• Nie Znaleziono Wyników

Model experiments and theoretical calculations in waves on a high speed container ship with triple screws

N/A
N/A
Protected

Academic year: 2021

Share "Model experiments and theoretical calculations in waves on a high speed container ship with triple screws"

Copied!
22
0
0

Pełen tekst

(1)

3

! l

j

il!

1E.

'i'

*

iE

Model Experiments and TheoeticaI Calculations in Waves on a High Speed Container Ship with Trip!e Screws

By Fukuzo TASAI

Yasushi SUGIMURA

Mitsuhiro ABE Hiroyuki ARAKAWA

and Masanori KOBAYASHI

a-i mo

45 rj ij

l U 48 4 2

Roprirrted from

JOURNAL OF SEIBU ZUSEN KAI

(THE SOCIETY OF NAVAL ARCHITECTS OF WEST JAPAN) No. 45 FEBRUARY 1973

7CH1EF

Lab.

y. Scheepsbouwkunk

Technische Hogeschooi

(2)

3

(fii 47 <y io

<yjf4

) 73

IEL

'-)'t:: L**

ill

iii

'i'

*

lE **

Model Experiments and Theoretical Calculations in Waves

on a High Speed Container Ship with Triple Screws

By Fukuzo TASAI

Yasushi SUGIMTJRA

Mitsuhiro ABE Hiroyuki ARAKAWA and Masanori KOBAYASHI

Summery

In this paper, motions, accelerations, deck pressures and resistance increase on high speed container ship with triple screws in waves were investigated. Model

experiments were conducted to be compared with the theoretical calculations, in regular head seas, in regular beam seas and in irregular beam seas.

Fleaving, pitching, swaying, yawing and rolling motions were computed by

solving the equations based on the Strip Method.

Especially, the equations of lateral motions were solved by taking into account the new non-linear effects on inertia, damping and restoring moments in rolling

motion, in which, inertia and damping moments were determined by using the

results of free rolling experiments. Following conclusions were obtained.

The calculated amplitudes of heaving and pitching motions, relative motions and vertical accelerations in head seas were in good agreement with model experi-mental ones, except the amplitude of vertical acceleration at stern.

In beam seas, the calculated amplitudes of rolling motion which were

computed by taking into consideration the new non-linear effects, coincided very satisfactorily with the model experimental ones.

*ICftLTf 3jii

U5JZO

°)

aoJ<y75i', flfJo)tWlcl2, j'

l 'y7Y't

JO)d1IJI,

ÌO)1aj

(3)

-' t:0 ¿

JL LJt:

2.

tO)

2.1. Fig. i OoX0Y0Z0 G Xb, Y, 2 GJ:4 V - X0

ji:,

l:x0 n]O)

z0 o 45 = c»+KV = (1) VÉ (m+a,)G±bZZzG+c2ZzGaZ)Ob2)Oc006= Fcosa2tF20sinw2t (Jo+a,) +bO +cOOOaO2ïG--bOGcOZzG=M0,sino2tMcoso,,t

(L1 (L1

(l=

M11dx , b2 = I NHdxb , CZZ=

pgA,

jL0 JL0 (L1 (J. (L1 a20= Mflx),dx0, b20 = (Nj1x,VM)dx0, Coo = I (pg.2bxNHV)dxb, jL0 (L1 (Lf (L1 a00=I Msx°dxb, b00 = I N11xdx0 , = j

(V°Mfl)dx--pgI,

JL0 JL0 L (Lf (L1 ao:=JMRxhdxb, b02L0 =JL0(N5x0VM11)dx0, CO2 = pg.2bx0dx0, (L1 F22

=

C0 [(pg.2ba WCMH) cosKxb_wNHsinKxh]e_KTdxb ) L0 V Fig.1 . G

LT4{iL

ZG, G 8, X0 sub-surface Q)ZI2 C = C0e1c20cos(Kxo+Û,t) (1) t:t L., C, =

K=2/g=2r/2, 2 =

g = )3OÍJfl,

C') = 1IÙo wave (2) } (3) (4)

(4)

3 !jJ / -

Fft

F.

