• Nie Znaleziono Wyników

Rotational snap-through behavior of multi-stable beam-type metastructures

N/A
N/A
Protected

Academic year: 2021

Share "Rotational snap-through behavior of multi-stable beam-type metastructures"

Copied!
12
0
0

Pełen tekst

(1)

Rotational snap-through behavior of multi-stable beam-type metastructures

Zhang, Yong; Tichem, Marcel; Keulen, Fred van

DOI

10.1016/j.ijmecsci.2020.106172

Publication date

2021

Document Version

Final published version

Published in

International Journal of Mechanical Sciences

Citation (APA)

Zhang, Y., Tichem, M., & Keulen, F. V. (2021). Rotational snap-through behavior of multi-stable beam-type

metastructures. International Journal of Mechanical Sciences, 193, [106172].

https://doi.org/10.1016/j.ijmecsci.2020.106172

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

ContentslistsavailableatScienceDirect

International

Journal

of

Mechanical

Sciences

journalhomepage:www.elsevier.com/locate/ijmecsci

Rotational

snap-through

behavior

of

multi-stable

beam-type

metastructures

Yong

Zhang

,

Marcel

Tichem

,

Fred

van

Keulen

Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands

a

r

t

i

c

l

e

i

n

f

o

Keywords: Metastructure Snapping beam Multi-stability Rotational state

a

b

s

t

r

a

c

t

Metastructuresconsistingofplanararrangementsofbi-stablesnap-throughbeamsareabletoexhibitmultiple sta-bleconfigurations.Apartfromtheexpectedtranslationalstatetransition,whenallbeamelementssnapthrough, rotationalstatesmayexistaswell.Inthispaperweexploretherotationalpropertiesofmulti-stable metastruc-turesonthebasisofbothexperimentalandtheoreticalinvestigations,anddefinetheconditionsforachieving rotationalstablestates.Resultsshowthatthemetastructureisabletorealizebothtranslationalandrotational states,whiletherotationaltransitionsrequirelessenergyascomparedtotheirtranslationalcounterparts.The influenceofgeometricparametersonrotationalstabilityisinvestigatedviaparametricstudies.Furthermore,to determinethedesigncriteriaforrotationalstability,atheoreticalinvestigationbasedonmodesuperposition principleisperformedtopredictthenonlinear-deformationofaunitcell.Thetheoreticalanalysispredictswell therotationalsnap-throughtransitionsthatareobservedinfiniteelementsimulations.Itisfoundthatthe rota-tionalstabilityisdeterminedbysettingpropervaluesforh/Landt/L(h,t,Lrepresentapexheight,thickness andspanofthebi-stablebeamstructure,respectively).Finally,weexperimentallydemonstratethattheproposed metastructurewithmultiplelayersisabletoachievelargerotationsandtranslations.

1. Introduction

Thedesignofmechanicalmetastructuresisarapidlyemergingfield, becauseofthepotentialtocreateunusualmechanicalproperties,such asultra-highstiffnessbutlightweight[1–5],negativePoisson’sratio[6– 8],andnegativethermalexpansion[9–13].Thesesuperiorfeaturesare mainlyrealizedbytherationaldesignoftheirunitstructures.For exam-ple,arrangingunitcellsinare-entrantpatterncanresultinanegative Poisson’sratioofthemacroscopicmetastructure[14].Atpresent,a va-rietyofmechanicalmetastructureshavebeenproposedandintensively studiedforvariousapplications,includingmedicalimplants[15,16], softrobots[17,18],andmicroelectromechanicalsystems[19].

Morerecently,thestrategyofutilizingbuckling,whichisgenerally avoidedinclassicalstructuraldesigns,hasbeenextensivelyreportedin metastructuraldesign[20–24].Thedesignedinstability-based mechan-icalmetastructuresallowforlargemacroscopicdeformationswith re-coverableshapechanges,andthustheyarealsoreferredtoas reconfig-urablemetastructures[25–28].Newfunctionalities,e.g.tuneable me-chanicalbehavior,canbeachievedbysuchmetastructures.However, these transformationsof geometryor reconfigurationusuallyrequire continuouspower,inthesensethatacontinuousexternalactuationis necessarytomaintainthedeformedconfiguration.Onewaytoimprove energyefficiencyistointroducebi-ormulti-stability,sothatastructure maintainsdifferentstateswithouttheneedforcontinuousenergy

sup-∗Correspondingauthor.

E-mailaddress:Y.Zhang-15@tudelft.nl(Y.Zhang).

ply.Indesigningsuchmulti-stablemetastructures,pre-shapedbeams havebeencommonlyadoptedasbasicelementssincetheyhavelarge loading-bearingcapacityandcanbeeasilymanufacturedviaadditive manufacturing[21,29].Whenanappliedloadreachesacriticallevel, thebeamwilljumpfromoneconfigurationintoanotherconfiguration, whichisreferredtoassnap-throughbehavior[30].Byarranging mul-tiplesnappingbeams,theassociatedmetastructuresareabletoexhibit multipleself-stableconfigurations.Manyexamplesofregularly assem-bledpre-shapedbeamsinoneortwodimensions(1Dor2D),referred toasmulti-stablebeam-typemetastructures(MBMs),canbe foundin literature[31–39].

In light of the stacking of the snapping beams with two stable configurations, MBMs arenormally capable of achieving a large re-versibleswitchingmotion,whichhasbeenutilizedforenergy absorp-tion[40–43].Ithasbeendemonstratedthatthemulti-stabilitycan en-hance theabilityof reducingpeakacceleration whileMBMsarestill reusable[44].Inaddition,suchMBMs,asreconfigurablestructures,can bewidelyusedfordesigningmotion-drivenmechanismsincluding de-ployablestructures,shape-changingstructures,actuators,softrobotics, andmotionsystems[45–50].Thesemotion-drivenapplicationsusually require multiple degreesof freedomandthe monolithicmulti-stable structuresmightofferacompactsolutionforsuchchallenges.For in-stance,Chenetal.[45]presentedadesignforpropulsionofsoftrobots, exploitingmotionsfromthesnappingofbeams.Santeretal.[47]

ex-https://doi.org/10.1016/j.ijmecsci.2020.106172

Received3June2020;Receivedinrevisedform10October2020;Accepted24October2020 Availableonline29October2020

(3)

ploited1Dtranslationalmotionofamulti-stablestructuretodeploya surface.Pontecorvoetal.[48]proposedtheconceptofusingbi-stable elementstoextendahelicopterrotorblade,basedonthelarge trans-lationofMBMs.Besides,Cheetal.[51]designedamulti-stable beam-typestructureusingdifferentmaterialsforeachlayertocontrolits de-formationsequences.ThedynamicbehaviorofMBMswasalso inves-tigatedtoanalyzeitsvibrationmodes[52]. However,mostproposed MBMsarelimitedin termsof allowabledirectionsandareonly pre-sentedwiththeirtranslationalmotions.Theirpotentialtorealize rota-tionalstablestateshasnotbeenrevealedandstudied,andthusthis lim-itstheirfeasibilityinmotion-drivenapplicationswhererotational move-mentsaretypicallyneeded,suchasactuators,deployablestructuresand robotics.

