• Nie Znaleziono Wyników

On the utility of free-running models in researches into manoeuvrability. Part 1 and 2

N/A
N/A
Protected

Academic year: 2021

Share "On the utility of free-running models in researches into manoeuvrability. Part 1 and 2"

Copied!
54
0
0

Pełen tekst

(1)

D.S.n.A. Tr, I: IS I n t.i on No. 21 59 On t h e u t i l i t y o f f r o o - r u n n i n g m o d e l s i n r o a e a r c h e s i n t o m a n o e u v r a b i l i t y ( I ) ( A l e c t u r e d e l i v e r e d a t t h e s p r i n g s e s s i o n o f t h e J . S o c . Nav. A r c h . J a p a n , May 1961) R e c e i v e d on 20th December, 1960 By K e n s a k u NOMOTO. o f t}ie E n g i n e e r i n g D e p a r t m e n t , O s a k a U n i v e r s i t y ; Moniber o f t h e A s s o c i a t i o n . H i s a y o s h i TATANO, o f t h e E n g i n e e r i n g D e p a r t m e n t , O s a k a U n i v e r s i t y ; Member o f th© A s s o c i a t i o n . A k i h i s a MURASE, G r a d u a t e S t u d e n t , O s a k a U n i v e r s i t y ; Member o f t h e A s s o c i a t i o n . I n t r o d u c t i o n R e s e a r c h i n t o t h e p r o b l e m s o f t u r n i n g m a n o e u v r a b i l i t y b y t h e u s e o f f r e e - r u n n i n g m o d e l s was u n d e r t a k e n b e f o r e t h e w a r , b e g i n n i n g w i t h t h e w e l l - k n o w n t e s t s o f D r . A k a z a k i 1 J , and i n r e c e n t y e a r s , b e c a u s e ol' a d e e p e n i n g o f i n t e r e s t i n t h i s p r o b l e m , t h i s t y p e o f t e s t h a s b e e n w i d e l y c a r r i e d o u t t h r o u g h o u t t h e v o r l d 2 ] [ 3 j . ::owever, i n t h i s k i n d o f e x p e r i m e n t , i t i s n o t y e t .. . t e r m i n e d what k i n d o f s t e e r i n g s h o u l d be f i t t e d t o i.e 1 r o e - r u n n i n g model f o r t h e p u r p o s e o f m a k i n g o b s e r v a t i o n s , ar.d what f a c t o r s s h o u l d be t a k e n i n t o a c c o u n t when

::..rrying o u t t h e a n a l y s i s . I t h a s l o n g b e e n o b s o r v e d i.::at t u r n i n g and b a s i c s t e e r i n g t e s t s a r e i m p o r t a n t . However i t i s n o t n e c e s s a r i l y r e a s o n a b l e t o d e c i d e f, .ii s t e a d y t u r n i n g t e s t s o n l y t h e p o r f o r m a n c e o f a s h i p .a t h e u n s t a b l e m o t i o n w h i c h o c c u r s u n d e r a c t u a l r u n n i n g c o n d i t i o n s . Hence v,e a l s o c o n s i d e r a t t h e same t i m e s t e e r i n g t e s t s < u n d e r more u n s t e a d y c o n d i t i o n s t h a n t u r n i n g t e s t s , e . g . t h e

(2)

s o - c a l l e d Z t e s t s e t c . T i i e r e a r c a l s o many o t h e r q u e s t i o n s w h i c h a r i s e i n t h e methods o f t e s t a n a l y s i s -e . g . how to o b t a i n a g -e n -e r a l -e x p r -e s s i o n o f m a n o -e u v r a b i l i t y f r o m t h e m o t i o n o f a f r e e - r u n n i n g m o d e l , f o r p a r t i c u l a r t y p e s o f s t e e r i n g , w h e t h e r f o r u n s t e a d y s t e e r i n g o r t u r n i n g t e s t s . 1 I n t h e S h i p b u i l d i n g R e s e a r c h U n i t o f O s a k a U n i v e r s i t y r e s e a r c h h a s b e e n c a r r i e d on c o n t i n u o u s l y o v e r a number o f y e a r s on t u r n i n g m a n o e u v r a b i l i t y u s i n g f r e e -r u n n i n g models,, and -r e s u l t s h a v e b e e n p u b l i s h e d f o -r two o r t h r o e t y p e s o f m e r c h a n t vesBel[k][5] and much t e s t e x p e r i e n c e c o n c e r n i n g methods o f a n a l y s i s and m e t h o d s o f r e s e a r c h i n t o m a n o e u v r a b i l i t y u s i n g f r e e - r u n n i n g m o d e l s h a s b e e n a c c u m u l a t e d . ^ ' I n t h i s k i n d o f r e s e a r c h , i t i s i m p o r t a n t n o t m e r e l y t o i n d i c a t e d i r e c t l y t h e m o t i o n o f t h e s h i p f o r a s p e c i a l k i n d o f s t e e r i n g u s e d i n t h e t e s t s , b u t t o o b t a i n f r o m t h o s e r e s u l t s t h e g e n e r a l m a n o e u v r a b i l i t y c h a r a c t e r i s t i c s o f t h a t s h i p t y p e . By s o , d o i n g i t I s p o s s i b l e t o d e t e r m i n e t h e r e s p o n s e o f t h e s h i p to t h e v a r i o u s m a n o e u v r e s w h i c h a r e c a r r i e d o u t i n p r a c t i c e , and to a n t i c i p a t e t h e a p p l i c a t i o n t o d e s i g n . A g a i n , c o n s i d e r a t i o n o f t h e h y d r o d y n a m i c t r e a t m e n t i n b l a d e - t h e o r y c a l c u l a t i o n s and t h r e e - p a r t p o w e r t e s t s on f r e e - r u n n i n g m o d e l s i n t h e t u r n i n g t a n k may s u p p l e m e n t t h e k n o w l e d g e g a i n e d f r o m t h i s r e s e a r c h . One e f f e c t i v e method f o r t h e m o t i o n o f a f r e e -r u n n i n g model u s i n g e q u a t i o n s o f m o t i o n , i s t h e a n a l y s i s o f f r e q u e n c y r e s p o n s e ( r e s p o n s e a m p l i t u d e o p e r a t o r i n s t a t i s t i c a l c s c l l l a t i o n t h e o r y o r t r a n s m i s s i o n f u n c t i o n ) . On t h i s b a s i s , i f we d e s c r i b e t h e method o f a n a l y s i n g s t e e r i n g t e s t s on f r e e - r u n n i n g m o d e l s , we o b t a i n *

(3)

