• Nie Znaleziono Wyników

Multivariate Multivalued Random Variable

N/A
N/A
Protected

Academic year: 2021

Share "Multivariate Multivalued Random Variable"

Copied!
9
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 162, 2002

Grażyna Trzpiot*

MULTIVARIATE MULTIVALUED RANDOM VARIABLE

ABSTRACT. Given a probability measure space (£2, A, P), random variable in clas-sical definition is a mapping from Ü to R. Multivalued random variable is a mapping from £2 to all subset of X. For a real separable Banach space X with dual space X*, let

U’ ( Д A), for 1 < p < denote the X - valued

If

- space. In this paper we present the

integral for multifunction and some property of multivalued random variables in multi-variate case. The theory of multivalued random variables has been established for Banach space-valued and for Bochner-integrable function. The main purpose of this paper is to present a theory of multivalued random variables as a generalisation of point-valued cases.

Key words: multivariate random variable, multivalued random variables.

I. INTRODUCTION

We shall give some properties o f the integration o f multivalued function, introduced by Aumann (1965). In this paper we present the integral for multi-function and some property o f multivalued random variables in multivariate case. W e shall establish the existence o f the multivalued conditional expectation o f multivalued random variables, and present a number of properties analogous to those o f the usual conditional expectation. The theory o f conditional expecta-tion has been established for Banach space-valued and for Bochner-integrable function.

*Dr hab., D epartm ent o f Statistics, The Karol Adamiecki University o f Economics in Ka-towice.

(2)

II. MULTIVALUED RANDOM VARIABLE

Given a probability measure space ( Д А, ц) random variable in classical definition is a mapping from Q to R. Multivalued random variable is a mapping from Q to all closed subset o f X.

We have a real Banach space X with metric d. For any nonempty and closed sets А, В с X we define the Hausdorff distance h(A, B) o f A and B.

D efinition 1. The excess for two nonempty and closed sets be defined by

e(A, B) = sup d(x, B), where d(x, B ) = inf | x - у |

xe A ) ^ B

the Hausdorff distance o f A and В is given by

h(A, B) = max [(eA, В), e(B, Л)},

the norm || A || o f set A we get as

II A || = /i(A, { 0 } ) = sup H* II.

xeA

The set o f all nonempty and closed subsets o f X is a metric space with the Hausdorff distance. The set o f all nonempty and compact subsets o f X is a com -plete, separable metric space with the metric h.

D efinition 2. A multivalued function q\ Q —» 2% with nonempty and closed values, is said to be (weakly) measurable if ę satisfies the following equivalent conditions:

a) <p-1 (С) = {ш e Í2 : cp (w) n C ź 0 } e A for every С open subset o f X, b) d(x, ę (со)) is measurable in ш for every x e X,

c) there exists a sequence [fn ] o f measurable functions f n : Q - ^ X such that

cp (со) = cl{fn (a))} for all (tie Q.

D efinition 3. A measurable multivalued function (p: Q —> 2 Л with non-empty and closed values is called a multivalued random variable.

(3)

A multivalued function ę is called strongly measurable, if there exists a se-quence { (pn } o f simple functions (measurable functions having a finite number o f values in I х ), such that h((pn (со), (p (a))) —> 0 a.s.

Since set of all nonempty and compact (or convex and compact) subsets o f X is a complete separable metric space with the metric h, so multifunction (p : Í2 —> 2 Л is measurable if and only if is strongly measurable. This is equivalent to the Borel measurability o f cp.

Let K(X) denote all nonempty and closed subsets o f X. As the o- field on

K(X), we get the o- field generated by cp~l (C )= { t o e Q: cp (cü) n С Ф 0 } , for

every open subset С o f X. The smallest o-algebra containing these <p_l (C) were denoted by Acp. Two multifunctions (p and ц/ are independent if A ę and A y are independent. Two multifunctions ф and ę are identically distributed if

ц((Р~' (С)) = ц (у/~ 1 (C)) for all closed С с X.

D efinition 4. We say that a sequence o f multivalued random variables

(pn : Q —» 2 K('X) is independent if so is {(pn } considered as measurable functions

from ( Д А, Ц) to (K(X), G).

D efinition 5. Two multivalued random variables cp, у/ : Q —» 2 A(A) are identically distributed if ę(oS) = yj(co) a.s.

