• Nie Znaleziono Wyników

Motions of ship in oblique waves

N/A
N/A
Protected

Academic year: 2021

Share "Motions of ship in oblique waves"

Copied!
10
0
0

Pełen tekst

(1)

r1,A// 7

0/

iL

ARCHIEF

17GfrL

s---32 5

t

aep ouwune

re4rnhche HogescI

DeVft

IE

m

**

Motions of Ship in Oblique Waves By Shin Tamiya, Member

Abstract

Assuming that the centre of gravity of a ship advances horizontally with a uniform velocity, the equations of general motions of the ship n oblique sine waves are obtained. From the

solution of the equations, we have found that the effect of the exciting moment and accordingly the angles of oscillations vary complicatedly with respect to the angle of encounter when the wave length is short or comparable with the length of the ship.

lt is also revealed that the interactions of rolling, pitching and yawing are small.

Making use of the results as to the motions in regular waves, the author has worked out an illustrative calculation of pitching and rolling angles in irregular seas and obtained some re-markable results which are, however, ordinarily experienced on board.

-t s

, X±1

, aJ

l}cD

5 l-tz

¿ l/o

JC

Q)J*

E75 <

tLtt

UC©

) 7,?i (i , Linear superposition Qyt,

i1L

Gx,,z

L i), X Z

i-o

o

G lt-

1*JJIIG

*, WK

< Ij, 4 sine wave

7

LIfl

smith effect IiO

its

t{&cj 5.

1) K Drifting 'kO

L1

I_, 1i-{&

1__

(1)

11o5

(2)

Fig. i XI Fig. 2 _U

A=Ï

W0KL0 2y0=WOL0 Q)v; i0i

f

Iy'b + (Im' I') =

IZZ'+ (IVl, - I')b = M

I'

z, y, z i b *' )

(2)

(3)itT

7 (1)

(I'

IWM') L- ?

.ft U*t '

, í F JL

ì

e;'

I-FjLX,

J)5Z,

O)

Zr cos(k(XcosCZYsin «)+út}+d

HU-t

H 2ir I2irg '

°v

« (Fig. 1) d

0-X,Y,ZG-x,y,za)li, 6,

U-c

x=Xvt+Y.q+Zq'

X= z + vty <pz.

y=YX'p+ZO

(5)

Y=zq?+yzO

(6)

z = ZX. b Y O

Z=x1'+yO+z

vGQ

C-t070

G-x,z.ÏL

Zwr cos(k(x cos «y sin cx)+ (w+kv cos

( a ) rksin«sin{kxcos«+(w+kvcos«)t}G ay ew-6 COS CZ

¿..<o 8w

Fig. 2

i-b, b0, WL

'iL''

W0L0 W1L1 ToC b1 ¿-

co4çg-fjjb

ni S

7X»)

pg(A+2y0[d])

(10)

Kb<---Kb0(i

2 y<[d]

2 y0H(d)

A ,)

(li)

b1m---

2y[7,d] \\

3 A I (4) (12)

(3)

Lo_d=+[(Zw)W+w)LJ_d

r

cos(ky sin a)cos(kx cos cx+ct) x?b

H=

-'

¿) xb1:,

7AU

dMX= pg(AX+2 y1[d]) Gm (-7e±d)dx

(1)(12)

[A5+2 y(,d)] Gm

A(KboKG)+-- Ys3

iU

to

d'J\sQ

UUO

M = pg IJ

[(Kbo_KG)

+

+

(70w-0)dx =Mxw_pgOf2[ ', Jdx = M0 4 GM O

{I1, 1=1 2ys-x2dx=4Q)

X1 iii) i)

Lt

(16)

4=pgV it

r

(8)cO

0w X 11G 74GMO

ii) 11-)Ì

M =f 2pg(AX+2 y1(id)}xdx 1,2 =JXj

pgAxdx+pgJ 2y,(lwd)x.dx

Xj p1,2 XX

=pgJ AXX dx+pgJ 2 y,r cos( y sin c)cos(kx cos +5t)x dx_pgJ 2 y, x2b dx

1'l XI

= MpgI '

(17)

2

M=7pgJ LAz(KbOKG)+

X' s9JOwdx

3.