Toenrichmulti-stablestructure’sreconfigurationcapability,inthis workweexplorethepossibilityforMBMstoachieverotational move-ments.ThispaperaimstoanalyzetherotationalbehaviorofMBMsand studydesignconditionsforstructurestorealizeadditionalrotational states.AlthoughpreviouspapersonMBMsgiveimportantinsightsinto themechanicsofthetranslationaltransitions,thepotentialofrotational reconfigurationisrestrictedinmostpreviousdesignsandlittle informa-tionisavailableontherotationalstabilityofMBMs.Inthispaper,the rotationalbehaviorofMBMsischaracterizedviaexperimentaland nu-mericalapproaches,andthedesignrequirementsforrotationalstates areinvestigatedviaananalyticalmodel,whichcanrapidlyidentifythe designspacefortherotationalstability.Theresultingmulti-stable struc-turesexhibitbothtranslationalandrotationalmotions,whichcan fur-therenhancemulti-stablemechanisms’deploymentcapacities.For in-stance,therotationaltransitionscanbeexploitedtodesignmulti-stable bendingactuatorsinwhichrotationaldegreesoffreedomareessential, whiletheintrinsictranslationalstatecanbeharnessedtoprovide exten-sionsorcontractions.

Theremainderofthispaperisorganizedasfollows.Section2 de-scribesthestructuralgeometryofMBMsandmethodsweusein this work.Themechanicalpropertiesandresultingrotationalstablestates are characterized experimentally and numerically via a parametric study, as presented in Section 3. In Section 4, we conduct a theo-retical analysis to investigate the rotational stability. Section 5 de-scribesthemechanicalbehaviorofmulti-layermetastructures exhibit-ing large rotations and translations. Conclusions are presented in

Section6.

2. Structuraldesignandmethods

2.1. Structuralgeometryandstablestates

ThestructuraldesignofMBMsstudiedinthispaperisbasedonthe snap-through behaviorof curvedbeams,which werefirst studiedby Vangbo etal. [53]. Inthis paper,pre-shapedcurvedbeamsareused asbasicelementstoconstructmulti-stablemetastructures,asshownin

Fig.1.EachbeamelementillustratedinFig.1(b)iscomposedofacurved beam,upperandlowerframe(markedinblue).Thegeometric parame-tersoftheframesareshownintheinsettableandarefixedinthisstudy. Theoriginalshape(𝑤0 (𝑥))ofthecurvedbeamillustratedinFig.1(b)can beexpressedas: 𝑤0 (𝑥)= 2 ( 1−𝑐𝑜𝑠(2𝜋 𝑥 𝐿) ) (1)

whereand𝐿representinitialbeamheightandlength,respectively. Thebeam’sin-planethicknessandout-of-planethicknessaredenoted as𝑡and𝑏,respectively.Thesethreeparameters(ℎ,𝐿,and𝑡)are con-sideredasdesignparametersandtheirinfluenceonrotationalbehavior issystematicallydiscussedinthispaper.AsillustratedinFig.1(a),by seriallycombiningmultiplebeamelements,MBMscanbedesigned.

Theresultingmetastructuresandtheirstablestatesaredemonstrated inFig.1(c),wheretherepresentativeunitisreferredtoasaunitcellthat consistsoftwobeamelements:leftandrightbeamelement,asdenoted inthefigure.Theunitcellcandeformintoflatortiltedstable config-urations.Theseflatandtiltedstableconfigurationsarereferredtoas translationalandrotationalstatesrespectivelyintheremainderofthis paper.Theunitcellpossessesfourstableconfigurations:theinitialstate andthreedeformedstablestatesincludingonetranslationalandtwo rotationalstablestates.Whentheunitcellswitchesfromtheinitialto thetranslationalstate,bothbeamsundergothesamedeformationsand snaptothesecondstablestate.Therefore,thebehavioroftranslational transitionscanbeobtainedbasedonastudyforoneside,eithertheleft orrightbeamelement.However,symmetrybreaksupduringthe transi-tiontotherotationalstate,wherebothcurvedbeamsdeformwith differ-entmanners.Inparticular,theleftbeamelementsnapswhiletheright beamelementismainlyrotated.Theresultingrotationalstateisenabled byacollectiveeffectoftheleftbeamelement’ssnappingdeformations androtationaldeformationsofrightbeamelement.Consequently,

me-Fig.1. Ademonstrationofmulti-stablestructureswithtranslationalandrotationalstablestates.(a)Aschematicfortheproposedmulti-stablemetastructure.The structureisdesignedbyseriallystackingcurvedbeamswiththickframes.(b)Geometricparametersofthebeamelementaredepicted.Theout-of-planedimension isdenotedas𝑏.(c)Eachunitcell(=5mm𝑡=0.8mmand𝐿=28mm)possessesfourstablestatessuchthatitcansnapintothetranslationalstateortherotational states.

(4)

Fig.2.Characterizationofsnap-throughtransitionsoftheunitcell.(a)Stress-strainresultsforthematerialweused.(b)Experimentalsetupformeasuringrotational (left)andtranslational(right)transitions.Samplesareclampedatthebottomandconnectedtotheprintedpartatthetop.(c)Normalizedload-displacementcurves ofsnap-throughtransitions.Theblueregionsrepresentpositivestiffnessphaseswhiletheyellowareastandsforthesnappingphase,exhibitingnegativestiffness. 𝐹𝑚𝑎𝑥and𝐹𝑚𝑖𝑛representthemaximalandminimalforceofeachload-deflectioncurves,respectively.(d)Evolutionofthenormalizedstrainenergyoftheunitcell

duringtheuniaxialloading.

chanicsanddesignrequirementsfortheproposedrotationalstateare differentfromthatoftranslationaltransitions.Toestablishthedesign criteriaforreachingrotationalstates,ananalyticalstudyisperformed inSection4.

2.2. Fabricationandexperimentaltests

Tostudytheproposedmulti-stablemetastructures’behavior,aseries ofsampleswerefabricatedviaafuseddepositionprinterusingflexible thermoplasticpolyurethanes(TPU,Flex-45,RS).TPUisan environmen-talfriendlymaterialwithadvantagesofgoodwearresistanceandlarge recoverableelasticstrains.Itspropertieswerecharacterizedbystandard tensilemeasurementsaccordingtoASTMD638-14[40].Themeasured Young’smodulus(𝐸)andPoisson’sratio(𝜈)are95MPaand0.4, respec-tively.Thecorrespondingstress-straincurveisplottedinFig.2(a).

Uniaxial loadingtests were conductedto characterize metastruc-tures’snap-throughtransitionsasload-displacementcurves.Quasi-static loadingconditionswereappliedusingauniversaltestingsystem (Zwick-RoellZ005)withaloadingrateof10mm/mininadisplacement-control manner.Foreachsample,multipletestswereconductedtogetaverage load-displacementcurves.Extrapartsusedforconnectingsamplestothe testingsystemweredesignedandprintedusingpolylacticacid(PLA), asseen inFig.2(b).Toallowforunitcells’rotationsduringuniaxial testing,tworigidpartswereassembledusing screwstomimichinge connections.Loadswereappliedononesideoftheframe.For

character-izingtranslationalmotions,clampedconditionswereappliedbetween specimensandtheextraparts,asdisplayedinFig.2(b).

2.3. Numericalmethods

Finite element models were established by using software ABAQUS/Standard (2017)toexamine thestructures’mechanical be-havior, wheregeometricparametersarein accordance withthoseof experiments.A Marlowhyper-elasticmaterialmodelwas adoptedas aconstitutiverelationinfiniteelementanalysis(FEA)[54].Here,the stress-straincurveshowninFig.2(a)wasimportedtoABAQUS. Eight-nodebrickelements(C3D8)wereusedtomeshthestructuregeometry, withmeshconvergenceanalysisperformedtoensureaccuracy. Nonlin-eargeometricFEAbasedonstatic/generalprocedurewasconductedby prescribingverticaldisplacementsatspecificloadingpointsonthetop oftheunitcell,whichisconsistentwiththeexperimentalcompression testsshowninFig.2(b).Thebottomofthestructureisfullyfixedinx, y,zdirections.Thereactionforceswerecollectedineachiterationfrom nodeswhereverticaldisplacementswereapplied.