. 3 ¬ 1 ) t h e r e s u l t s w h i c l i f o l l o w . I . e . t h e e q u a t i o n o f motion" a s s u m i n g l i n e a r i t y , i s (1) w h o r e ^ , / ^ , » : t u r n i n g a n g u l a r v e l o c i t y , d r i f t a n g l e a n d : ' r i i d d e r a n j ' l e r u d d e r a n f j l e V, L : s h i p ' s s p e e d a n d l e n g t h i : a p p a r e n t mass o f s h i p l o n g i t u d i n a l l y ^ and l a t e r a l l y , and n o n - d i m e n s i o n a l c o e f f i c i e n t o f a p p a r e n t moment o f i n e r t i a a b o u t t h e v e r t i c a l a x i s /- 0 ^,C^f3,Crqr^. n o n - d i m e n s i o n a l c o e f f i c i e n t s o f f o r c e • '^-^ and moments a c t i n g on t h e s h i p : r e s i s t a n c e d e r i v a t i v e C v ^ C A J S • n o n - d i m e n s i o n a l c o e f f i c i e n t s o f f o r c e and ' * ^ moment e x e r t e d b y s t e e r i n g on t h e r u d d e r I f wo e l i m i n a t e t h e d r i f t a n g l e / ^ a n d a d j u s t

• /

t h e c o e f f i c i e n t s , we o b t a i n I f we w r i t e t h i s i n t h e f o r m o f t h e t r a n s m i s s i o n e q u a t i o n , we o b t a i n y«(p)=^i+r;p)a+7'ip) p i s g e n e r a l l y a c o m p l e x nuu^ber a n d i s d e n o t e d b y y f j iU>. A g a i n ^ ll\ if»Ci».* /L\« *ffj % l ) Tho s y m b o l s a r e t h o s e a c r e o d b y t h e m a n o e u v r a b i l i t y s u b -c o m i n i t t o o o f t h o t e s t t a n k -c o m m i t t e e ( l 9 6 o ) . I n p a r t i -c u l a r , t h e c o e f f i c i e n t o f t h e moiiiont o f i n e r t i a i s t h e same a s ^ i = ^ - 1 , and' t h e a n g l e o f . ^ d r i f t /"j i s the^ saiue a s t h e •> o f t h o L a p l a c e t r a n s f o r m p o/'.j + iw>, b u t s i n c e t h e r e i s no f e a r o f c o n f u s i o n , t h e s e w e r e a l l o w e d t o s t a n d .

(4)

A-P u r t h e r ^ i f we maLke t h e s e n o n - d i m e n s i o n a l , w e o b t a i n K , T 1.2.3 a r e e s t a b l i s h e d f r o m t h e n o n - d i m e n s i o n a l c o e f f i c i e n t s o n l y o f t h e o r i g i n a l e q u a t i o n ( l ) Now, i f we l e t ^ ( t ) be t h e s t e e r i n g g i v e n i n t h e f r e e - i n i n n i n g m o d e l , and ^ ( t ) t h e r e s u l t i n g m e a s u r e d t u r n i n g a n g u l a r v e l o c i t y , t h e n t h e t r a n s m i s s i o n f u n c t i o n i s g i v e n by ^uj The r e a l number p a r t ^ ^ o f p o c c u r s b e c a u s e t h e a b o v e two i n t e g r a t i o n s d i v e r g e b u t f o r a s h i p t y p e w h i c h h a s d i r e c t i o n a l s t a b i l i t y , 0 ^ . , -and t h i s i n t e g r a t i o n c o n v e r g e s . A c c o r d i n g l y , llmYMi^+i»)-'-'-^ - ^ é i ) . .._ - — . •-B e c a u s e most s h i p s h a v e d i r e c t i o n a l s t a b i l i t y , we make t h i s e q u a t i o n t h e b a s i s o f o u r a n a l y s i s , and h e n c e f o r t h w r i t e ^ i m Yg ±ii) a s Yg (itlk). I n t h e c a s e o f d i r e c t i o n a l i n s t a b i l i t y , f u n d a m e n t a l l y a s i m i l a r s o l u t i o n i s p o s s i b l e , t a k i n g ^ > / 7 ^ , b u t i n p r a c t i c e many d i f f i c u l t i e s a r i s e due to n o n - l i n e a r e f f e c t s . I f we t a k e t h e <? ( t ) o f t h e u s u a l f o r m by n u m e r i c a l I n t e g r a t i o n o f e q u a t i o n ( 3 ) Y {±6i) i s d e t e r m i n e d s f o r a n y «0 , f r o m m e a s u r e d S ( t ) and B i t ) . F o r s p e c i a l v a l u e f l ^ o f i . e . when = o i n t u r n i n g t e s t s , and f o r t h e s I-o f s i n u s I-o i d a l s t e e r i n g p e r i I-o d s , nI-o i n t e g r a t i I-o n i s p e r f I-o r m e d [ and t h e v a l u e s o f e q u a t i o n ( 3 ) a r e o b t a i n e d d i r e c t l y f r o m ^ \

(5)

5 -and B . I n a n y c a s e , o v e r w i d e l i m i t s o f <s), i f we o b t a i n t h e v a l u e o f K ( l + ±vt Tn) - Y„ ( i W ) (1 + i w T j U + i t r t ' o j b e c a u s e h e r e t h e unknown q u a n t i t i e s a r e t h e f o u r "^l» '^2' ^ 3 ' ^* ^® p o s s i b l e t o d e t e r m i n e t h e s e v a l u e s by s i m u l t a n e o u s e q u a t i o n o r t h e method o f l e a s t s q u a r e s . A c c o r d i n g l y , e q u a t i o n ( 2 ) o f t h e m a n o e u v r e m o t i o n f o r t h a t s h i p t y p e i s o b t a i n e d , and i t i s p o s s i b l e t o c a l c u l a t e t h e m o t i o n o f t h e s h i p f o r a n y s t e e r i n g . Again, t h e s e f o u r c o n s t a n t s r e p r e s e n t d i r e c t l y a l l t h e c h a r a c t e r i s t i c s o f t h e s h i p i n t h e v a r i o u s s t e e r i n g m o t i o n s , K r e f e r s t o th© s t r e n g t h o f t h e t u r n i n g power w h i c h c a n be s t e a d i l y d i s p l a y e d , , T^, r©plr©s©nt th© s p e e d o f r e s p o n s e o f t h e s h i p t o s t e e r i n g , a c c o r d i n g t o p h a s e s , and T^^, r e p r e s e n t t h e c o u r s e s t a b i l i t y [ 4 ] . Hence, d e n o t i n g t h e s e f o u r c o n s t a n t s a s t h e i n d i c e s o f m a n o e u v r a b i l i t y , i t i s póssible t o c o n s i d e r them a s a g e n e r a l e x p r e s s i o n o f t h e m a n o e u v r a b i l i t y o f t h a t s h i p . F u r t h e r m o r e , t h e method o f u s i n g | ( i W ) / i n t h e d e t e r m i n a t i o n o f K , T^^ e t c . from Y^ (i«) f o r a w i d e r a n g e o f U i s p o s s i b l e f r o m c o n s i d e r a t i o n o f