M =Pgf {A1,+2 y,[d] } (O-7O)x dx

t X2 0My_7pgJ A1,'O,-xdx (19) 83

t_)'

-0,

Jff

Zjt56D,

Jt

-i

'Fk

2K1,,

O

¿:i2

KXKy

-5o

(13

(4)

4.. K.

tJt' N

N K

K,=f'-hi

¿

h1T (i

-%-[hlTJ2)=N2o (20)

TCO h1T' N20),

O h7 'j

<Jo

K7,

St. Denis & Pierson

'57

5

2 K7, = N&..

=-- LB2po

s2(e)- kB7/.6 sinkBll)kBi1

x , 11 l y, 'z

LUjfl, a- t

C-=ë-L B

kBj 'j',

sinkBi7 (23)

¿-'-( (21)

j7

4kBp3

i

N =

+

L3B2pwee_25T[ (p+3) (2 p+3) (3 P+3)J :ó

II< K7,

ih2

kí5

JIKY

N v2Nçs I7,7, - 217,7,' - 2pgI Bv,2o (kB)e_25ECV.P(Cw) (24) L T2=2irfv2

i

P(Cw) = Cw2/(3Cw) (25>

t2-s I IIt (23)

BL3 C 1= 12

3-2C

(26> Q)- (1)(2)(3) 2

i

1,'O ±2 K-+4GM-e= PU7J A(KboKG) ±-. y,8 dx (Izr' 17,7,')ps

I

- b+ pgl &=pgyfx22y, xcos(ky, sin c)cos(kx cos cs+w,t)dx+I,,'ç Izz'O.My_ypgf A X0w dx17,7,' .

< Q)3-'

Lt

U

-EíLL

O

l-At,

.

:::)ß1

<, t,

(G i

Ç2)

(5)

KB--o (41) 0, ib2

I* '

5i, Oi

¿,

- ' X (30)(31) It,

ì

(mf)

1L UIt O

ItAcC<

o

PIt (33)-(35)

U ç-4 l'il- S2(w,a) i 0 O

¿ o+do rro (2iX)2

S2(o,íx)do

Fig. 1 ¿T< ¿-tI

-c7)4

'ZZ'TVlI

(27) +2 h1+v10=m1 Sfl ()et

+2 k2+v22bm2 sin ot+ (28)

(pfli3 COS )et-0b (29)

2 ypgrkf 2 7pgrk.f

=

I'

m3 =

-'s'i Izz,

(30)

f=sincxf1Az[KBKG+

]cos(kx coscx)dx

fy=fxys cos(ky sinc)sin(kz cas c)dx (31)

fz=sinf'Axxsin(kxcosa)dx

(32)

í LC

Om1(mf)isin(w5t+si)

(33) 1' m2Çmf)2 sin (øet +s2) (34) = m3(mf)s cas øt (35)

LlJQ)

) 1 i=1, 2 (36)

(nif)=

V(o2_v2)2+4 h20e2

(37) (mf)a=-2hw 2 (38) =tan , i=1, (

0=Oo+Oi sin(úgt+ei) +02 sin(2 Cûet+512) (39)

b=b0+'1 sin(oj+es)+2 sin(2 ot+e)

(40)

Iez'4S'Wçp 0e2

0o

2I,

- -

2 I'

Pi cPi

/Z_we272(4h2

cPI0i (41) 2 P22 Sifl Si ij 1O1 2. 2 V(v22_o2)2+(4 h2o)

(6)

6.