= aJ [N,,cosKx±(pg. 2b M,1)sinKx5] e-KTmdx (L1

M5. CaJ [(xE,wNJr--Va,A'fH)sinKxb-f-(pg. bxbw.Mffxh)cosKxh] eT"'dx,

M65

=

CJ1' [(pg.2bx,ooM;/x)sinKxb(xbNlj VWMH)cosKxb] e Tdx

: t L,

m J0;

i,

A,,

íJTfiÌ. I;

7iK[t

>

La

L,;

M11

±T

N5

.hT5Jz

T,5 = S0/2b; S0 = 2 7 4 g Lewis form

5Q)V',

M11 zF N,1

i&Lt0

= Z6COS(W,.t+55) , O =O5COS(c»,t+o) ±T4L z',. O',

f-ft s',,

S,,

' (3)

2.2.

Fig. 2 4

X0

G G 'I'

È-c,

O)t5 (m+a,Y)11+bY,3G =Fr,. =

(JO+afQ)+blQç+cfço H a1yc+b,y11+a1 +b,,,iir =

Fig. 2

I

75 (4) wave X0

(5)

(L1 rL!

a,, = Mdxb, b,, = I N,dxb, a,.. = a,,, = M,Xe,dXb,

JL6 )L0 = be,.,=J 1NSxbdxb, a, = a 'y = b,y=J'Ns(1wÒ)dx. a,,,, =j'M)%dxb. b,,,, =J1N0xdx. (Li (L1

a,

=

a,,

= M$(l,RQG)x,dxh, b,,., = b,.fr= JLI N0(1,OG)x,dx,, (L1 (L1 a,..,= (15-2M0 0G 1$R+M,0G2)dX,, b = =WGM, F).,=

JFdx.

=

M, =J'(M-0G F6)dx0

J,, -,

L

M0 IR frk1cO x, 4 ) ff)Jn1JU

' L

los ; ' 1

-"--,

1,, ; '/

l L',

Fe <

M; 81<

Oj1],°' i-,

?iG; ±jG0Jf,

W

2 Lewis form i-fLQ)4

Y , Haskind-Bessio

t

JL'-=

ycos(t+e,)

= cos(at--,,)

co=

(6)

'iE, 4iL

Q)Y0. Y

c' Ey, , ?

2.3.

t$iJQ)J

(6)

t'j

=

0 (9)

*o

I>'L

.'1--E40

*

/i\ ¿

ta

(9) a,,Q, b co 76 45

(6)

=0 (10)

(10) ,(çc) GZ(çz)

¿, ça

T,(ça)

, i{e;':/

W. GZ(çz,,)

B.çJp

06

-- &ç(çaa)

cOJz 4 T(çoa,,,)

t:L, N(çaaa)

';:7 Io)f

N

-

çaaO Q)

-

-T,(ça,)

N(ça)

7j. ¿

T0(ça,m) GZ(çz) (11)

M J,+(ça)

'I1.

N(ça)

(13)

z5, b0(çaa,,)

qaa

Ta(ça,), N(ça), GZ(ça) çz çaa L ÇCaO

11jLC,

(11) 4JZJ (13) (J,+,,(çao)), b,,(çaao) WGZ(çao) a- (6)

ALC,

1Q)

Yai, 'l'ai, Çzaj

aH{3*ft

yi, *i, ai

ça 1VC (11) iJzY' (13) (J+&,(ç',1)),

(i) *5.

rL

WGZ(1ça1) $' (6) Yaz, 'fra2. Ça2 2, a2 o

K

0.1%

ça

t

01f/270

, Ya,,, ay,,,

', Ya. 2.4. :7

- L

L

L)ij /)

7) Z 8)

LL

f4J

Ja

i) co

9j*oy',

Ø« J .5

= m,1çc±m1ço+m13ço

' r7

5I

(14) L7Q), co Q)U

(J,+(co))+b(co)'+W GZ'(ça)=Mri(ça)

f

M2(ço)ç

,

=O

(7)

Photo 1.