A r g Yg (i©) and shows a good c o r r e s p o n d e n c e w i t h t h e t e s t e x a m p l e s , a n d [ ó ] b e c a u s e | Y J i s e a s i e r t o c a l c u l a t e and r e l i a b i l i t y i s good, we u s e t h i s . I f we f o l l o w t h e a b o v e p r i n c i p l e s , i t s h o u l d be p o s s i b l e t o u n d e r s t a n d c o m p l e t e l y th© m a n o e u v r a b i l i t y from o b s e r v a t i o n o f t h e m o t i o n o f t h e s h i p f o r one p a r t i c u l a r t y p e o f s t e e r i n g , b u t i n p r a c t i c e t h e r e a r e c o m p l i c a t i o n s . The r e s u l t s o f t h e c a l c u l a t i o n s o f e q u a t i o n ( 3 ) show t h a t f o r a p a r t i c u l a r m o t i o n a l a r g e v a l u e o f Yg ( i t o ) o c c u r s f o r c e r t a i n l i m i t s o f <d, and a s m a l l v a l u e f o r o t h e r s .

(6)

-6-Hence, i t o f t e n happens t h a t l a r g e d e v i a t i o n s i n t h e v a l u e o f Y„ (i<^) o c c u r , even when t h e r e i s s l i g h t l o c a l d i s t u r b a n c e r e s u l t i n g from e x t e r n a l d i s t u r b a n c e due to w i n d , e t c . , and t h e r e s u l t o f t h e i n i t i a l m o t i o n o f t h e s h i p . I n o r d e r to e v a l u a t e t h e f o u r i n d i c e s K, e t c . , w i t h a f a i r d e g r e e o f a c c u r a c y , i t i s n e c e s s a r y t o d e t e r m i n e lY„(ifc>) j f a i r l y a c c u r a t e l y f o r f a i r l y w i d e l i m i t s o f &», b u t i t i s d i f f i c u l t , f o r t h e r e a s o n s g i v e n above, to d e t e r m i n e t h a t from o n l y one p a r t i c u l a r m o t i o n . By r e p e a t i n g m o t i o n s , w i t h v a r i o u s k i n d s o f s t e e r i n g , and c o m b i n i n g t h e r e s u l t s |Yg | may be found w i t h

r e a s o n a b l e a c c u r a c y w i t h i n w i d e l i m i t s o f W. A g a i n , s i n c e t h e v a l u e s o f t h e r e s i s t a n c e d e r i v a t i v e s Cjy^, CyCi change, a c c o r d i n g t o t h e d e v e l o p m e n t o f t h e t u r n i n g m o t i o n , and t h e s p e e d d r o p s i n p r o p o r t i o n to t h e s t e e r i n g , t h e i n d i c e s K, e t c . a l s o change l i k e w i s e . Hence, i t i s n e c e s s a r y to d e t e r m i n e K, T^^ e t c . f o r g i v e n s t r e n g t h s o f t u x m i n g m o t i o n and c o n s e q u e n t l y many r u n s a r e r e q u i r e d . From t h e s e c i r c v i m s t a n c e s , a l l t u r n i n g t e s t s and s i n u s o i d a l s t e e r i n g t e s t s a r e combined t o g e t h e r , and t h e d e t a i l s o f t h e s e a r e g i v e n i n v a r i o u s s e c t i o n s . . I f we c o n s i d e r t h e r e l a t i o n s w i t h t h e hydrodyn£unic t r e a t m e n t o f t h e t u r n i n g s t e e r i n g t o u c h e d upon e a r l i e r , we may hope to p r o g r e s s w i t h t h e method o f a n a l y s i s to f i n d t h e r e s i s t a n c e d e r i v a t i v e and n o t m e r e l y t h e m a n o e u v r a b i l i t y i n d i c e s K, e t c . U s i n g t h e a n a l y s i s f o r t u r n i n g m o t i o n r e f e r r e d t o above f o r d r i f t m o t i o n i f we d e d u c e t h e a p p a r e n t mass o f t h e s h i p by c a l c u l a t i o n and o t h e r methods, i t i s p o s s i b l e to deteznnine t h e r e s i s t a n c e d e r i v a t i v e from t e s t s w i t h f r e e - r u n n i n g m o d e l s . I t i s

u n f o r t u n a t e t h a t i t i s more d i f f i c u l t to f i n d t h e d e r i v a t i v e a c c u r a t e l y by t h i s i n d i r e c t method t h a n by u s i n g t h e t u r n i n g t a n k , b u t i f we d e t e r m i n e t h e d e r i v a t i v e

(7)

-7-c l o s e to t h e advan-7-ce p o s i t i o n i n t h i s way, i t has t h e v i r t u e t h a t we o b t a i n a l s o the d e r i v a t i v e f o r a r e a l s h i p and so by combining the t u r n i n g tank t e s t s and hydrodyneunic t r e a t m e n t i t i s p o s s i b l e to e x p e c t developments i n t h i s f i e l d . T h i s type o f a n a l y s i s i s c o n s i d e r e d e s p e c i a l l y u s e f u l i n f i n d i n g out t h e r e l a t i o n s between the s h i p type and m a n o e u v r a b i l i t y . Furthermore,

i n c o n n e c t i o n w i t h t h i s q u e s t i o n , we must a l s o c o n s i d e r i n free-zninning model t e s t s the t o t a l - l e s s - r u d d e r moment proposed by Davidson and S c h i f f , i . e . the method o f f i n d i n g out the hydrodynamic moment a c t i n g on the s h i p i n s t e a d y t u r n i n g , by measuring the d i r e c t p r e s s u r e on the rudder.

Next t h e r e i s the s o - c a l l e d Z t e s t , but t h i s s t e e r i n g method h a s not been s p e c i a l l y a p p l i e d . t o t h e frequency r e s p o n s e a n a l y s i s u s i n g e q u a t i o n ( 3 ) . However t h i s s t e e r i n g c e r t a i n l y r e p r e s e n t s w e l l a l l phases o f s t e e r i n g a r e a l s h i p , and t h e r e i s t h e a t t r a c t i o n t h a t t h e r e a l r e a d y e x i s t s much m a t e r i a l on r e a l s h i p s , s i n c e i t i s p o s s i b l e to c a r r y i t out s i m p l y on them. Hence, u s i n g an e q u a t i o n o f motion made a s s i m p l e a s p o s s i b l e by changing the s t a n d p o i n t a l i t t l e from t h e above a n a l y s i s , we may o a s i l y get a rough i d e a o f the m a n o e u v r a b i l i t y o f t h a t s h i p from one t e s t o n l y . T h i s i s perhaps an a p p r o p r i a t e method o f a n a l y s i s f o r t h i s t e s t . As a s i m p l i f i e d e q u a t i o n , the f o l l o w i n g form was c o n s i d e r e d [k'j from the s t r u c t u r e of t h e t r a n s m i s s i o n f u n c t i o n and e q u a t i o n ( z ) .