3. Mechanicalresponseforrotationaltransitions

Inthissection,wecharacterizetherotationaltransitionsofthe rep-resentativeelement,whichistheunitcelldefinedbefore.Moreover,a parametricstudyisperformedtoinvestigatetheinfluenceofprimary geometricparameters.

(5)

3.1. Characteristicsofsnap-throughbehavior

The force and vertical displacement of loading points shown in

Fig.2(b)aredenotedas𝐹and𝑑,respectively.Themeasuredforceand displacementarethennormalizedby𝐸𝑏𝑡andℎ,respectively.Fig.2(c) showsforce-displacementcurvesfortranslationalandrotational snap-throughbehavior.Itcanbeobservedthatthereisagoodquantitative agreementbetweenexperimentalandnumericalresults.Negative stiff-nessiscapturedinbothtranslationalandrotationaltransitioncurves. Theforcefirstgraduallyincreasesalongwiththedisplacementandthen instability(i.e.snapping)istriggeredwhenreachingthemaximumforce (denotedas𝐹𝑚𝑎𝑥).Underforce-controlloadingcondition,snap-through behaviortypicallyexhibits“displacementjump” afterreaching𝐹𝑚𝑎𝑥.In thisworkweapplydisplacement-controlloadingconditiontocapture thefullforce-displacementcurveshown inFig.2(c),withanegative stiffnessphase(theyellowregioninthefigure).Inthispaper,werefer tothisnegativestiffnessphaseassnap-throughtransitions.𝐹𝑚𝑖𝑛 repre-sentstheminimumforceintheforce-displacementcurve.Inthisfigure, themagnitudeof𝐹𝑚𝑎𝑥fortranslationisapproximatelytwotimeslarger thanforrotation.This isduetothefactthatin caseoftranslational transitions,twobeamsundergobendingandcompressiondeformations, whileforthecaseofrotationsmainlythebeamneartheloading posi-tiondeforms.Moreover,theminimumforce𝐹𝑚𝑖𝑛fortranslationisalso higherthanforrotationsasaresultofdeformationsoftwobeams.This impliesthatrecoveringfromthetranslationaltotheinitialstateneeds largerforceascomparedtoreversingtherotationalstate.Inaddition,we assessthesymmetryofsnap-throughtransitionbydefiningaquantity𝜂 =|𝐹𝑚𝑎𝑥/𝐹𝑚𝑖𝑛|.When𝜂 iscloseto1,thestructureintendstoexhibit sym-metrictransitions.Here,the𝜂 fortranslationaltransitionsinFig.2(c) is3.95,whereasthecounterpartofrotationalcurveis15.24.This indi-catesthattheunitcell’srotationaldeformationexhibitsamoreevident asymmetriccharacteristic ascomparedtotranslationaldeformations. Thehighlyasymmetricbehaviorof rotationsisattributedtotwo as-pects:thesnappingdeformationoftheleftbeamelementandrotational deformationsoftherightbeamelement,asdiscussedinSection2.1.

Theevolution of strain energy(𝑃) duringthe loadingprocess is showninFig.2(d).𝑃isequaltotheareaunderthecorrespondingforce displacementcurve.It indicatesthatboththetranslationaland rota-tionalstatetransitionsexhibitalocalminimumintheenergylandscape, whichcorrespondtothedeformed(translationalandrotational)stable states.Therotationalsnap-through(negativestiffness)can be under-stoodas:byapplyingprescribeddisplacementsasshowninFig.2(b), therightbeamelementismainlybent.Theleftbeamelement experi-encesbendingandcompressiondeformations,wherethecompression energyfirstincreasesandthendecreases,leadingtothedeclineofthe unitcell’sstrainenergy.Inaddition,itcanbeobservedthattheenergyof deformedstablestateislargerthanthatoftheinitialundeformedstate, whichimpliesasufficientlylargedisturbancemaycausethestructure toswitchbacktoitsinitialstatethathasalowerpotentialenergy.

3.2. Influenceofgeometricparametersonrotationalstates

Formulti-stablemetastructures,tuninggeometricparameterscan re-sultindifferentmechanicalpropertiesincludingstrength,stiffnessand stability. Rotationalbehavior of these metastructures is mainly con-trolledbythebeams’geometricparametersdefinedbefore:thebeam height(),thethickness(𝑡)andthelength(𝐿).Here,parametricstudies arecarriedoutforunitcells’rotationaltransitionsandaseriesofunit cellswithdifferentparametersistested.Moreover,wehave character-izedthetangentslopeofeachforce-displacementcurvefortheinitial androtationalstate.𝑘0 and𝑘1 arereferredtoasthetangentslopeof eachforce-displacementcurveatthepointscorrespondingtotheinitial androtationalstate,asillustratedinFig.3(a).Similarly,whenvarying and𝐿,𝑘0 and𝑘1 canalsobequantifiedforthecorresponding load-displacementcurves.

3.2.1. Thicknessvariation

Resultsoftheunitcells’rotationaltransitionswithdifferent thick-ness(𝑡)arepresentedinFig.3(a)–(c).Fig.3(b)showsthechangeof𝐹𝑚𝑎𝑥 and𝐹𝑚𝑖𝑛versusthevariationofthickness.Theminordeviationsbetween experimentalandnumericalresultsaremainlyattributedto manufac-turingimperfectionsandlocaldefectsintroducedduringprinting.Itcan beseenthat𝐹𝑚𝑎𝑥isincreasingdramaticallywithrespecttothechangeof thickness.Thisisduetothefactthatbothbendingandcompression en-ergyoftheunitcellincreasemonotonicallywiththeincreasingof𝑡.The variationofminimumforce(𝐹𝑚𝑖𝑛)showsasmalldistinctionascompared tothatof𝐹𝑚𝑎𝑥.Nevertheless,itisclearthatwhenthicknessislarge,the corresponding𝐹𝑚𝑖𝑛isapositivevalue,whichmeansthatthestructure switchesbacktotheinitialstateafterremovalofload.Thisisverifiedin FEA(showninFig.3(b))aswellasexperimentaldemonstrationssuch thatunitcellswithsmall𝑡canrealizeself-stablerotationalstateswhile theunitwithathicknessof1.6mmrecoversbacktotheinitialstate uponremovingtheload(seeSupplementaryVideo).Thisshowsthat 𝑡iscrucialforrotationalstability.Moreover,resultsinFig.3(c)show thatthestiffness𝑘0 increasesmonotonicallywhen𝑡increases.However, 𝑘1 firstincreasesandthendramaticallydecreaseswhen𝑡islargerthan 1.38mminthiscase.Thisindicatesthattheunitcellpossessestunable stiffness,whichisrelatedtoitsmultiplestablestates.

3.2.2. Lengthvariation

Fig.3(d)–(f)displaytheinfluenceofthebeamlength (𝐿)on ro-tationalpropertieswhilekeepingotherparametersunchanged.Results showthatthevalueof𝐹𝑚𝑎𝑥decreaseswiththeincreaseof𝐿,while𝐹𝑚𝑖𝑛 isincreasing.Similarcharacteristicscanbecapturedforboth𝑘0 and𝑘1 thatstiffnessdecreaseswhen𝐿isincreased.Furthermore,itcanbeseen fromFig.3(e)thattheslopeofthe𝐹𝑚𝑖𝑛curvegraduallydecreases.As comparedtotheeffectof𝑡,thebeamlength𝐿hasminoreffectsonthe signof𝐹𝑚𝑖𝑛,whichisstillnegativedespiteitsmagnitudeisdecreasing. Similarly,itwasalsofoundthat𝐿hasminorinfluenceonthesignof 𝐹𝑚𝑖𝑛oftranslationaltransitions[55].Itshouldbementionedthatthis effectof𝐿isonlyapplicableforshallowandthinbeams,where𝐿is muchlargerthanand𝑡.