78 k

(16) I1co (J+ (ç)-Mr1(ço))

(()M2())

47}(MO GZ'(ç') GZ'(ço)=GZ(çô)w.gm/W.sin

j:j.'I, w.gm

i7

)7JKCi,1

5 ç

4J T,'(ç,)

,)M2(ço))

T'(,)

W GZ'(ç',,,,)

=

- N'(ç)aA

T (ç)

L, N'() =

L' -

l c»j N

'1Ù-i±t:

ftoj

,

Lt: N'(p,), T,/(ç)

(17), (18)

(J'+Mrt('a)), ((ç)M2(ç,))

) WGZ'(ç,)

*6

-af

(6) ia CJ+a), b,

fl-C,

47IK

Ì'57

2.5.

(3)

:tL, (3)

l;U)

Haskind-Bessio

kJt:0

2.6. t jj

Ij

Ii 7')fl 4R

i9)b0)

31iE

Modi-fied 3. * 3.1.

-LT

*2,

84,000 BHF

261y

')5--, --Lro

4 m 7t5 7

3í}k 2 O) 1jKj7 C7)

±

midship

1]oyr' ')L'7

Photo I .

(8)

f34j

79

'fable!.

Principal Particulars

IjEja.

1Ib

±j*c!,

flIJ,

JiJr ljo

i-tt:,,

*tt

7',f,

23I

k*rIcl0t-fttc,,

-t' '

LI),fkJJ('! (80 mX8 mX3. 5 m)

1LfO

3.2. 2 L=U.

32.J,

H 2(= 2C/1)=1/501/30

IJ1)L,

' l74-- V

F,,

=

0.2, 0.25, 0.275, 0.30 L L, Ii IJiE1 2/L=0.62'--6.6,

-arj A(= T,,,,/T,,,)=0.6-2. O , H/2=1/200-1/80

L, 2gIJJ-

Pierson Moskowitz

L--- i-

3TirJl'T6lt

1) r4aO»,l'

, ±T$)

ET*8( (F. P., station 1/2)

ETOÌ (station 9%, 1/2) (F. P. station 9%) -.ìL', 7-.h 2) JO) ji'J

JC1f±Ti),

Ij

J:fl,

Fig. 3-6

ItO

*62Î{3'Ll, F.P. station 1/2 (Fig. 4, 5)

IJK&t

I) -1ilJLt,,

/ 'Tr El

mIUPMS5

-ir- Lt,,

Photo 2, 3

Actual Model

Length between perpendiculars L» (m) 252.00 4.000

Breadth B (m) 32.20 0.511

Draft cf (m) 11.00 0.175

Volume of displacement J (m3) 51128.0 0.20447

Blook coefficient C,, 0.5728 0. 5728

Prismatic coefficient C,, 0.5892 0. 5892

Midship section area coefficient G,, 0.9722 0.9722

Waterplane area coefficient C,, 0.7851 0. 7851

Longitudinal center of Buoyancy from M. S. 1» (m) 6.56 0. 104(aft)

Longitudinal radius of gyration K» 0. 25 0.25 Lp,,,

Transverse radius of gyration K,,,, 0. 379 B 0. 3792 B

Test value

Pitching period T,, (sec) 7.30 0.92

Heaving period T,, (sec) 8. 10 1.02

Rolling period T,, (sec) 20. 0 2. 520

Center of gravity above keel line KG (m) 13. 30 0.211

(9)

80 45

Section F P

AP Y2

S Potentiometer for Surge H, Potentiometer for Heave

P; Potentiometer for Pitch

P;P2, P3 Pressure gage

Ar, As, Accelerometer

9,2

P, P2P3 Pressure gage

AF Accelerometer

R Relative bow motion sensor

EP Fig. 4 Fig. 3 Square Station /2 91/2 FR T, Thrust dynamometer Q ; Torgue dynamometer