T-^^-+i,KS Where T = Tj^ + T^ - T^

T h i s e q u a t i o n was a p p l i e d to t h e r e s u l t s o f Z t e s t s i n many r e a l s h i p s , and i t was confirmed t h a t t h i s i f o r m u l a h a s s u f f i c i e n t a c c u r a c y f o r p r a c t i c a l p u r p o s e s . Hence, t a k i n g the r u d d e r a n g l e S measured by Z t e s t s , and

(8)

-8-tho t u r n i n g a n g l e ^ , we t a k e v a l u e s o f K and T which s a t i s f y the above e q u a t i o n s i m u l t a n e o u s l y . I n f r e e -r u n n i n g model t e s t s a l s o , Z t e s t s a -r e v a l u a b l e i n making i t p o s s i b l e to f i n d out e a s i l y the c h a r a c t e r i s t i c s o f a p a r t i c u l a r s h i p type, and i f we measure the speed

c o n t i n u o u s l y d u r i n g t e s t s , changing the rudder angle i n a number o f ways, i t i s p o s s i b l e to c a r r y out even more advanced a n a l y s e s . However, what i s o b t a i n e d by t h i s t e s t i s a rough o u t l i n e o f m a n o e u v r a b i l i t y , and must be used i n c o n j u n c t i o n w i t h the frequency response a n a l y s i s p r e v i o u s l y r e f e r r e d t o , i n r e s e a r c h of any d e t a i l .

L a s t l y we would l i k e to touch on manoeuvre t e s t s w i t h r e a l s h i p s . The f r e e - r u n n i n g model t e s t s r e f e r r e d to i n t h i s paper can b a s i c a l l y be a p p l i e d , as they s t a n d , to r e a l s h i p s ; and, by means of s i m p l e c a l c u l a t i o n s , a s u i t a b l e p a r t o f them can a c t u a l l y be a p p l i e d i n about one hour. I f t h i s k i n d of t e s t i s c a r r i e d out d u r i n g s e a t r i a l s , c l e a r e r and more d e t a i l e d i n f o r m a t i o n about the m a n o e u y r ^ b l l l t y o f a p a r t i c u l a r s h i p can o b t a i n e d then from o r d i n a r y t u r n i n g t e s t s ; i t i s a l s o expected t h a t

important r e s u l t s w i l l be o b t a i n e d c o n c e r n i n g the r e l i a b i l i t y o f f r e e - r u n n i n g s h i p models and the e f f e c t o f s h r i n k a g e

(9)

-9¬

1. The d e t e r m i n a t i o n o f I n d i c e s o f m a n o e u v r a b i l i t y by t h e f r e q u e n c y response method.

1.1 T u r n i n g t e s t s

T h i s t e s t a f f o r d s a means o f f i n d i n g K and i t can a l s o be used to determine Yg (iii) W e 0 w i t h a f a i r degree o f a c c u r a c y . , the s t e a d y t u r n i n g r a d i u s , i s

measured f o r v a r i o u s v a l u e s o f rudder a n g l e *"rom a s s m a l l an angle a s p o s s i b l e to a maximum. I f we p l o t the non-dimensional a n g u l a r v e l o c i t y ( L / R g ) a g a i n s t , we o b t a i n F i g . l .

Comparing t h e r u d d e r a n g l e when t h e s h i p i s a d v a n c i n g , we a d j u s t the c u r v e f o r t h e approximate z e r o . We o b t a i n the c i i r v e 5 o *'or ( L / R g ) u s i n g the method o f l e a s t s q u a r e s , w i t h an e q u a t i o n o f the type

5 o ^ a ( L / R g ) • b ( L / R s ) 5

S i n c e t h e r e i s some v a r i a t i o n f o r l e f t and r i g h t t u r n s , we c a r r y out c a l c u l a t i o n s f o r t h e s e s e p a r a t e l y and c a r r y out zero r u d d e r a n g l e c o r r e c t i o n to m i n i m i s e the d i f f e r e n c e i n the c o e f f i c i e n t a . The ( L / R g ) - 5 o c u r v e o f t h e c u b i c e q u a t i o n o b t a i n e d i n t h i s way i s s u f f i c i e n t l y a c c u r a t e a s shown i n t h e f i g u r e . Depending on c i r c u m s t a n c e s , we may

a l s o c o n s i d e r t h e terms o f ( L / R g ) ^ but a t p r e s e n t t h i s does j not appear to be n e c e s s a r y . I t i s i n t e r e s t i n g to note

t h a t t h e t u r n i n g r a d i u s and rudder a n g l e a s a c t u a l l y measured ha'» t h i s k i n d o f s i m p l e shape. T h i s c u r v e i s l i n e a r i f K ' i s

c o n s t a n t and I t s s l o p e i s equal to K'' but s i n c e , w i t h t h e development o f t h e t u r n i n g motion, K ' d e c r e a s e s , we o b t a i n t h i s k i n d o f c u r v e . The s l o p e o f the c u r v e d ( L / R g ) / d i s equal to K i n t h e c o r r e s p o n d i n g (L/R: ) . However i s measured i n r a d i a n s . Hence i f we d i f f e r e n t i a t e t h e c u b i c e q u a t i o n i n ( L / R ) - &O p r e v i o u s l y o b t a i n e d , we o b t a i n = • 3b ( L / R g ) 2 } • I

(10)

•10-MNé6<l FULL i •• »4M ; • .«»' •Jir -if If n • >^ ^ ly if if t : "f ^ « 1/ Iff -Jfr Jf J. '^.l-i yst> 'A' j • .cn '^Hüï •• « •Jf -tf -if ' / 'f ir jy i.

\J

MHi>63 rULL " ISuoea maCB) fld •• Vil R e s u l t s o f t u r n i n g t»sts on merchant s h i n .

<

1 1 / .1 ./.tf

-\sm • 1 tUit FOL 1 2 ll li^:-!- T u r n i n g nower i n d e x o b t a i n A H f ^ ^ ^ turninBT t e s t s

(11)

-11-K'' i s g i v e n by the unbroken l i n e i n F i g . 2. When t h e r e i s a d i s c r e p a n c y between l e f t and r i g h t , an average must be

taken f o r Ts! and i f n e c e s s a r y they can be t r e a t e d s e p a r a t e l y . Next the s l o p e o f the s t r a i g h t l i n e c o n n e c t i n g the

o r i g i n and the p o i n t on the c u r v e ( L / R ^ ) , t u r n i n g by s t e e r i n g from the rudder c e n t r e to the rudder angle

c o r r e s p o n d i n g to t h a t p o i n t , g i v e s a mean v a l u e o f which v a r i e s a c c o r d i n g to the motion. The s t e a d y t u r n i n g a n g u l a r v e l o c i t y ( L / R ^ ) which i s found i s the product o f t h i s

mean K ' and • Mean v a l u e s o f a r e shown by the d o t t e d l i n e i n F i g . 2 .