Particularly for cpn with compact values independence (identical distributed-ness) o f {(pn } coincides with that considered as Borel measurable functions to all nonempty, compact subsets o f X.

D efinition 6. A selection o f the measurable multifunction (p : Q —> 2 Л is a measurable fu n ctio n /: Ü —> X, such lhat/(cü) e (р(а>) for all ш e Q.

Let ę , ц/ : Q —> 2 K(X) be two multivalued random variables, we define the following operation ( C a s t a i n g , V a l a d i e r 1977):

1) ( ę и \р)(ш) = cl(ę(oS) + iр(ш)), сое Q. 2) for a measurable real-valued function g

(4)

3) ( co ę)(co) = co (p(co), coe Q,

( co -denote the closed convex hull).

III. MEAN OF MULTIVALUED RANDOM VARIABLE

Let LP ( Д A), for 1 < p < °o, denote the X - valued L f - space. W e intro-duce the multivalued Lp space.

D efinition 7. The multivalued space I f [ Д A'(X)], for 1 < p < ° ° denote the space o f all measurable multivalued functions cp : Q —> 2 K(X\ such that II ę II = U • ) II is in I f .

Then U' [Í2, /v(J*0] becom es a complete metric space with the metric H p given by

H p (ę, i//) = { ln h((p(0)),y/(ü))Ydn } l/P , for 1 < p < oo

Hoo (<p, W) = ess sup h(<p(rd), yj(co), aieSi

where ę and ц/ are considered to be identical if (p(co) = ifj(co) a.s.

We can define similarly other I f space for set o f different subsets o f X (convex and closed, weakly compact or compact). We denote by [ Д ЛГ(Х)] the space o f all strongly measurable functions in \J ’ [ Д K(X)\. Then this space is complete metric space with the metric H p.

D efinition 8. The mean E (ę), for a multivalued random variables

q : Q —> 2K{X) is given as the integral ľ (pd/л o f (p defined by

(5)

where

S ( ( p ) = { f e É [ Д Х ] : Д ш ) е ę(io)a.s.)

The mean E (q) exists if S((p) is nonempty. Multifunction ф is an integrable, if \\ф((й)\\ is an integrable. If ф have an integral, then Е(ф) is compact. If /и is atomless, then E(ф) is convex. If ф have an integral and E(ф) is nonempty, then со Е(ф) = Е(соф), (co-denote convex hull o f the set).

This multivalued integral was introduced by A u m a n n (1965). For de-tailed arguments concerning the measurability and integration o f multifunction we refer to B e r g e (1966); С a s t a i n g, V a l a d i e r (1977); D e b r e u (1967). Now we present some properties o f mean o f multivalued random vari-ables.

Let <p, Ц/: Q —> 2 K(X) be two multivalued random variables with nonempty

S (ę ) and S ( !//) then:

1) cl E ( ę u y/) = cl (E(q) + £(i//)), where ( q u 1//)(<У) = cl (q(Cü) + i//(<u)).

2) cl E{ со q) = со E(cp), where ( co ę)(co) = co ę(co), the closed convex hull.

3) h ( c lE ( ę ) , clE(\iJ)) = H l (ę , у).

L em m a 1. (B e r g e 1966) Let (p : Q —> 2 K(X 1 and \ < p < « .

If S 1’ ((p) = [ f e Ľ ’ [Q, X]\ f((ú) e (p(co) a.s.} then exists a sequence {/„} con-tained in (<p) such that (p{(0) = cl {/,(<!>)} for all cue Í2.

L em m a 2. (B e r g e 1966) Let (p, \j/: Q - ъ 2 K{Á) and \ < p < «=. If Ś \(p ) = sľ(y/) Ф 0 then ę (w ) = IiKco) a.s.

These properties o f mean o f multivalued random variables are in fact the properties o f the multivalued Aumann’s integral.

IV. CONDITIONAL EXPECTATION OF MULTIVALUED RANDOM VARIABLES

Given a probability measure space ( Д A, p ) we assume that it is a finite measure and we get В as a sub- o- field o f A. For (p e Ľ [ Д В, /л, X ] we define:

(6)

The integral o f (p on ( Д ß, /и) is defined as

J n W = { j a f d p : f e SbW )

D efinition 9. For f e Ú [ Д X] the conditional expectation E(f/B) o f / rela-tive to В is defined as a function EifIB) 6 l l [ Д В, ц, X] such that

J E ( f / B ) d n = j f d n , A e В

А А

When X is a Banach space, it is known that conditional expectation E(JZB) exists uniquely for any L1 [ Ą X]. W e have some well-known properties o f con-ditional expectation. N ow we define the multivalued concon-ditional expectation and next we present properties o f our new multivalued random variable.