3.2.3. Heightvariation

ResultspresentedinFig.3(g)–(i)showthatthebeamheight()has adifferentinfluenceontherotationalbehavior.Theeffectcanbe sum-marizedas:i)𝐹𝑚𝑎𝑥increaseswithanincreasingofℎ,similartotheeffect of𝑡;differently,the𝐹𝑚𝑎𝑥curvegraduallyincreasesinalinearmanner (seeFig.3(h)).ii)Whenenlargingℎ,𝐹𝑚𝑖𝑛andtheslopeof𝐹𝑚𝑖𝑛curve decrease,asshowninFig.3(h).iii)Thechangesof𝑘0 and𝑘1 exhibit different characteristics.The𝑘0 increaseswithincreasingin a pro-portionalmanner,whilethe𝑘1 increaseswithasmallrateofchange. Thisrelationresultsfromtheenergyvariationoftheunitcell,where theheight()influencesbothinitialcurvatureandlengthofthebeam. Changingthegeometricparameterscancontrolthevariationofelastic energyduringdeformations.Thetunabilityofstiffness offersthe po-tentialtotunestructures’dynamicbehaviorbyswitchingintodifferent stablestates.

4. Designcriteriaforrotationalstates

From theprevious section,itis foundthatgeometricparameters (𝑡,𝐿,ℎ)affectrotationaltransitionsindifferentmanners.With chang-ingtheseparameters,therotationalresponsecanshiftfromstabilizing attherotationalstates(𝐹𝑚𝑖𝑛<0)toswitchingbacktotheinitialstate (norotationalstates,𝐹𝑚𝑖𝑛>0).Inordertoexplorethedesignspacefor realizingrotationalstablestates,wepresentananalyticalinvestigation oftherotationalbehavioronthebasisofparametersdefinedbefore.

4.1. Modelformulation

Thetheoreticalanalysisisestablishedfortheunitcell’srotational transitionsbycombiningbucklingmodesofthebeamelements.Ithas

(6)

Fig.3. Theinfluenceof𝑡,ℎ,and𝐿onrotationalresponses.(a)–(c):Theeffectof𝑡onrotationaltransitions.(a)showsexperimentallymeasuredload-displacement curvesforspecimenswithdifferentthickness.𝑘0and𝑘1aredefinedastheslopeoftangentline(orangecolor)attwostablelocations(theinitialandrotationalstate).

(b)presents𝐹𝑚𝑎𝑥and𝐹𝑚𝑖𝑛offorce-displacementcurvesasafunctionofthickness.Thepositivesignof𝐹𝑚𝑖𝑛indicatesthattherotationalstablestatedoesnotexist.(c)

representsthechangeof𝑘0and𝑘1whenvaryingthicknessinFEA.(d)–(f):Theeffectof𝐿onrotationaltransitions.(g)–(i):Theeffectofonrotationaltransitions.

beenreportedinliteraturethatutilizingbucklingmodescanprovidea goodestimationofload-displacementresponsesforthesnappingbeams

[35,56–58]. Here,sincetheunitcellundergoes both symmetricand asymmetricdeformations(seeFig.4(a)),dominantmodes(symmetric Mode1andasymmetricMode2)areemployedtoconstruct displace-mentfields,asdisplayedinFig.4(b).Basedontheassumed displace-mentfield,thepotentialenergyisthenformulatedtoderivethe gov-erningequations.

4.1.1. Elasticenergyforasinglebeam

Wefirstderive energyformulas foreach singleclamped-clamped pre-shapedcurvedbeamillustratedinFig.4(d),andthenformulatethe modelfortheunitcell.Thebeam’sgeometricparametersaredepictedin

Fig.4(d),with𝑋𝑌 coordinatedefined.AccordingtoEulerBernoulli equations[59],thefirstandsecondbucklingmodesofastraightbeam thatisaxiallycompressedtobucklearegivenas:

𝑌1 =1−𝑐𝑜𝑠 ( 𝑁1 𝑥𝐿 ) with 𝑁1 =2𝜋 (2) 𝑌2=1−2𝑥 𝐿𝑐𝑜𝑠 ( 𝑁2𝑥 𝐿 ) + 2 𝑁2 𝑠𝑖𝑛 ( 𝑁2𝑥 𝐿 ) (3)

where𝑁2 is thefirstpositivesolutionofequationtan(𝑁2 ∕2)=𝑁2 ∕2. Thedeformedbeamshape(𝑌)underagivenloadisdescribedas: 𝑌 =𝐴1 𝑌1 +𝐴2 𝑌2 and 𝑌0 =

2𝑌1 (4)

𝑑=𝑌0 𝑌 (5)

where𝑌0 is theinitial beamshapeand𝑑 isthedisplacementof the beam.𝐴1 and𝐴2 areunknowncoefficients,which needtobe solved on thebasisoftheprinciple ofminimum energy.Theelasticenergy forthecurvedbeamisobtained,whichincludesbendingenergy(𝑈𝑏) andcompressionenergy(𝑈𝑐).Thebendingandcompressionenergyis derivedrespectivelyby:

𝑈𝑏=𝐸𝐼2 𝐿 0 ( 𝑑2 𝑌 𝑑𝑥2 − 𝑑2 𝑌 0 𝑑𝑥2 )2 𝑑𝑥 where 𝐼= 𝑏𝑡3 12, (6) 𝑈𝑐=𝐸𝑏𝑡𝑠) 2 2𝐿 and Δ𝑠=𝑠𝑠0 (7)

Here,𝑠is thebeam’stotallength atanyposition,while 𝑠0 is the beam’sinitiallength.Assumingsmalldeformations,𝑠canbe

(7)

approxi-Fig.4.Modelingasinglebeambasedonbucklingmodes.(a)TherotationaltransitionsobservedinbothexperimentsandFEAshowevidentasymmetricdeformation modes.(b)Thefirsttwobucklingmodes(Mode1and2)foraclamped-clampedbeam.Thesemodesareemployedasbasestoapproximatethedisplacementfield. (c)Geometryoftheunitcell.(d)Illustrationofasinglecurvedbeam.Eachbeamoftheunitcellismodeledasasinglebeam.BasedontheX-Ycoordinateinthe figure,thefirsttwobucklingmodesaredescribedbyfunction𝑌1and𝑌2,respectively.