N Counter of number of revolution

M; D.0 Motor

R ; Reletive bow motion sensor

Accelerometer

R Rettive Motion Sensor

(10)

3 * 3tOY

S

Potentiometer for surge and Sway

H

Potentiometer for Heave

Y

Potentiometer for Yaw

P

Potentiometer for Pitch

R ;

Potentiometer for RoH

G ;

Center

of gravity of the Model

J ;

Vertical

gyroscope

Fig. 6

Photo 2. 2tL = 1.25, F = 0.275

(11)

82

kj45

lo Eop Col rr,ple screw Single screw I-IS) F,' is

-Fig. 7 I'±l

Cornporison with Single ScrewI Fn 0275

0 15 - At Photo 3. 1/L = 1.25, F,, = 0. 275 4. 4.1. 4.1.1.

±TIB

Fig. 7. 8 ET

4tMm iîtlli

0.8< A/L< 1.2

J)C

JF4. W482

Lt

KThC, 1/L

312 tJc

ff

1'j]--112)0)HB, L/B=6.810-,

Heocing Aniplitode "f £ 20 20 0 Pitching Amplitude - AIL Fig. 8 5 20

CarhporiSofl with Single Screw I Fn = 0.275

Fig. 9 i F,=0.275 Fig. 10 i

®jFez=0.275

lo

N

ca

(12)

100

J

1i»5

JL* F,, =0. 275 Fig. 9, 10 Fig. 9 1;1.

3 Ü'I} 1 FthlQ) hL

UV0

Fig. 10 Fig. 11, 12

a**-4.1.2. ,t O±FJJO

s G

X5 Q)ilL

*L Z,

Z, = Z0X0OC = Z,.000S(Cû,t±E,) , Z, , F. P. station 1/2 Fig. 13, 14

dynamic swell up

<LV'0 Fig. 14 Q

station 1/2

*fli

t'Jl

2/L< 0.9 Relotve Motion at F P Fr Eap Cal 0000 0250 0275 0300 3 4fj 1.0 15 - A/i. Fig. 13 F. P. \ «z' 05 20 IO

RelaEve MotIon at StatIon .,

05 IO

-

IS

Fig. 14

stationl/2 )Cl 7,

83

Deg) Phase og of Pitching

200

/,'/

loo

lì,, ¡I;,, 7/" Fo 0200 0250 0275 Cal 0300 5 5 'L 20

/

PSaso ag ot HeavIng 000 Fo Cal 0 200 0 250 0275 0300 00.--200 -200

(13)

F0=0.275 F. P. Fig. 15

Fig. 16

Ï( A. P.

A/L< 0.9 /L >0.9 - 3

JLt i

Vig. 17, 18 station 9,4

1,/2 llJ

station 91/a

<L

station 1/2 0.75< /L< 1.25 CompariSon with Single Screw C Fo = 0275

Exp Cal Triple Screw

-Single ncr---(NB)

-g5 ' :l(U i45

Fig. 19 Station

JTjJO

ioi±, F0=0.275

275

Vertical 400elerotlon at Station 1/2

Fn Enp Cxl 0200 0250 0275 0300 A/L

Fig. 15

F. P. ¿$c 1

4tjI Fig. 16 A. P. &cD 1 T,152

Fig. 20 Station 1/2

iiit, F=0.275

o 40 n.j o Io o Fr 0200 0250 0275 0300 Vertical 4008lerxt,on Exp Col .5 -- --

--. .5 os or /. StatiOn g I/O

\.\

o \\'.