101--7n 0.3 02 a' 00F S2o(w, )dw= [,ni(nof)i]2dw r 7pgf 2 4 n2H2

i' j -

2 (mf)2dw

_r '

72frY

L7J

L (we2vi2)2+4 hj2O)e2 J a)dw

Sq,2(cò, x)dw= [m,(mf)o]'do,

-

r2 pgf - L 'oni' fH2(mf9)Odw fol2 = L (we°v22)2+4 ho°we2

j.

S°(w, ) dc, ö 0. 866 [ f °°S02(w, c) dw] (45) - r '=0. 866 J dxJ Sq2(w, c)dw (46)

Lo

o (43)(44) { j w

t*

QJ1IJ)

5 cO

0?5T (30)(32)

Jft. U0

(

B(

rx1

A=A1_Tj)

Sl_L]

A ¿OL (30)(1)(32) Ft*k

f,, =1SinCJ'[A(KB_KG) (1r) +-j (1_P)3] cos(kl cos c) d

0-I o 0,015-0.0! O.i05 30 0 (30') 30 0. 30 60 30 30 30 Fig. 4 A 4'

(rad)

Fig. 3 B m1, m2, m0 ('/sec') 'o

(7)

C KG(rn) GM(n) T1(sec) Ta(sec) N20 BI! (kBC

f-.cos,-

sina

xJ1e(1_r)sin(

cos a)de

(31') fz=Az12 Sjfl a

xf(1-)sin(kze cos a) dE

(32') A B C 80 8OGT U0SOOGT cc809000GT ¿94cT1: 26x55x25 2.00 .64 .711 78x9x5.5 3.50 .47 .653 1/25 i £i, £2 (deg) 140x19x10.5 8.00 .68 .694 o o o 0.3 0.2 0.02 Fig. 5 B (31') cosine C)Tlt cos(ky3sina) fÙ-z1 P 5W. q

=1 o

LLLO 1i

U (® o) (W1,2)p1) U, Fig.3 1n,rn2,rn3 (B )

Figs. 4-6 i. O,W1,1

1UO X o'

v=0 XC )./L=3.00

UI:.:0

A/L

1.5 jjr

f2,f,, ci

(a1UC) /jk'

SincE, cosa

UC< ,

fff7?Z< I:jt,

f,,

sina

'i

EU

a

a=0 °)< CJìt

i

e, w,

UL dz

/J\ < , , kut A,B,C -9'7 A B,C U Cw

IJi-IIL4

Ut, Iiti

9.33

(4.80 rn/sec) o)Jjfr 11 rn/sec C)Tl±UiJ.

3L

'

5

n4j-t {. CQ)

O

AL4)CO L.., X (43) S2(w,a) O 4iIÍLL0 (Fig. 7(a)) S2(o,. a) =C0 cos2(3-a). C0=1. 16 m2-sec À/L=0.75 LOO 1.50 2.00 3.00 A 31.5 39.2 55.1 80.4 131.6 C2 88.2 111.0 145.4 160.8 171.8 B 0 37.6 142.5 171.3 175.2 177.4 e.. 129.1 153.2 169.3 174.2 177.6 C 1 13.4 15.4 21.6 35.3

-e2 137.8 156.0 169.8 174.4

-86 .71 .78 2.28 3.27 7.00 0.38 1.00 0.80 6.00 6.96 15.40 0 3.58 4.02 6.50 .0320 .00876 .01334 3 OES 0.4 0.2 0.t LxBXD(m) 7J( d(m) C C7,

(8)

aol 8. oé-' 60 Fig. 6 C Q)M41 S i=O.55Ú)w2=1.1O:dJ:.:J o (ùi,e)2 212m, 53m Q):Q) 3ff, 0. 75 C0 12. Q) S -

'

- )L- Q) X- Neumann Spectrum j312. 2.83m, ;c' );L'Q) 'c

-:l2. 116m C70

ø°°0.751.75 Q)PM-e 6 7 8 .9 10 ¡.1 i-2

Fig. 7 (a) l'il'