Fig.5. Modeltherotationaldeformationoftheunitcell.(a)Unitcell’sgeometryandpredefinedparameters.𝑏istheout-of-planedimension.(b)Asobserved,the verticalbranchisbentduringrotationaltransitions.Theassociatedbendingenergyistakenintoaccountwhencalculatingthetotalpotentialenergyofthesystem.

matedas: 𝑠= ∫ 𝐿 0 √ 1+( 𝑑𝑌 𝑑𝑥 )2 𝑑𝑥≈ ∫ 𝐿 0 [ 1+1 2( 𝑑𝑌 𝑑𝑥)2 ] 𝑑𝑥, (8)

Bycombining Eqs.(7)and(8),𝑈𝑏 and𝑈𝑐can beexpressedasa functionof𝐴1 and𝐴2 ,asshowninEqs.(9)–(10).𝐶1 ,𝐶2 ,𝐷1 ,𝐷2 are con-stants,whichfollowfromintegrationsalongthe𝑥axis(seeSupporting Material). 𝑈𝑏= 𝐸𝐼 2𝐿3 [ (−𝑨𝟏+𝑨𝟐𝟏+2 4)𝐶1 +𝑨 𝟐 𝟐𝐶2 ] (9) 𝑈𝑐 = 8𝐸𝐴𝐿3 { 𝐷2 1 𝑨𝟒 𝟏+𝐷2 2 𝑨𝟒𝟐+2𝐷1 𝐷2 𝑨𝟐𝟏𝑨𝟐𝟐2 𝐷2 1 2 𝑨 𝟐 𝟏 2 𝐷 1 𝐷2 2 𝑨 𝟐 𝟐+ 4 𝐷2 1 16 } (10)

4.1.2. Modeltheunitcell

Basedonthederivedformulationforasinglebeam,wenowbuild themodelfortheunitcellwhichiscomposedoftwopre-shapedbeams connectedbyframes.Thegeometricparametersoftheunitcellare il-lustratedinFig.5(a),whereeachbeam’sshape(representedasleftand

rightunit)ismodeledusingtheformuladerivedinSection4.1.1. Specif-ically,eachbeam’sgeometryisdeterminedby𝑡,𝐿,andℎ,whicharethe samenotationsusedbefore.TheverticalbranchdenotedinFig.5(a) rep-resentstheverticalpartoftheupperframe,withdimensionsdepicted as𝐻 and𝑊.Asobservedinsimulation,thisverticalbranchisbent dur-ingloading,asshowninFig.5(b).Therefore,thebendingenergyofthe branchistakenintoaccountinthefollowingenergyformulation.The unitiscompressedbyaload(𝐹)atpointA,asillustratedinFig.5(a). Theangleoftheupperframeisdepictedas𝜃.

a.Kinematics

Asdiscussedintheprevioussection,theleftandrightbeam’sshape (denotedas𝑌𝐿and𝑌𝑅)canbedescribedas:

𝑌𝐿=𝐴

1 𝐿𝑌1 +𝐴2 𝐿𝑌2 and 𝑌𝑅=𝐴

1 𝑅𝑌1 +𝐴2 𝑅𝑌2 (11) where𝑌1 and𝑌2 arethefirsttwobucklingmodes,asdefined before. 𝐴1𝐿,𝐴2𝐿,𝐴1𝑅,𝐴2𝑅areunknownfactors,whichneedtobesolved.The displacementofeachbeam’smidpoint(PointBandD),denotedas𝑑𝐵 and𝑑𝐷,canbeexpressedas:

𝑑𝐵=2𝐴

1 𝐿, 𝑑𝐷=−2𝐴1 𝑅 (12)

KinematicrelationshipbetweentheverticaldisplacementofPointA (denotedas𝑑𝐴)andC(denotedas𝑑𝐶)ispresentedinEqs.(13).The relationbetween𝐴1 𝐿and𝐴1 𝑅isderived,asshowninEqs.(14).

(8)

Fig.6.Identificationofdesignspacefor ro-tational stablestates asa function of 𝑡𝐿 and 𝐿. (a) Theoretical predicted load-displacementcurvesfortheunits with dif-ferentparameters. FEAresultsare usedas references.(b)Withchanging𝑡𝐿and𝐿, thedesignspaceforrotationalstablestates is identifiedbythe model. Thegrey area representsthesituation,inwhichthereare no rotationalstablestates;thecolored re-gionrepresentstherangeofparameter val-ues,forwhichthestructuredoeshave rota-tionalstablestates.Greendotsarespecific data points (denoted as 𝑡𝑏𝐿𝑏 andℎ𝑏𝐿𝑏)

alongtheboundary.(c)Thechangeof𝐹𝑚𝑎𝑥

withrespectto𝑡𝐿and𝐿.(d)The𝑡𝑏𝐿𝑏

andℎ𝑏𝐿𝑏predictedbythemodelandFEA,

respectively.TheerrorbarsmarkedinFEA representthatthesimulatedℎ𝑏𝐿𝑏thatis

ex-actlycorrespondingto𝐹𝑚𝑖𝑛=0islocated

be-tweentheupperandlowerlimits.

𝑑𝐴=𝑑𝐶+𝐿 𝑥𝑠𝑖𝑛(𝜃) (13) 𝐴1 𝐿=𝐴1 𝑅𝐿𝑥𝑠𝑖𝑛(𝜃) 2 ≈𝐴1 𝑅𝐿𝑥𝜃 2 (14)

𝐿𝑥isthedistancebetweenPointAandC,whichisaconstantvalue.

b.Potentialenergy

The total potential energy for the unit under the point-force loading is formulated to obtain the four unknown coefficients (𝐴1 𝐿,𝐴2 𝐿,𝐴1 𝑅,𝐴2 𝑅).Therearefourenergycontributions,whicharethe bendingenergyofleftandrightbeam(𝑈𝑏𝐿and𝑈𝑏𝑅),thecompression energyofleft andrightbeam(𝑈𝑐𝐿 and𝑈𝑐𝑅),thebendingenergyof verticalbranch(𝑈𝑣)andpotentialenergy(𝑈𝑒).

𝑈𝑏𝐿,𝑈𝑐𝐿canbederivedbysubstituting𝐴1 𝐿,𝐴2 𝐿for𝐴1 and𝐴2 in

Eqs.(9)and(10) (seeSupportingMaterial). Similarly,bycombining

Eqs.(9),(10)and(14),wecan gettheexpressionof𝑈𝑏𝑅,𝑈𝑐𝑅,asa functionof𝐴1 𝐿,𝐴2 𝑅and𝜃.Finally,therearefourindependentunknown variables(𝐴1𝐿,𝐴2𝐿,𝜃,𝐴2𝑅)inthegoverningequations.Moreover,the bendingenergyoftheverticalbranchcanbeexpressedas:

𝑈𝑣= 𝐸𝐼𝐵 ( 𝐴𝐿 2𝐶𝑠 𝐿 +𝜃 )2 2𝐻 + 𝐸𝐼𝐵 ( 𝐴𝑅 2𝐶𝑠 𝐿 +𝜃 )2 2𝐻 (15)

where𝐸𝐼𝐵representsthebendingstiffnessoftheverticalbeamand𝐶𝑠 isaconstantvalue,asshownintheSupportingMaterial.Thepotential energy,associatedtoappliedforce,issimply:

𝑈𝑒=−𝐹𝑑𝐴 (16)

Finally,thetotalpotentialenergyis:

𝑈𝑡𝑜𝑡=𝑈𝑏𝐿+𝑈𝑐𝐿+𝑈𝑏𝑅+𝑈𝑐𝑅+𝑈𝑣+𝑈𝑒 (17) andthegoverningequationsareobtainedbytakingthederivativeof 𝑈𝑡𝑜𝑡withrespecttofourvariables(𝐴1 𝐿,𝐴2 𝐿,𝜃,𝐴2 𝑅).Theequationsare

thensolvednumericallybygivingarangeof𝐹 inputs.Consequently, thecorrespondingload-displacement(𝐹𝑑𝐴)curvescanbeextracted. 4.2. Resultsoftheanalyticalmodel

Thecorrespondingload-displacementcurvespredictedbythe ana-lyticalmodelarepresentedinFig.6(a).Itcanbeseenthatthemodel givesagoodapproximationofrotationalsnap-throughcharacteristics thatareobservedinFEA.Specifically,thetheoreticalresultsexhibitthe sameslopeasthatofFEAinthenegativestiffnessphase.Thiscanbe explainedbythefactthatsnappingbehaviorismainlydeterminedby theasymmetricMode2,whichhasbeenusedasamodalbasisinthe analyticalformulation.Meanwhile,itisshownthatthedeformedstable positionoftherotationalstateiswellpredictedbythemodel.As com-paredtotheFEAresults,higherstiffnessareobservedinthismodel’s predictions.Thedifferencesaremainlycausedbytwofactors.First,the theoreticalmodeldoesnotconsiderhighorderbucklingmodessince using dominantmodesalready allowtocapturethecharacteristicof snap-throughdeformationatthesnappingphase,whichisourfocusin thisstudy.Second,themodelisbasedonsmalldeformationhypothesis, asreflectedintheenergyformulations.