The most d i r e c t way o f c a l c u l a t i n g R^ i s w i t h compasses s e t a t two p o i n t s on shore and i t i s d e s i r a b l e to c o r r e c t f o r the e f f e c t o f wind and c u r r e n t by r e p e a t i n g t h r e e t i m e s . I f a c c u r a t e measurement o f R^ i s o f prime importance, we can a c c u r a t e l y measure o n l y the b e a r i n g o f the i n t e r c e p t on the t u r n i n g c i r c l e . Because the motion o f the s h i p seen from the compass s t o p s t e m p o r a r i l y i n the v i c i n i t y o f the i n t e r c e p t , i f we use a t e l e s c o p e w i t h

c r o s s - w i r e , m a g n i f i e d s e v e r a l t i m e s , w i t h a f i e l d o f v i s i o n 6 - 10**, i t i s p o s s i b l e to measure the b e a r i n g to an

a c c u r a c y o f s e v e r a l c e n t i m e t r e s , a t the p o s i t i o n o f the s h i p . However, w i t h t h i s method, t h e continuous r e c o r d o f t r a c k i s not t a k e n and a c c o r d i n g l y the speed in advance and t u r n i n g i s not observed. I n o r d e r to take t h i s , i f we

f o l l o w the s h i p w i t h the compass, the a c c u r a c y o f the b e a r i n g d i m i n i s h e s s l i g h t l y , and c a u s e s t r o u b l e i n the a n a l y s i s . The r e s u l t s o f i n v e s t i g a t i n g v a r i o u s methods show t h a t the e a s i e s t to use i s t h a t o f measuring the speed by a t t a c h i n g a s m a l l v e r t i c a l a x i s d i s c speed gauge o f the type shown i n F i g . 3 a t the s h i p ' s c e n t r e o f g r a v i t y , d e t e r m i n i n g R^ b y the b e a r i n g o f the i n t e r c e p t . R^ and the speed i n turning! a r e dc-tormined by t h i s and the e f f o r t o f a n a l y s i s i a s m a l l . Again, i f i t i s n e c e s s a r y to determine the advance t h i s i s

(12)

-12-found w i t h f a i r a c c u r a c y from the speed and the t u r n i n g angle measured by gyro.

V i t h a s m a l l r u d d e r a n g l e , the t u r n i n g c i r c l e does not l i e w i t h i n the t e s t w a t e r s u r f a c e but i n t h i s c a s e we

determine ( L / R ) B ^ / ( J - ) f r o n the speed g i v e n by the speed g^uge and B the t u r n i n g a n g u l a r v e l o c i t y measured by gyro and t a k i n g i n t o account the f a c t t h a t ( L / R ) remains c o n s t a n t .

I n o r d e r to be a b l e to e n t e r the s t e a d y t u r n a s

q u i c k l y as p o s s i b l e , a r a t h e r l a r g e rudder angle i s taken a t f i r ; which must soon be changed to the t e s t a n g l e . I n the c a s e o f a s h i p w i t h a low d i r e c t i o n a l s t a b i l i t y , the graph ( L / R ^ ) - So tends to have a l a r g e c u r v a t u r e i n the v i c i n i t y o f the o r i g i n and w i t h t h i s type o f s h i p , by c a r r y i n g out t h i s t e s t w i t h a s m a l l rudder a n g l e o f about 2-5° i t i s p o s s i b l e to determine K ' e x a c t l y c l o s e to the advance p o s i t i o n .

By the above p r o c e d u r e , t h e t u r n i n g index i s o b t a i n e d from o b s e r v a t i o n o f the s t e a d y t u r n i n g motion, and t h i s v a l u e o f K' i s more i m m e d i a t e l y r e l i a b l e than the K ' produced by the s t e e r i n g method. Next, i f we c a r r y out the f r e q u e n c y

a n a l y s i s based on e q u a t i o n (3) i n the e x c e s s p a r t o f the t u r n i n g motion, we o b t a i n Y ^ ( i t j ) a c c u r a t e l y f o r c o m p a r a t i v e l y low v a l u e s o f ». However, to speak c o n c l u s i v e l y , s i n c e a l l the i n d i c e s of m a n o e u v r a b i l i t y a r e determined i n g e n e r a l w i t h good a c c u r a c y from K from s t e a d y t u r n i n g and the a n a l y s i s o f the s i n u s o i d a l steerang r e f e r r e d to below, t h i s f r e q u e n c y a n a l y s i s o f the i n i t i a l

t u r n i n g motion i s not always n e c e s s a r y and i s g e n e r a l l y used as a check on the v a l u e o f Yg i(»), when i s s m a l l . I n

c a r r y i n g out t h i s c a l c u l a t i o n , because t h e r e i s a marked decreas» i n speed, i n the t u r n i n g t e s t s , t h e r e i s g r e a t change i n K, Tj^ e t c . i n e q u a t i o n (2) and i t i s not s u i t a b l e f o r timerbased l i n e a i a n a l y s i s . Hence i n s t e a d o f time t , we use the v a r i a b l e

(13)

-13-f o l l o w i n g e q u a t i o n s i m i l a r to e q u a t i o n (3) lim ƒ "/l(f)r»'(eo»»'i-liine'j)4f „ u«r^+i»ioi=^^^^ . ^ o f g l (4) where O ( s ) --VOH:?) ^•<'"'^°(F)>^t^)°nTëj^^^;S^ The I n t e g r a t i o n o f ü ( i c * ) f o r J^, a f t e r e n t e r i n g s t e a d y t u r n i n g i s by Simpson's r u l e but t h e r e a f t e r because

^ ( S ) a (L/Rg) we can I n t e g r a t e the v a r i o u s e q u a t i o n s . The r e s u l t s g i v e ^ (±1t^) = +-^^=^^[(«%ctt»%-sina'a)-Kcat/»+«'it(iD0'i»)]-(£/«f)ii((oi«'it-<»iDa'<») • _ , . ... , i s the v a l u e o f s a t . t h e p o i n t where i t c r o s s e s the s a x i s by e x t e n d i n g the s t r a i g h t l i n e ^ ( s ) a f t e r e n t e r i n g s t e a d y t u r n i n g . T h i s f o r m u l a r a p p l i e s to the c a s e when

the t u r n i n g a n g l e d i s measured and a s i m i l a r formula which a p p l i e s to the c a s e where we measure S can a l s o be made from e q u a t i o n (k).

