental Studies, 22(1), 289–299.

WPŁYW WYLESIENIA NA ZMIANY UDZIAŁU JONÓW W SKŁADZIE CHEMICZNYM WÓD MALINOWSKIEGO POTOKU WZDŁUŻ PODŁUŻNYCH PROFILI HYDROCHEMICZNYCH

ABSTRAKT Cel pracy

Celem badań było określenie zmian udziału jonów w składzie chemicznym wody wraz z przyrostem po-wierzchni zlewni wzdłuż podłużnych profili hydrochemicznych na obszarze dotkniętym klęską ekologiczną. Materiał i metody

Badania prowadzono w zlewni Malinowskiego Potoku w Masywie Skrzyczne w Beskidzie Śląskim, w latach 2013–2014. Zlewnię Malinowskiego Potoku podzielono na mniejsze zlewnie cząstkowe: zależne i niezależ-ne oraz wyodrębniono 6 profili podłużnych wzdłuż zlewni wraz z przyrostem powierzchni zlewni. W terenie pobierano co miesiąc próbki wody w zlewniach o różnym stopniu wylesienia oraz mierzono cechy

fizycz-no-chemiczne wody (pH, EC25°C, Tw). W laboratorium metodą chromatografii jonowej (DIONEX 2000)

oznaczono skład chemiczny wód w zakresie 14 jonów (Ca2+, Mg2+, Na+, K+, NH

4+, Li+, HCO3–, SO42–, Cl–,

NO2–, NO3–, PO43–, Br–, F–).

Wyniki i wnioski

Przeprowadzone badania wykazały wpływ wylesienia na udział jonów w składzie chemicznym wody.

W zlewniach wylesionych zaobserwowano wzrost udziału SO42– i spadek HCO3–. Udział SO42– w wodach

odwadniających zlewnię wylesioną był tak duży, że pojawił się na pierwszym miejscu w typie

(16)

Kosmowska, A. (2019). Impact of deforestation on changes of ion share in chemical composition of waters of the Malinowski stream along longitudinal... Acta Sci. Pol., Formatio Circumiectus, 18 (3), 97–112. DOI: http://dx.doi.org/10.15576/ASP.FC/2019.18.3.97

112 www.acta.urk.edu.pl/pl

hydrochemicznych wzdłuż profili podłużnych, zauważono odmienność składu chemicznego wód odwadnia-jących górną, wylesioną strefę, w porównaniu do dolnej. Wraz z przyrostem powierzchni zlewni, następuje

spadek znaczenia NO3– i wzrost znaczenia HCO3–. Gdyby badania prowadzono jedynie w profilu

zamykają-cym zlewnią Malinowskiego Potoku, wówczas zlewnia ta byłaby typową zlewnią karpacką pod względem hydrochemicznym, gdzie na pierwszym miejscu w składzie chemicznym wody występują wodorowęglany. Analiza składu chemicznego wód przeprowadzona w podłużnych profilach pozwala zidentyfikować hydro-chemiczne skutki rozpadu drzewostanu w zlewni górskiej.

Cytaty

Powiązane dokumenty

for those changes was sliding, and during heavy rains, wash. Equally important for the develop- ment of the shore zone were the lake waters. Through their erosional

översättaren har tillämpat: direkt återgivande åtföljt av tillfogande i fotnot eller i brödtexten (sju gånger), direkt översättning jämte tillfogande i fotnot (tre

Dobrym ćwiczeniem, proponowanym przez Jacotota, jako sposób na wyzbycie się bezpodstawnych kompleksów niższości w kwestii poziomu własnej inteligencji jest mówienie na każdy

Rzeka Ołobok wypływa z jeziora Niesłysz położonego na zachód od miasta Świebodzin, po czym przepływa przez miejscowość Ołobok (rys.. Następnie, w granicach miejscowości

14 of the Regulation of the European Parliament and of the Council (EU) 1307/2013 of 17 December 2013 Laying down rules for direct payments to farmers under support schemes under

Keywords: public finance crisis, general government debt, Greece,

Pominięto zatem dwie inne kategorie państw arabskich: państwa Zatoki Perskiej, w których – z wyjątkiem Bahrajnu – w zasadzie nie doszło do protestów społecznych w

Niezależnie zatem od uprawnień jakie posiada rada gminy wobec osób korzystających ze świadczeń pomocy społecznej które mogą być objęte zwolnieniem z opłaty śmieciowej