The design criterion for the rotational stability is presented in

Fig.6(b),basedontwonon-dimensionalquantities(𝐿and𝑡𝐿).The greyregioninthefigureiscorrespondingtothecasethatthestructure cannotstabilizeatthedeformedrotationalstate,where𝐹𝑚𝑖𝑛isapositive value.Thecoloredregionmeansthattheunitisabletoachieve rota-tionalstablestatesbysettingproper𝐿and𝑡𝐿.Geometrical thresh-oldsalongtheboundaryarehighlightedasgreendots,whichare de-notedas𝑡𝑏𝐿𝑏and𝑏𝐿𝑏.The𝑡𝑏𝐿𝑏and𝑏𝐿𝑏obtainedfromthemodel arecomparedwithFEA,asshowninFig.6(d).Itisshownthatthemodel isabletogiveareasonablepredictionoftheboundarythatdetermines therotationalstates.Therefore,itallowsarapidandfullidentification ofthedesignspaceforrotationalstabilitybeforemanufacturing.

(9)

Fig.7. 2Dmulti-layermetastructureswithserialarrangementsofunitcells.(a)Atwo-layermetastructure.(b)Athree-layermetastructure.(c)Experimentally characterizedload-displacementcurvesforthetranslationalandrotationalsnap-throughofthetwo-layermetastructure.Themetastructurecanstabilizeattheir deformedstates,asshowninthefigure.(d)Snap-throughresponsesofthethree-layermetastructures.Thetranslationalandrotationaltransitionsarecharacterized respectively.

Inaddition,fromFig.6(b),itcanbenotedthatforaspecified thick-ness,therotationalstablestatecanberealizedwhen𝐿ofthestructure islargerthantheℎ𝑏𝐿𝑏.Inordertoreachtherotationalstablestate,𝐿 shouldbelargerthanthecriticalvaluewhile𝑡𝐿shouldnotexceeda specificvalue.Itcanalsobeinterpretedinthesensethat𝑡shouldbe largeforachievingtherotationalstablestates.Besides,weexplorethe variationof𝐹𝑚𝑎𝑥withrespectto𝑡𝐿and𝐿,andresultsareplottedin

Fig.6(c).Ascomparedto𝐿,𝑡𝐿hasamoresubstantialinfluenceon 𝐹𝑚𝑎𝑥.Thatis,thevalueof𝐹𝑚𝑎𝑥increasesdramaticallywiththechangeof

𝑡𝐿,whilethechangeof𝐿doesnotinfluence𝐹𝑚𝑎𝑥much.Therefore,it ismoreparamounttochangetheparameter𝑡𝐿whenthemaximal actu-ationforceneedstobetunedtoaccommodatedifferentcircumstances.

5. Multi-layermetastructureswithrotations

Viarationallydesigningthebeamwithspecificgeometric parame-ters,wecanobtainthedesiredrotationalstatesaswellastheintrinsic translationalstatesfortheunitcell.Byassemblingsuchunitsinseries, metastructureswithmultiplelayerscanbedesigned,whichareableto exhibitlargerotationsandtranslations.Todemonstratethefeasibility ofthemulti-layermetastructurese,weexperimentallycharacterizetheir snappingtransitions.

Two-layerandthree-layermetastructuresaredisplayedinFig.7(a)– (b).Astheunitcellpossessesfourstablestates,theprintedtwo-layer andthree-layermetastructureshave42 and43 stablestates,respectively. Here,twoprimarydeformationmodesareselectedandcharacterizedby cyclicloading.Theassociatedload-displacementresponsesareplotted inFig.7(c)–(d),whereeachlayerexhibitsevidentsnap-through behav-iorsequentially.InFig.7(d), alargedifferencebetweenloadingand unloadingduringthethirdsnappingoccurs.Thishappensduetothe factthatduringuniaxialloading,thetoplayerofthethree-layer metas-tructurealsogeneratesahorizontaldisplacement,whichcannotbe han-dledbytheuniaxialtesting.Intermsofcharacterizingtherotationsof ametastructure withmorelayers,thehorizontaldisplacementof the metastructureneedstobetakenintoaccount.Themulti-stable metas-tructuresareabletostabilizeattheirdeformed(translationaland rota-tional)statesafterremovalofloads.Afterunloading,themetastructure canbefullyreversedbacktotheinitialstate,whichmeansthattheycan bereused.

More importantly, from a kinematics perspective, the proposed multi-stablestructureiscapableofnotonlyprovidingtranslationalbut alsoangularmovements,whichenrichesthestructure’sshape-morphing ability.AsshowninFig.8(a),themulti-layermetastucturecanexhibit differentcurvedshapesthatareenabledbytheunit’srotationalstates,

(10)

Fig.8.Demonstrationsofconformal-morphingonacurvedsurfacebasedontherotationalstablestates.(a)Anensembleofunitcellsstackedinseries.Bydeforming indifferenttransitionmodes,itcanswitchtocurvedshapeswithdifferentcurvatures.Theangle𝛼 isthestableangleachievedbyasingleunit’srotationaltransitions. (b)Anillustrativeexampleofconformalmorphingonaspatialfree-formsurface.Torealizeshape-matching,ourdeformedmetastructures(grey)candeforminto acurvedshapetomatchthetargetcurvedfree-formshape(red).(c)Thestableangle(𝛼)ischaracterizedexperimentallyandnumerically,asafunctionoffor different𝐿.

Fig.9. 3Dmulti-stablemetastructureswith rota-tionalstates.(a)Themetastructureisdesignedby arrangingunitcellsinanorthogonalpattern.(b) Thefabricatedprototypeofthe3Dmetastructure. Thestructureisabletoexhibitrotationsalongtwo directions, which result in four rotationalstable states.

asidefromthe1DextensionshowninFig.8(a).Suchdeformedcurved statescanbeusefulforshapemorphing,inwhichtheabilitytodeform intocurvedshapesisnormallyneeded.Anillustrativeexampleisshown inFig.8(b),whereconformalmorphingcanberealized.Tomatcha tar-getcurvedshape(denotedinred),itispossibletomakethe metastruc-tures(markedingrey)deformtofitintotheshapeofthetargetcurved shapeviacontrollingtherotationalstablestateofeachunitcell,while thetranslationalstatesofthepresentedstructuresshownin Fig.8(a) cannotrealizethemorphingbehaviortomatchthecurvedsurface.The largestrotationalanglecanbecalculatedas𝑛𝛼,where𝑛isthenumberof layers.Sincethebeamheight()andlength(𝐿)havemoresubstantial effectson𝛼 thanthethickness(𝑡),weplotthechangeof𝛼 withthe vari-ationofand𝐿,asshowninFig.8(c).Itcanbeseenthat𝛼 increases ap-proximatelyinalinearmannerwiththeincreasingofthebeamheight. Withlargerand𝐿,theachievableangle𝛼 canbeenlarged.Then,

rota-tionalanglescanbeprogrammedbyadjustingthenumberoflayersand thegeometryoftheunitcells.Meanwhile,itshouldalsobenotedthata large𝛼 requiresalargedistancebetweentheupperandbottomframe. Here,weobservethatalargewillleadtocontactbetweentheupper andbottomframewhenreachingtherotationalstate(seeSupporting Material).Therefore,whendesigningthestructurewithalargeℎ,the contactissueshouldbeconsidered.