The i n t e g r a t i o n f o r 5 , I f we make Si the v a l u e o f s r e q u i r e d I n the s t e e r i n g , g i v e s

Again, i n the c a s e o f the u s u a l s t e e r i n g v e l o c i t y , when ö'< 0.3. we o b t a i n w i t h s u f f i c i e n t a c c u r a c y

S (1« ) = - i S o E s p e c i a l l y when O'-^ 0,

(14)
(15)

-Ik-A c c o r d l n g l y

""/•WJo-i^^o, mean K

From t h i s i t i s c l e a r t h a t the Y

by t h i s method i s the Y^ e s t a b l i s h e d from the mean v a l u e s (i«») o b t a i n e d

o f K, which g r a d u a l l y change t o g e t h e r w i t h motion. T h i s e x p r e s s i o n f o r Y ' i s r e l i a b l e

s m a l l , but i t s a c c u r a c y d e t e r i o r a t e s as W i n c r e a s e s . T h i s i s due to the f a c t t h a t the v a l u e when a oj

i s c o n t r o l l e d o n l y by the s t a b i l i s e d observed the t u r n i n g when W ^ i s i s vez>y r e l i a b l e v a l u e s o f / s t e a d y t u r n i n g and the f a c t t h a t (i«>) and j (i«> ) d e c r e a s e a l o n g w i t h an i n c r e a s e ot 0^ .

F o r time c o r r e c t i o n o f r e c o r d e d Stnd S on s b a s e , we use the symbols o f the speed gauge r e f e r r e d to e a r l i e r , which procediire i s g i v e n i n the a n a l y s i s o f 1;he Z t e s t s . Again t h e r e a r e many c a s e s where some i n i t i a l . motion e x i s t s , b e f o r e e n t e r i n j j the t u r n i n g t e s t , and the i n f l u e n c e o f t h a t must be excluded from the c a l c u l a t i o n . That procedure i s

d i s c u s s e d i n d e t a i l i n the a n a l y s i s o f the s i n u s o i d a l s t e e r i n g . F i g . 5 and F i g . 6 show examples o f the r e s u l i s o f the a n a l y s i s c a r r i e d out f o r a high-speed l i n e r i n the foiiD o f l o g Y,

a g a i n s t l o g <§>^ .

1.2. S i n u s o i d a l s t e e r i n g teèts.

I n t h e s e t e s t s , the r u d d e r i s moved l e f t and r i g h t , i n s i n u s o i d a l form, w i t h a c o n s t a n t a m p l i t u d e and p e r i o d .

(So, h a l f the a m p l i t u d e o f the rudder angle, :..e. th>e

maximum r u d d e r a n g l e , i s stopped a t 1 0 ° 15T, and the p e r i o d extends from about 2 s e e s to 20 ~ ko s e e s , changing i n

r e g u l a r sequence i n each r u n . T h i s s t e e r i n g i s a t y p i c a l method i n f r e q u e n c y r e s p o n s e , and v a r i e s froiji a l a r g e to a f a i r l y s m a l l v a l u e o f and g i v e s Y^ (i«) a c c u r a t e l y , and

(16)

-15-•

i n c o n j u n c t i o n w i t h the v a l u e s of K (Yg i n <«) = o) from t u r n i n g t e s t s , makes c l e a r the whole p a t t e r n of the m a n o e u v r a b i l i t y of the p a r t i c u l a r s h i p t y p e . I f we a p p l y e q u a t i o n (3) to the s i n u s o i d a l s t e e r i n g motion f o r a s h i p h a v i n g d i r e c t i o n a l s t a b i l i t y , i t may be e x p r e s s e d i n p o l a r form when

s 2 71/1^ i . e . the 60 ot numerator and denominator s t e e r i n g p e r i o d , the e x c e s s terms d i s a p p e a r and we o b t a i n

I n t h i s e q u a t i o n , 6 i s the h a l f amplitude of ^ a f t e r the s i n u s o i d a l s t e e r i n g motion has become s t e a d y , / i s the phase d i f f e r e n c e of the 5 f o r ^ . T h i s r e s u l t i s determined a l s o by c a l c u l a t i n g th© r e g u l a r s o l u t i o n , s u b s t i t u t i n g the edlnusoidal s t e e r i n g S o S/, s i n 6> t i n the motion e q i i a t l o n ( 2 ) . T h i s *^ r s t e a d y s o l u t i o n g i v e s and hence and a l s o

A c c o r d i n g l y i f we measure ^ the s t e a d y a m p l i t u d e o f the s i n u s o i d a l s t e e r i n g t e s t and take th© r a t i o w i t h So then . Y^Cit;^) j f o r the s t e e r i n g p e r i o d I s i m m e d i a t e l y determined. The d e t e r m i n a t i o n of Yg f o r l a r g e («> may a l s o be e f f e c t e d by t h i s method, f a i r l y a c c u r a t e l y . When the motion o f a f r e e - ^ r u n n i n g model i s measured by a girro speed gauge, ^ i s o b t a i n e d d i r e c t l y and the t u r n i n g a n g l e i s o f t e n measured

(17)

-16-••

by means o f a gyro compass. At t h i s time, B i s o b t a i n e d by m u l t i p l y i n g 0^ by 6 h a l f tho amplitude o f ^ . Because i t i s i n the form Y g ' , we put i t i n the non-dimensional

form ) " ^^r/(z ) " ^ • Ev®" "^en t a k i n g the speed d u r i n g advfince, t h e r e i s not too much e r r o r i n V, and i f we use the speed gauge mentioned above, i t i s r e l i a b l e oven whei^

i s l a r g e . The r e c o r d o f yawing, even when T^ i s

c o m p a r a t i v e l y l a r g e , i s markedly s i n u s o i d a l , but c o n f u s i o n o c c u r s when T^ i s s m a l l . I n t h a t c a s e , i f we take an average

v a l u e w i t h a s s h o r t a time as p o s s i b l e , good r e s u l t s a r e o b t a i n e d . Again, i f the mean c o u r s e o f the s i n u s o i d a l motion i s not i n a s t r a i g h t l i n e , t h e r e o c c i i r s a g r a d u a l s l i p .

T h i s should be a s s m a l l a s p o s s i b l e , and the remainder i s c o r r e c t e d a s f o l l o w s

'•'•-{-«vèr)"}

where t a n g u l a r v e l o c i t y o f s l i p o f averoffe c o u r s e B t h a l f - a m p l i t u d e determined from a number o f

peaks and troughs f o l l o w i n g ^

I f t h i s i s i n a d e q u a t e , we may p l o t the & v a l u e s o b t a i n e d and take more r e l i a b l e r e a d i n g s a t i n t e r v a l s a l o n g ^ . MM ma. 0 nu 1 \inaM F i e , k. R e s u l t s o f s i n u s o i d a l and t u r n i n g s i n u s o i d a l 1 s t e e r i n g t e s t s (z)

(18)

-17-1

'0 1 5 ^ mmii mum

1

'0 1

\^\

1

'0 1 tmna.