\.

o 40 0.2 -.5 o 30 20 IO 5 2:0 A L Fig. 17 Station 9 2

Coreporison with Single Screw CFn 0275

50 inkl Exp Triple Col 5 Screw c Single Screw c 03 (NB) 030 20 ¡ 20 IO os o IS 20 o

Comperison with Singlo Scrow Fn 0

Triple screw 2.0 S! ng le scr ew "j .5- (H B) I-0 ro 00 0 lo IS 20 - O5 1.0 15 ax

Fig. 18 Station 1/2 Z, Ii1Z

Comparison with Single Screw C En - 0 275 t

Exp Col Triple Screw Sirgle screw (NB) 4

î;

DJ±.k, F0°0.275

C)Hi) F=0.275

(14)

0tU Fig. 8

<JrU

F: l(

F,, = 0.275 o-Wc 14Ijy Fig. 19,

20 lo- Station 9½

1

Î4Ç 3 iIü station 1/2 3 ìJ

t

4.1.3. 4h

Fig. 21 oJjtjjf

4T/Çog°.H2)

iJi, A/L

LCO :0)t

24h subcarriage 0T I)

>' 7'Q) :5JyJK

0.150t:

4R/(ßg2 H2) 9)10) Ç44 11)

oJ44 Fig. 22 ioj

jjc))

A/L

aft

Increorerif 0f Thrust Resistance Increment ( Fn 0 275

85

0 0200

i' 2---- 0250 S . --- 0275

/1 \\

. 0300 / / r-. ii ¡

a///

/

. 4.1.4.

±T&h <7JKE

Fig. 4 i Lt F.P., 9V0 -'

(LtJ±)

l7jKTE3[jL,

7fl7JÇ ..J(5o),

F,, 2/L, H/A C<l Fig. 23-27

0O

30 z 20

/

2 so.

j' /

j'

¡P S'S COnSoner )VLl25, IOd-I296

7/

/

//

/

Priron'd ' X S /e P5ine,,n/ S S ;5O

-'

7

_., ,,. P riscan/O

.,.

S

î::

S-20 0200 6250 ã2I5 odoc EXP Original MaruO Modified Morso Fig.23 Fig.24

< ?!i/JK)3E, A/L=1.0, H/A = 1/29.6 Cill <j4<, A/L=1.25,H/A=1/29.6

.''LIOO EP 95 1/'.1/296 Contasse, 'rnao/d ID O S P5nsean/d D .5 4 Pmeon/d r- LIt S 0200 0250 0275 0300 Fn SI 20 IO 05 Io IS 20 O IS 25

Fig. 21 4ffi Jj fl Jj Fig. 22 F,, =0.275

¡0 60 50 40 30 LO O

(15)

86 60 70 6.0 40 30 20 I.0 0/L'150. H/A./3O2 F P gV2 Contalnon P6'd O A P,necrVd A Pmean/d [l C U 00 70 = 60 50

::

20 454:. 1

/

/4/

//

//

j

'r

,-77

/

,/

---p

6' s'LQ25 HA' /386 F P 9 , Contone, PJd Q A Pi., mean/O A .5 L Pmean/d O = to '/1.I2S H,&'/43

î

50 0230 0200 0300 0275 0300 En Fig. 27

-/*lgl0

<3ìJ', 2/L=1.50, H/2=1/38.6

10'20 4 P5755, 1/3

31ï () '

P113, )4Ï P0a.

LL5

Fig. 23, 24, 25 I0I H/1==1/30 aj 1/L=1.0, 1.25 JZ 1.50 2/L =1.0 F0

2/L=1.25 s,jrj 1.50

Z0

DI± Fig. 13

1/L<,1.i <

¿, 1/L>1.1

JLrV0

:, H/A Fig. 26, 27, 24

4.2.