Inaddition,wedemonstratetherotationsofa3Dmulti-stable metas-tructure.ThismetastructureisshowninFig.9(a),andisdesignedwith twounitsplacedinanorthogonalpattern.Itisfabricatedusingapoly-jet basedmulti-materialprinter(Objet350Connex3).FromFig.9(b),itcan beseenthatthis3Dmetastructureisabletorealizerotationsalongtwo directions,whichisanextensionof2Dstructures.Therotationalstates inFig.9(b)canbeseenasthedeformationsoftworowsof2Dunitcells arrangedinparallel.Therefore,itcanbeexpectedthatthemagnitude

(11)

ofthis3Dstructure’srotationalforce-displacementresponse,including forcethresholdsandstiffness,shouldbetwotimesaslargeasasingle 2Dunitcellwiththesamelengthscales.This3Dstructurecanbe fur-therextendedtodesignbendingactuatorsbystackingmoreunitcells. Overall,thedesignof3Dstructureherepavesthewayforforming3D deployablestructuresbypatterningstructuresinx,y,zdirections.

6. Conclusions

Inthiswork,therotationalstablestatesofmulti-stablebeam-type metastructureshavebeenpresented,apartfromtheexpected transla-tionalstates.Bothtranslationalandrotationaltransitionsexhibit neg-ativestiffness(snap-through)behaviorwhiletherotationaltransition exhibitsmoreevidentasymmetric characteristicsascomparedtothe counterpartoftranslations.Theparameters,includingthebeamheight (),thickness(𝑡)andspan(𝐿),havebeenfoundparamountfor rota-tionalstability.Moreover,thecriterion forreachingrotationalstates isestablishedthroughatheoreticalinvestigation.Theproposedmodel, validatedbyfinite elementsimulations,effectivelypredicts the rota-tionalsnap-throughtransitionsinthenegativestiffnessintervaland cap-turesthresholdsof𝐿and𝑡𝐿.Itisshownthatforrealizingrotational states,𝐿shouldbelargerthancriticalvalueswhile𝑡𝐿needstobe small,and𝑡𝐿ismoreinfluentialthan𝐿fortuningthemaximum forceofrotationaltransitions.Thiscriterionservesasaguidelineto tai-lorrotationalsnap-thoughbehaviorsuchascontrollingforcethresholds. Finally,wedemonstratethelargerotationsofmetastructureswith fabri-catedtwo-andthree-dimensionalmetastructures,wheretherotational stablestatescanbeprogrammedbyseriallyassemblingunitsalong mul-tipledirections.Withtheproperunitsarrangementanddesign,the pro-posedmulti-stablemetastructureswith rotationalstatescanopenup newopportunitiesfordesigningadaptivestructures.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinancial interestsorpersonalrelationshipsthatcouldhaveappearedtoinfluence theworkreportedinthispaper.

CRediTauthorshipcontributionstatement

YongZhang:Conceptualization,Methodology,Validation, Investi-gation,Writing-originaldraft,Visualization.MarcelTichem:Writing -review&editing,Supervision.FredvanKeulen:Methodology,Writing -review&editing,Supervision.

Acknowlgedgments

Y.ZhangwouldliketothankChinaScholarshipCouncil(CSCNO. 201606120015)forthefinancialsupport.BradleyButatDepartmentof PrecisionandMicrosystemsEngineeringofDelftUniversityof Technol-ogyisacknowledgedforthediscussiononprinting.

AppendixA. SupportingMaterial

Supplementarydocument:thedetailedderivationof theproposed analyticalmodelandthecontactbetweentheuppperandbottomframe whenincreasing.

Supplementaryvideo:Withchangingthickness,theunitcellsexhibit rotationalstatesanddonothaverotationalstates,respectively.

Supplementarymaterialassociatedwiththisarticlecanbefound,in theonlineversion,at10.1016/j.ijmecsci.2020.106172

References

[1] Zheng X , Lee H , Weisgraber TH , Shusteff M , DeOtte J , Duoss EB , et al. Ultralight, ultrastiff mechanical metamaterials. Science 2014;344(6190):1373–7 .

[2] Schaedler TA , Jacobsen AJ , Torrents A , Sorensen AE , Lian J , Greer JR , et al. Ultra- light metallic microlattices. Science 2011;334(6058):962–5 .

[3] Meza LR , Das S , Greer JR . Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 2014;345(6202):1322–6 .

[4] Schaedler TA , Carter WB . Architected cellular materials. Annual Review of Materials Research 2016;46:187–210 .

[5] Bauer J , Meza LR , Schaedler TA , Schwaiger R , Zheng X , Valdevit L . Nanolat- tices: an emerging class of mechanical metamaterials. Advanced Materials 2017;29(40):1701850 .

[6] Ren X , Das R , Tran P , Ngo TD , Xie YM . Auxetic metamaterials and structures: A review. Smart materials and structures 2018;27(2):023001 .

[7] Wang H , Zhang Y , Lin W , Qin Q-H . A novel two-dimensional mechanical metamaterial with negative poissons ratio. Computational Materials Science 2020;171:109232 .

[8] Lakes RS . Negative-poisson’s-ratio materials: auxetic solids. Annual review of mate- rials research 2017;47:63–81 .

[9] Takenaka K . Negative thermal expansion materials: technological key for con- trol of thermal expansion. Science and Technology of Advanced Materials 2012;13(1):013001 .

[10] Wang Q , Jackson JA , Ge Q , Hopkins JB , Spadaccini CM , Fang NX . Lightweight me- chanical metamaterials with tunable negative thermal expansion. Physical review letters 2016;117(17):175901 .

[11] Ai L , Gao X-L . Three-dimensional metamaterials with a negative poisson’s ratio and a non-positive coefficient of thermal expansion. International Journal of Mechanical Sciences 2018;135:101–13 .

[12] Zhu H , Fan T , Peng Q , Zhang D . Giant thermal expansion in 2d and 3d cellular materials. Advanced Materials 2018;30(18):1705048 .

[13] Bobbert F , Janbaz S , van Manen T , Li Y , Zadpoor A . Russian doll deployable meta-implants: Fusion of kirigami, origami, and multi-stability. Materials & Design 2020:108624 .

[14] Choi J , Lakes R . Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative poisson’s ratio. International Journal of Mechanical Sciences 1995;37(1):51–9 .

[15] Zadpoor AA . Meta-biomaterials. Biomaterials Science 2020;8(1):18–38 .

[16] Bobbert F , Janbaz S , Zadpoor A . Towards deployable meta-implants. Journal of Ma- terials Chemistry B 2018;6(21):3449–55 .

[17] Schaffner M , Faber JA , Pianegonda L , Rühs PA , Coulter F , Studart AR . 3d print- ing of robotic soft actuators with programmable bioinspired architectures. Nature communications 2018;9(1):878 .

[18] Gorissen B , Melancon D , Vasios N , Torbati M , Bertoldi K . Inflatable soft jumper inspired by shell snapping. Science Robotics 2020;5(42) .

[19] Zhao X , Duan G , Li A , Chen C , Zhang X . Integrating microsystems with metamaterials towards metadevices. Microsystems & nanoengineering 2019;5(1):1–17 .

[20] Hu N , Burgueño R . Buckling-induced smart applications: recent advances and trends. Smart Materials and Structures 2015;24(6):063001 .

[21] Bertoldi K , Vitelli V , Christensen J , van Hecke M . Flexible mechanical metamaterials. Nature Reviews Materials 2017;2(11):17066 .

[22] Oliveri G , Overvelde JT . Inverse design of mechanical metamaterials that undergo buckling. Advanced Functional Materials 2020;30(12):1909033 .