Definition 10. Let (p E Ľ [ Д X], the multivalued function 0 e Ľ [ Д В, /и, X] which satisfying

Sa(0) = c l [ E ( f l B ) : f e S(<p)},the closure is taken with respect to Ľ [ Д X] we call multivalued conditional expectation o f (p relative to B, we notice ф - E((p/B).

T heorem 1. Let ( p e l ! [ Д X], then there exists a unique E(cplB) e Ľ [ Д В,

И, X]

There exists a unique ф which is equal to the closure o f the set o f the condi-tional expectation for all integrable selections o f (p. If В is trivial В = [ 0 , Q \ then

E((p/B) = [//(Д )]'1 j' (pd/i. We recall some basic properties o f multivalued

condi-tional expectation, analogous to those o f the usual condicondi-tional expectation ( T r z p i o t 1996, 1999).

T heorem 2. Let (p, i p : Q —» 2 K(X) be two multivalued random variables with nonempty S (ę ) and S(ip), then the conditional expectation E{(p IB) o f (p relative to В have the following properties:

1) cl E((p u i//IB) = cl (E (ę/B) и E(\p/B)),

2) E(g(p/B) = gE(cp/B), where g is measurable real-valued function,

(7)

T heorem 3.

1) If ф e Ľ [ Д В , ц, X], ę{w) is convex and g is nonnegative real IT func-tion, then conditional expectation E(g(p/B) = E(g/B)(p, in particular E((p/B) = (p.

2) If B { с В с Л and (p e Ľ [ Д В, ц, X], ę(co) is convex then E{(plB{) taken on the base space ( Д А, ц ) is equal to the conditional expectation o f (p relative to B\ taken on the base space ( Д В, fi).

3) E ( E ( ę I B)/B i) = E(cp//i|) for ß , с В с A.

We can add that both theorems were proved directly from properties o f inte-grals o f set-valued functions.

V. CONVERGENCE OF MULTIVALUED CONDITIONAL EXPECTATION

We establish convergence theorem for multivalued conditional expectation (particularly for multivalued integrals). Let В be a fixed sub-c-filed on A and { (pn } a sequence o f multivalued random variables with nonempty and closed value. W e have the monotone convergence theorem.

T heorem 4. Suppose that <p, (со) c <p2 (со) с ... a.s. with S(<p,) Ф 0 and let oo

(p(cci) =cl{ U<p„(<u) } со e Q. Then cp has nonempty and closed value and

n = 1

E ( ( p /B ) m = cl[ ( ] Е ( с р п/В)(со)) a.s.

n = l

OO

Proof. Let !//•= cl{ ( j £ {(pJB){co) } ,c o e Ü. Then <pand i//have nonempty and Л = 1

closed value and i// is В - measurable. Obviously S(<p,) cS (< p 2 ) c . . . . a S ((p ),

S((pl IB) с S{(p2IB) с . . . . c S((p/B).

For any f e S((p), we have

inf ( / - g \ \ = E ( d ( J [ - l (Pi-))) - > 0

geS(f„)

(8)

Hence S ( ę ) = c l ( [ j S ( ( ę n )) and similarly S(y//B) = c l ( \ J S ( ę„ IB)).

n=I /1=1

oo

Thus S((p/B) = cl( (J { E(f/B): f e S ( ę „ ) } = S(i///ß), which implies E(ę/B)(cti) = n = l

= ijĄco) a.s.

REFERENCES

A r t s t e i n Z . , V i t a l e R. A. (1975), A Strong Law o f Large Numbers f o r Random Compact

Sets, „Annals o f Probability” , 3, 879-882.

A u m a n R. J. (1965), Integrals o f Set-valued Functions, „Journal o f Mathematical Analysis and Application” , 12, 1, 1-12.

B e r g e С. (1966), Espaces Topologiques, Dunod, Paris.

B o r o w k o w A. (1977), Rachunek prawdopodobieństwa, PWN, Warszawa.

C a s t a i n g C., V a 1 a d i e r M. (1977), Convex Analysis and M easurable Multifunctions, „Lectures Notes o f M athem atics”, 580, Springer Verlag, Berlin.