\^\

r /w ViUUi » F i g . 5. R e s u l t s o f s i n u s o i d a l and t u r n i n g B l n u s o l d a l s t e e r i n g t e s t s ( l l ) iiriL - •' maiiwu auauitmm fsa m lausi t * mmjaa tmm m mat w tmiaitt 1 i 1 F i g . 6. S i n t i d o i s a l s t e e r i n g t e s t s ( i l l ) F i g . 7 . R « c n H W f n n t < n n n f B^ nti.»ft4 rla 1 Ht:ft»r<n/' t e S t S

(19)

- 1 8 ¬

»

F i g s , k, 5, and 6 show examples o f t h e s i n u s o i d a l s t e e r i n g a n a l y s i s .

From t h e s i n u s o i d a l s t e e r i n g t e s t s , i t i s

p o s s i b l e t o determine not o n l y YgCiw) f o r the s t e e r i n g p e r i o d l a l s o Yg f o r an oven s m a l l e r 4^, by u s i n g tho c a l c u l a t i o n s o f e q u a t i o n ( 3 ) . These c a l c u l a t i o n s l i n k t o g e t h e r tho r e s u l t s o f t h e s i n u s o i d a l s t e e r i n g and t h e r e s u l t s o f t h e t v i r n i n g t e s t s , and a r e e f f e c t i v e I n c l a r i f y i n g t h e m a n o e u v r a b i l i t y o f t h a t s h i p t y p e . A f t e r c a u s i n g t h e model to advance, i f we a p p l y e q u a t i o n ( 3 ) to t h e c a s e when s i n u s o i d a l s t e e r i n g b e g i n s we o b t a i n Zl ' ^ * " * ^ * r * l-(»/«,>.r~«*»-'»'n«^) ( c f . F l g . 7 )

Here t^^ i s taken a t t h e peak o f ^ a f t e r tho motion h a s become s t e a d y , and up to t h i s we u s e t h e t r a p e z o i d a l Simpson's r u l e s . A f t e r t ^ , t h e motion I s B l n u s o l d a l and we c a n i n t e g r a t e .

^ i s the average c o u r s e a n g l e a f t e r s t e a d y motion o c c u r s . T h i s e q u a t i o n i s s u i t a b l e when ^ i s known but t h e

f o l l o w i n g e q u a t i o n i s used when we measure ^ .

I n t h i s c a s e t ^ i s taken a s t h e v a l u e a t tho peak o f ^ . i r

i n i t i a l peak o f $ :

(20)

1 9

-I f wo o l l m i n a t o w i t h S ( l ( # ) | wo o b t a i n Y s ( l W ) ] , and I f we e l i m i n a t e w i t h V/L we o b t a i n YJ.{±V) . I t I s d e s i r a b l e to tee the speed gauge a l s o f o r V. I n c a r r y i n g out t h i s c a l c u l a t i o n , I t I s u s e f u l to c o n s t r u c t a t a b l e of t r i g o n o m e t r i c v a l u e s s u c h t h a t I n each second Wt has the v a l u e s 1 ° , 2**, 4 ° , 8 ° , 1 5 ° , 3 0 ° . T h i s I s enough f o r most s h i p s .

Esamples o f the a n a l y t i c a l r e s u l t s a r e shown i n P i g s . 5 and 6. I f the v a l u e 6^ ( i o /w^ ) f o r O o f the Yg o b t a i n e d by t h i s method i s e q u a l to an average YL tor via r the aniplitude o f non-dimensional a n g u l a r v e l o c i t y i n those t e s t s , i t i s f a i r l y a c c u r a t e f o r & s 0 » ^ . Such agreement, i n a s h i p w i t h c o m p a r a t i v e l y good s t a b i l i t y , i s s a t i s f a c t o r y but i n a s h i p where s t a b i l i t y i s poor i t i s not n e c e s s a r i l y so. I n t h a t c a s e , a s s e e n from the above e q u a t i o n , when W o < ^ because a g r e e s w i t h the r e l i a b l e v a l u e o b t a i n e d d i r e c t l y from the s i n u s o i d a l s t e e r i n g , t h i s Y g i s s u i t a b l e i n the v i c i n i t y o f < ^ and g e n e r a l l y seems to bo a c c u r a t e , when W/**^ B 0 . 5 — 1 . 0 .

I f we c a r r y out tho t o s t , i t i a d i f f i c u l t to a v o i d produolng some l e f t and r i g h t t u r n i n g motion, however

s h o r t the time b e f o r e the s t e e r i n g i s begun and, i n a d d i t i o n , t h e r e a r e many c a s e s o f mean c o i i r s e s l i p a f t e r the motion has become s t e a d y . These must bo a s few a s p o s s i b l e but b e c a u s e they €U«e not c o m p l e t e l y a b s e n t , we must c o r r e c t f o r t h e s e two i n f l u e n c e s on 6 . I f we c a l l $ ^ t h e r e s i d u a l & o f the i n i t i a l motion, and ^ r the ^ due to the s l i p o f tho mean c o u r s e , then the motion to be e l i m i n a t e d i s

(21)

v h i c h i s r e p r e s e n t a t i v e , e z c l i i d i n g the s l i g h t d i f f e r e n c e o f the e x c e s s p a r t . I n t h i s e q u a t i o n , • • 6^ and ^0 » i n i t i a l a n g u l a r v e l o c i t y and a c c e l e r a t i o n , T o Tj^ + -I a n g u l a r v e l o c i t y o f s l i p o f moan c o u r s e $a and oan bo r e a d o f f a l s o from tho r e a d i n g s o f but i f 6^ I s not found from the values tfOit i s too

d i f f i c u l t a t f i r s t . However i f c a r e i s t a k e n when tho t o s t i s c a r r i e d o u t , i t i s p o s s i b l e to do i t i n s u c h a way t h a t the c o r r e c t i o n o f ^ 0 i s not a problem. T^^, l^i i n t h i s c a l c u l a t i o n a r e r e l i a b l e i f we u s e the v a l u e o f K from t h e t u r n i n g t e s t s and tho d i r e c t l y determined from the s i n u s o i d a l s t e e r i n g by t h e method o f s l m p l i f i o a t l o n d e s c r i b e d i n 1 . 5 < One method i s a l s o to make (T^^ ••¬

about 1 . 2 times T from the Z t e s t s , i f i s s m a l l . Ve deduct, from B , ^^•'•^ i n t h e same way a s when

m e a s u r i n g h . I n o r d e r to employ f r e q u e n c y a n a l y s i s w i t h the p r e a r r a n g e d s i n u s o i d a l s t e e r i n g I t i s d e s i r a b l e t o take groups from l e f t and r i g h t s t e e r i n g e a c h a t the same f r e q u e n c y . F o r any one group i s e q u a l , and i n many c a s e s v a l u e s o f ^0 agree w e l l . Because t h e motion f o r s i n u s o i d a l s t e e r i n g I s i n i n v e r s e phase f o r l e f t and r i g h t , i f we tEüce t h e d i f f e r e n c e o f t h e B r e a d i n g s and r u d d e r a n g l e S o f one group, a f a i r l y s m a l l i d e a l measxirement o f ^a»and ^ i s o b t a i n e d . \rs T u r n i n g s i n u s o i d a l s t e e r i n g t e s t s . As a m o d i f i c a t i o n o f the s i n u s o i d a l s t e e r i n g , we. f i r s t t a k e a c o n s t a n t r u d d e r a n g l e and a f t e r t h e t u r n i n g has commenced we c a r r y out s i n u s o i d a l s t e e r i n g a t the

p e r i o d o f t h a t r u d d e r a n g l e . T h i s t e s t i s uaed to determine

\

the v a l u e o f Y ( i t t ) f o r a c o m p a r a t i v e l y s t r o n g t u r n i n g oatlot s

(22)

2 1

-when (d i s l a r g e . Combining t h e s e r e s u l t s and the from the t u r n i n g t e s t s , i t i s p o s s i b l e to determine t h e index o f m a n o e u v r a b i l i t y i n tiurning.