Fig. 28

L'Ct: N

7JKi ' t

0'

Y YOY0 Fig. 28 upper limit dtrJ lower limit

.o

j

e1=35owgl<

Fig. 29

L'C0

O)Z

),

t24Jt:0

O-0

- ----

-'-0250 0275 osäö Fig.26 A/L=1.25, H/2=1/43. I 7,0 Pm./d F.P0 9',5 Conton,r 60 P,n,an/d A A -Pmean/d O O U 0200 0250 0275 0300 En

Fig.25 e2:

--fljiei3.4

)j(E, A/L=rl.50, 11/2=

1/30. 2

2,0

(16)

2. 2o

tì 3 *11:2

1 2 015 alo 005 O iS m (degree o without A R.T e with ART. 30

a)

(12)

N(g) 1I

Fig. 28 11iAl5, b ) (11) (O T,(ço0) 1 Fig. 29

c)

GZ(çu0) ¿I Fig. 30

(17) N'(g0) I12, Fig. 28 Q upper limit lower limit

(16) O)

T'(ça)

Fig. 29

GZ'(g0) ICI Fig. 30

87

io 5

-ee ¶Pns ( detree

Fig. 28 N ci) t *1 ûi

Fig. 30 ? AOL 111 ith 11th

Fig. 29 -*11i(t

(17)

88

05

5-Fig. 31 1)t

Roling Amplitude ( without A R T

Experiment

-. - Theory LineO,) -lw/A /100 Theory Non Linear) Theory Non Linecr)

Hw/t Corresponding to Exp

Exporitn'Oflt

-. - Theory )Lineor) Nw/h.. /l00

Thoory(Non Linear) Theory)

Nw/A Corresponding to Eop

05 0 i5 20

Fig. 32

*®IIHM

Fig. 31

41ftij4C)

ji'

II'

Fig. 31

rft:4

<

3i:

Oo

(1/100) LCit0

©

ku&_)d;/

N 1iU Fig. 28 a,

Tç,0, WGM.ço

ut, H/A1/100 LLt:-,i

Fig. 31, 32 rf®

V0) ©

:,

® ¿ ®E H/A

t-®o)

Fig. 33

t:±2. 4

i-[-

j

t1ri upper, lower Fig. 28

N{' upper limit, lower limit

itL7 t'4, H/A I

ktil

Lt: )1t:0

upper limit C

°7o kIji,

}.

® ® 2. 2. 3

3-'

it:,

Fig. 32 H/A H/A OS lo 20 A =

(18)

6

N 2-'

4

3. 89

Rolling fmpMude t with R.T

Experiment Upper L0We ColcuIction o o IO IS A w I2ig. 34 o 05 .0 15 20 A = T0 Fig. 33

7JK-Lt:L

C,

Ì-'

L

C1 tQ)

®M

-05

CQ)7' L» L, / <, t:ò5, L <,

IC

K C, L f1]

ltC,

LC

A' i

jlV'C7j 5

E,

'kl: *G)

i45

71 Fig. 84

lc-0 M1J<

CC.

1o)

4j '] K J A *1.01t [i*O)ii PL LJ..5

L1L,

--:w) 6 4 3

(19)

90

k45

05

Swoyrq Arpht1dO wThOi A R T. ) Swoyrq Anpltde

With A R T Io o Fig.35 Fig. 36

Iffi9

1.3 05 20 30 40 IS ¡ o. OS,

Fig. 37 i

*hFF6i

Fig. 38

JFig

LUt: 5c0

Q)Ot

LI yC (8) 0)

0)1 Fig. 35, 36 7JK i:

¿:AEô tLVo

Fig. 37, 38

0)T Lth

TMlVj

*:y4

5.

gu: Ti

<, JFffi,

4t = 0.1

i' 7M

j/t:0

Hamming window'31 Vt:0 Fig.