[23] Kim Y , Yuk H , Zhao R , Chester SA , Zhao X . Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 2018;558(7709):274–9 .

[24] Janbaz S , Bobbert F , Mirzaali M , Zadpoor A . Ultra-programmable buckling-driven soft cellular mechanisms. Materials Horizons 2019;6(6):1138–47 .

[25] Correa DM , Klatt T , Cortes S , Haberman M , Kovar D , Seepersad C . Negative stiffness honeycombs for recoverable shock isolation. Rapid Prototyping Journal 2015;21(2):193–200 .

[26] Pan F , Li Y , Li Z , Yang J , Liu B , Chen Y . 3d pixel mechanical metamaterials. Advanced Materials 2019;31(25):1900548 .

[27] Bertoldi K . Harnessing instabilities to design tunable architected cellular materials. Annual Review of Materials Research 2017;47:51–61 .

[28] Yang D , Mosadegh B , Ainla A , Lee B , Khashai F , Suo Z , et al. Buckling of elastomeric beams enables actuation of soft machines. Advanced Materials 2015;27(41):6323–7 .

[29] Rafsanjani A , Bertoldi K , Studart AR . Programming soft robots with flexible mechan- ical metamaterials. Science Robotics 2019;4(29) .

[30] Simitses G , Hodges DH . Fundamentals of structural stability. Butterworth-Heine- mann; 2006 .

[31] Yang H , Ma L . Multi-stable mechanical metamaterials with shape-reconfiguration and zero poisson’s ratio. Materials & Design 2018;152:181–90 .

[32] Che K , Yuan C , Qi HJ , Meaud J . Viscoelastic multistable architected materials with temperature-dependent snapping sequence. Soft matter 2018;14(13):2492–9 .

[33] Tan X , Chen S , Zhu S , Wang B , Xu P , Yao K , et al. Reusable metamaterial via inelas- tic instability for energy absorption. International Journal of Mechanical Sciences 2019;155:509–17 .

[34] Hua J , Lei H , Zhang Z , Gao C , Fang D . Multistable cylindrical mechanical metas- tructures: Theoretical and experimental studies. Journal of Applied Mechanics 2019:1–27 .

[35] Che K , Yuan C , Wu J , Qi HJ , Meaud J . Three-dimensional-printed multistable me- chanical metamaterials with a deterministic deformation sequence. Journal of Ap- plied Mechanics 2017;84(1):011004 .

[36] Yang H , Ma L . 1d to 3d multi-stable architected materials with zero poisson’s ratio and controllable thermal expansion. Materials & Design 2020;188:108430 .

[37] Meaud J , Che K . Tuning elastic wave propagation in multistable architected mate- rials. International Journal of Solids and Structures 2017;122:69–80 .

[38] Wu L , Xi X , Li B , Zhou J . Multi-stable mechanical structural materials. Advanced Engineering Materials 2018;20(2):1700599 .

(12)

[39] Sun S , An N , Wang G , Li M , Zhou J . Snap-back induced hysteresis in an elastic me- chanical metamaterial under tension. Applied Physics Letters 2019;115(9):091901 .

[40] Ha CS , Lakes RS , Plesha ME . Design, fabrication, and analysis of lattice exhibiting energy absorption via snap-through behavior. Materials & Design 2018;141:426–37 .

[41] Tan X , Wang B , Chen S , Zhu S , Sun Y . A novel cylindrical negative stiffness structure for shock isolation. Composite Structures 2019;214:397–405 .

[42] Frenzel T , Findeisen C , Kadic M , Gumbsch P , Wegener M . Tailored buck- ling microlattices as reusable light-weight shock absorbers. Advanced Materials 2016;28(28):5865–70 .

[43] Restrepo D , Mankame ND , Zavattieri PD . Phase transforming cellular materials. Ex- treme Mechanics Letters 2015;4:52–60 .

[44] Shan S , Kang SH , Raney JR , Wang P , Fang L , Candido F , et al. Multistable architected materials for trapping elastic strain energy. Advanced Materials 2015;27(29):4296–301 .

[45] Chen T , Bilal OR , Shea K , Daraio C . Harnessing bistability for directional propul- sion of soft, untethered robots. Proceedings of the National Academy of Sciences 2018;115(22):5698–702 .

[46] Chen T , Mueller J , Shea K . Integrated design and simulation of tunable, multi-s- tate structures fabricated monolithically with multi-material 3d printing. Scientific reports 2017;7:45671 .

[47] Santer M , Pellegrino S . Concept and design of a multistable plate structure. Journal of Mechanical Design 2011;133(8):081001 .

[48] Pontecorvo ME , Barbarino S , Murray GJ , Gandhi FS . Bistable arches for morphing applications. Journal of Intelligent Material Systems and Structures 2013;24(3):274–86 .

[49] Ren C , Li Q , Yang D . Quasi-static and sound insulation performance of a multi- functional cylindrical cellular shell with bidirectional negative-stiffness metamate- rial cores. International Journal of Mechanical Sciences 2020:105662 .

[50] Liu X , Lamarque F , Doré E , Pouille P . Multistable wireless micro-actuator based on antagonistic pre-shaped double beams. Smart Materials and Structures 2015;24(7):075028 .

[51] Che K , Rouleau M , Meaud J . Temperature-tunable time-dependent snapping of vis- coelastic metastructures with snap-through instabilities. Extreme Mechanics Letters 2019;32:100528 .

[52] Yang H , Ma L . Multi-stable mechanical metamaterials by elastic buckling instability. Journal of Materials Science 2019;54(4):3509–26 .

[53] Vangbo M , Bäcklund Y . A lateral symmetrically bistable buckled beam. Journal of Micromechanics and Microengineering 1998;8(1):29 .

[54] Marlow R . A general first-invariant hyperelastic constitutive model. Constitutive Models for Rubber 2003:157–60 .

[55] Alturki M , Burgueño R . Multistable cosine-curved dome system for elastic energy dissipation. Journal of Applied Mechanics 2019;86(9):091002 .

[56] Qiu J , Lang JH , Slocum AH . A curved-beam bistable mechanism. Journal of micro- electromechanical systems 2004;13(2):137–46 .

[57] Cleary J , Su H-J . Modeling and experimental validation of actuating a bistable buck- led beam via moment input. Journal of Applied Mechanics 2015;82(5):051005 .

[58] Camescasse B , Fernandes A , Pouget J . Bistable buckled beam: Elastica modeling and analysis of static actuation. International Journal of Solids and Structures 2013;50(19):2881–93 .

Cytaty

Powiązane dokumenty

This case study selection enabled a comparative analysis on two levels: (a) between the Chinese and the European sub-basins in order to better understand collaborative forms

68.. * voor de Brouwersdam/Kop van Goeree ca. * voor de kop van Schouwen ca. * voor de Brouwersdam/Kop van Goeree ca. * voor de kop van Schouwen ca.. De koppen worden verdedigd

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright

Pamiętnik Literacki : czasopismo kwartalne poświęcone historii i krytyce literatury polskiej 45/2,

Supremacja tego typu narracji, których znakomite przykłady znajdują się w  twórczości Irit Amiel, Michała Głowińskiego, Magdaleny Tulli, Agnieszki Kłos czy

W artykule zatytułowanym „Materiały pamiętnikarskie w moim warsztacie badawczym”29 dał Kieniewicz przykład, w jaki sposób przy pisaniu biografii Adama Sapiehy

Autor scha- rakteryzował działalność dobroczynną w Rosji w tym okresie by na tym tle przed- stawić warunki działalności katolickich ośrodków dobroczynnych... Rozdział