D e b r e u G. (1967), Integration o f C orresponded, „Proceedings 5th Berkeley Symposium on M athem atics, Statistics and Probabilistics”, 1, 2, 351-372.

E n g e 1 k i n g R. ( 1975), Topologia ogólna, PWN, Warszawa. H a u s d o r f f F. (1957), Set Theory, Chelsea, New Jork.

H e s s C. (1991), Convergence o f Conditional Expectations fo r Unbonded Random Sets,

Inte-grands, and Integral Functionals, „Mathematics of Operations Research”, 16, 3,627-649.

R o c k e f e l l a r R. T. (1976), Integral Functionals, Normal Integrands, M esurable

Selec-tions, „Lectures Notes o f M athematics” , 543, 157-207.

S a 1 i n e t t i G., W e t s R. (1979), On the Convergence o f Sequences o f Convex Sets in

Finite Dim ensions, „SIAM Review” , 21, 1.

S a p o r t a G. (1990), Probabilités, analyse des données et statistique, Edition Technip, Paris. T r z p i o t G. (1994), Pewne własności całki fu n kcji wielowartościowych (agregacja zbiorów

w modelach decyzyjnych), „Prace Naukowe AE W rocław” , 683, 55-61.

T r z p i o t G. (1995), M ultivalued Limit Laws Applied to Stochastic Optimization, „Random Operators and Stochastic Equations” , 3, 4, 309-314.

T r z p i o t G. (1995), O selektorach projekcji metrycznej, „Zeszyły Naukowe AE Katowice”, 131, 23-29.

T r z p i o t G. (1995). Twierdzenia graniczne dla wielowartościowych zm iennych losowych. „Przegląd Statystyczny”, 42, 2, 249-256.

T r z p i o t G. (1996), Conditional Expectation o f M ultivalued Random Variables, [in: |

Proce-edings o f 15th International Conference on Multivariate Statistical Analysis, Absolwent,

Łódź, 3 Í-4 2 .

T r z p i o t G. (1997), Limit Law fo r M ultivalued Random Variable, „Acta Universitatis Lo- dziensis” , Folia Oeconomica, 141, 129-136.

T r z p i o t G. (1997), W ielowartościowe aproksymacje stochastyczne. |w :] Proceedings o f 15th

International Conference on M ultivariate Statistical Analysis, Absolwent, Łódź, 224-236.

T r z p i o t G. (1999), W ielowartościowe zm ienne losowe w badaniach ekonomicznych, AE Katowice.

(9)

Grażyna Trzpiot

WIELOWYMIAROWA WIELOWARTOŚCIOWA ZMIENNA LOSOWA

M ając przestrzeń probabilistyczną ( Ą A, P), zmienna losowa jest odwzorowaniem z Q w R.

W ielowym iarowa zm ienna losowa jest odwzorowaniem z Q w zbiór wszystkich podzbiorów X. Dla rzeczywistej separowalnej przestrzeni Banacha X z dualną przestrzenią X * , niech LP (Í2 ,A ), dla 1 < p < oznacza X - wartościow ą przestrzeń Lp . Artykuł zawiera własności całki wielo-wartościowych odwzorowań w ujęciu wielowymiarowym. Definiujemy warunkowe średnie wraz z własnościami o zbieżności. Podstawowym celem jest ujęcie teorii w ielowartościowych zmiennych losowych jako uogólnienia klasycznej teorii.

Cytaty

Powiązane dokumenty

The carried out analysis of this synanthropization process was based on the example of stations of 31 anthropophytes of Poaceae family located in railway grounds

The random sets theory makes it possible to handle uncertainties connected with the selection of input parameters in a very specific way.. The first part of the article explains

Given that each of these numbers is even, the probability that each individual component is at the origin is the probability that a one dimensional walk is at the origin at time

mean value, depends on the distribution only for a finite set S, the EX always exists... Expected value –

The following theorem states that the theorem of Hsu and Robbins on complete convergence is true for quadruplewise independent random variables..

In the following by N we shall denote a positive integer-valued random variable which has the distribution function dependent on a parameter 2(2 &gt; 0) i.e.. We assume that

You are not required to find the coordinates of the

Miklaszewski, A reduction of the Nielsen fixed point theorem for symmetric product maps to the Lefschetz theorem, Fund.. Schirmer, An index and a Nielsen number for