40, 41, Fig. 39

Lii

'

Mco

o*Ej:

$

0)U

5t0

t:, . ÇO1 i 7K

±1tJ

jf3 3.2, o=5.8 k, Fig. 39 72 Fig. 34 ej Col £,p

(20)

--j5

'=2. O,

Ç01/39.° ¿.,

co (thO) 2

jiJjJz

o Power Spectrum of o-Irregular Wave Tw = .69 sec H 104 mm (Jg E g

J

o

ii

liii III

I

iii

r I

ii

i

000 200 400 600 800 1000 200 rad/sec 10 -o O JO IX-

-

0-00 O o 00 o o 000 2 00 Fig.39 A ut o correlog rom (without A R T 200 400 500 800 000 sec Power Spectrum without A R.T 400 600 rad/sec

Fig. 40 io)9

I' 91

III

I i

Iii il

j j

Ii

I 2 00 IO('0 800

(21)

92 A u to corre cg rom

(with AR.T

Power Spectrum with ART. 2 00 400 600 a oc IO 00 IO 00 rad/sec

Fig. 41 jf4øE

I. 6.

I)J,

t7Q

i*wo

±Ti Lt

Lt:0 dynamic swell up

<&L,

O.75<1/L< 1.2 ft1Ok

Lt0

oj aIL

¿ ¿s5 11 jfl L C I

Thi]

t

L

iilov' A/L

i1c$,

0fLz ,

tttt:0

*BE H/a=1/3O oj±, /L= 1.0

<4), 1/L= 1.25, 1.50 -4o)j

1I6JLt:0

¿li, 2/L= 1.0,

1.25 1.50

i±l

3A L t:': t

114 ?*0)7

oQ1Jz,

(22)

93 7)

CJ

/J\ <,

*i5Z)

2t:0 t:t

L.,

FU!

.5

to)) L1 L4.

'l t) 1th

11 t:,

j-m,

{iJ

a)lf''4

v'tt

t:i

z.5Z

ljJa

t o

qI-()

<

L±f

rJi'o$

t:)tJ ) o

1) F6 7K1Z.);

' ' 4e;', i,

o 44$

U

7

ffli; '1l

ETj

;4illJ-, 1959

"Beam Sea (4}lj",

Jj

fv'z",

105

k30!-, 1965

4) Tasai, F.; "Hydrodynamic Force and Moment Produced by Swaying and Rolling Oscillations

of Cylinders on the Free Surface", Vol. IX, No. 35, 1961.

5)

kTJ; "Multihull Ship'

Jl-vZ',

Appendix 1, 1970 6) "Some Contributions to the Theory of Rolling and its Related Problem", )jjI

1939 7)

i; '

141, 1971 8) 9)

'o-f

",

($1)",

k 43 r, 1972

tXiL 101f, 1957

10) 1.1) ;

rf; 'g", ftlC

(2)",

108e, 1960

i144$7)

12) F61, 17fz5,

JIIì,

?i5F6'",

I3í)k, 4i, 1971

A;

13)

14) WPl{U;

Lj; "o)",

ìEj",

4i.5J' ' 4

44$7j

Cytaty

Powiązane dokumenty

spalania, stąd duże zainteresowanie możliwością optymalizacji pracy poprzez lepsze poznanie wpływu procesu mieszania na inne parametry technologiczno-eksploatacyjne jak:

Z niepełnych sprawozdań szkoleniowych znaj- dujących się w Centralnym Archiwum Wojskowym oraz w Archiwum Wojsk Lot- niczych i Obrony Powietrznej wynika, że w latach 1945-1949 w

De als gevolg lage geaggregeerde vraag verergert de productiviteitscrisis, want (zoals Adam Smith, Joseph Schumpeter en Nicholas Kaldor al wisten) als de economie slecht draait,

A diffraction potential q is proportional to the amplitude of the diffracted wave and it is conceived5 that the diffraction amplitude of a progressing two dimensional wave

[r]

Podobne korelacje istotne statystycznie zaobserwowano również pomiędzy pozytywną relacją z Bogiem i poczuciem związku z grupą (r=0.562; p=0.010) oraz pomiędzy negatywnymi

'^'^'(,„4 = temperature fluctuation of the internal room of the heat-generation meter. b = constant, specific for the degree of con- version, involwed.. ratio of the volume of the

LA_SurveyPurposeType: the LA_ SurveyPurposeType code list includes all the various survey purpose types, such as: land consolidation, control measurements or division of a