.3. /3 u-cit 00, 90°, 1800 .2. LxBXDXP7jZ=68.50X11.00X7.50X4.0O Cb=060, Cp0. 638, Cw0. 69, KG4. 03, GM=0. 90, T1=9. 00 T2=4. 95, N200. 015 (ìi m, sec) U f I

Q)27j.Fig.7(b)

(1.633 it

jO

Q) 116m, 2.83m . 't 3& Fig 7 (b)

'

Q)- Ii

Q)UÌ0 Neumann Q)

Spe-4LQ)1

(OSl+JiiJ)

ctrum ¿Q)MJ U

t

Q)t

Q)It°f )

l&Uc,

-2.RN

Magnification factor

5t

lt*.ti'5, 1955

i

(Fig. 7(b)Q]) -Çt

1Q)

lOt

I)

] ;Q) Q)1JÒ

c, K- U C1t

L/2

(2

)2S2(a, c1) =C' cos($c), C'O. 01

,

/3=0, j-,

I UC it 0. 020, 0. 133, 0. 155 {R U,

(g

c)

Q)fl

C'

Q)jPQ)

,

l4 o=0-2.O

t

'1,b2

t Q)fj1,

83 83 83 lEI 83 .0043 .0167 .0186 .0070 .0273 .0304 0 .276 0 .0137 .0098 .0077 .0223 .0160 .0126 .0514 0 .0262 °I° tO 48 838' 424883 li)8648 8301148484883 radian

(9)

i;4 57

,

J/lF i

/j\ < 1:,

z

Ctcost,

'oy

±Tri U-l2,

rt'i <;i.

1i, 4l*to0

r.o1z:,

ttt: Neumann

, ìsijèò

Magnification factor

c'jj 5-jj

r (43)(45) ¿ ' 5

S2[] =f:s, x]dx

)J-C,

'cSø[o]t*

S2(w,)

l'<

IJLCl,

<

too

*ClK U'

O)

-tt f'fL t---

-'i-co-cj,

j-'-7

i) Manley St. Denis and Wjlland J. Pierson: "On the Motions of Ship in Confused Seas," TSNAME. 1953 (30')(31')(32')

55c. Figs. 8,9,10 0)

i, t/,3

IJj

f=l sin

¿[A(KB_KG)bi (C5, t)+-f/'2(Cw t)] Bi2 (kBC .

fy=cosi,

2

.S1fl).s(Cwt)

Fig. 8

(10)

lo. = Al2 sin cx (Cr, t) t=klcosa o 2 3 Fig. 9 Fig. lo 3 -z

-

(c.,t)

- .

mo

O7 = 3c. t) Cr

wr4

go :70 -o .50 .40 .30 20 IO O 20 o .3 2

Cytaty

Powiązane dokumenty

This is currently used in Mitsubishi Nagasaki Experimental Tank for recording ship model motions in waves with excellent results.. The BPS recorder consists of /1/ a small and

The torsional moments, vertical and horizontal bending moments as well as the ship motions were measured on a T2-SE-A1 tarer iìde1 in.. oblique

The solutions obtained by the uncoupled swaying equation coincide well -, with the experimental values, and hydrodynamic coupling effects produced by rolling and yawing motions arc

The heaving and pitching motions and the midship bending moments of a T-2 Tanker model moving in longitudinal regular head waves of shaflow water are calculated by Watanabe's..

propeller, and calculate the ship motions, the resistance increase and the propulsive performance in regular head

Comparison of measured and predirted time histories of the horizontal plane motions in stem-quartering seas (F„ = 0.15). Zundel, A real-time system for forecasting extreme waves

The transfer function of roll motions Y ζφ is usually established by experiments in regular waves with a constant amplitude or slope, whilst the RAO of roll motion is a narrow

The transfer function of roll motions Y ζφ is usually established by experiments in regular waves with a constant amplitude or slope, whilst the RAO of roll motion is a narrow