The method o f a n a l y s i s c o r r e s p o n d s to s i n u s o i d a l s t e e r i n g , but s i n c e the t u r n i n g s i n u s o i d a l s t e e r i n g can bo c a r r i e d out up to a c o m p a r a t i v e l y l a r g e p e r i o d ,

c a l c u l a t i o n o f frequency a n a l y s i s i s a s a r u l e not n e c e s s a r y . . R e a d i n g o f f ^ from the p a r a l l e l s t r a i g h t l i n e s drawn on

the c u r v e ^ ( t ) , wo determine /^^'(iö,') / . When th© p e r i o d i s s m a l l and yawing i s c o n s i d e r a b l e , we u s e ^ ^ t h © average t u r n i n g a n g u l a r v e l o c i t y read from tho r e c o r d , and put i t i n t h e form ^ - ^ t , and i f we make a magnified p l o t aftc d e d u c t i n g the s t e a d y t u r n i n g i t i s p o s s i b l e to r e a d o f f ^ w i t h good a c c u r a c y . The magnitude o f th© a n g u l a r v a l o c i t y i n t h i s t o s t i s g i v e n by ^oo. ( V / L ) , t a k i n g t h e s t e a d y t u r n i n g a s a b a s i s .

F i g s , k and 5 show a c t u a l ©xafflpl©8 f o r morchant s h i p t y p a s , and from thos© r e s u l t s , when the t x i m i n g i s

/ / /

s t r o n g , K , Tj^ ^ Tg seem to show an a p p r o p r i a t e d e c r e a s e . I f t h i s h a s tho tendency t h a t tho i n c r e a s e o f the t u r n i n g power owing to t h e i n c r e a s e o f r u d d e r a n g l e i s g r a d u a l l y n i a i i f i e d , th© d i r e c t i o n a l s t a b i l i t y on t u r n i n g i s good and the f o l l o w - u p i s r a p i d i n p r o p o r t i o n to tho s t r e n g t h o f t u r n i n g , and c o r r e s p o n d s w i t h t e s t s c a r r i o d out h i t h o r t o .

Henc© i t i s p o s s i b l e to ©stimat© th©s© t©nd©ncies q u a n t i t a t i v e l y by t h i s k i n d o f t e s t . The c l a r i f i c a t i o n o f t h e s e m a t t e r s i n t h e s e c o n d i t i o n s by^ r e p e a t i n g t h i s t e s t and s e l e c t i n g many v a l u e s o f s t r e n g t h o f t u r n i n g a s a b a s i s i s c o n s i d e r e d to b© n©c©88ary to fundamantal r a s s a r c h i n t o th© probloms o f m a n o o u v r a b l l i t y . Thar© a r e p r a c t i c a l d i f f i c u l t i e s i n

a c c u m u l a t i n g a g r e a t number o f r u n s , i n s y s t e m a t i c t e s t s to f i n d o u t t h e c o i m e c t l o n o f t u r n i n g m a n o e u v r a b i l i t y w i t h * rudder a r e a and s h i p type, and t h e d e t e r r o i n a i i o n o f i n d i c e s bf m a n o e u v r a b i l i t y , at. each l e v e l o f t u r n i n g a n g u l a r

(23)

-22-v e l o c l t y cannot be consldereid to be a p r a c t i c a l n o u e s s l t y a t the p r e s e n t s t a g e . Hence as a s t a n d a r d f o r t h i s type o f t e s t , t h e s t e a d y r u d d e r a n g l e I s r e s t r i c t e d to about 1 5 ° and, c£u*rylng out a s e r i e s o f t u r n i n g s i n u s o i d a l

s t e e r i n g t e s t s , ve determine the I n d i c e s f o r f a i r l y s t r o n g t u r n i n g motion which i n c o n j u n c t i o n w i t h the i n d i c e s c l o s e to the advance, o b t a i n e d from the t u r n i n g t e s t s and

s i n u s o i d a l s t e e r i n g r e f e r r e d to e a r l i e r , may be t a k e n a s i n d i c a t i v e o f the m a n o e u v r a b i l i t y o f t h e type o f s h i p .

1P u l s e s t e e r i n g t e s t s .

T h i s i s s t e e r i n g i n which, a f t e r the s h i p has been caused to advance, the r u d d e r i s s e t a t an angle o f 10**-^ 1 5 ° f o r a w h i l e , and then the s t e e r i n g i s r e t u r n e d to the c e n t r e . As a r e s u l t o f t h i s the s h i p t u r n s once but a s the a n g u l a r v e l o c i t y soon d e c r e a s e s i t then t a k e s up a new c o u r s e . We determine Y g ( i w ) f o r v • 0 - l / T j ^ u s i n g the

meastired v a l u e s o f ^ and 6 and <f i n e q u a t i o n ( 3 ) . Two o r t h r e e a c c o u n t s have a l r e a d y been p u b l i s h e d S. k\ [ 3 J b u t , s i n c e then, some d e f e c t s i n the method have been observed and s i n c e a way of f i n d i n g out the whole p a t t e r n o f m a n o e u v r a b i l i t y by d e t e r m i n i n g Ts (l4^) e x t e n d i n g

from %f a O to flO w i t h o u t r e c o u r s e to i t has been developed, i t i s probable t h a t t h i s t e s t w i l l not now be used.

As d e f e c t s we n o t e :

(1) I n the p r o c e s s o f r e s t o r i n g to the advance p o s i t i o n , which o c c u p i e s a g r e a t p a r t o f the p r o c e s s , the motion i s complovely p a s s i v e and moreover w i t h t h a t s h i p t y p e , tho r e s u l t s a r e confused, even w i t h s l i g h t e x t e r n a l d i s t u r b a n c e , s i n c e d i r e c t i o n a l s t a b i l i t y i s a t i t s w o r s t when c l o s e to the advance p o s i t i o n . A c c o r d i n g l y , when B o n l y i s measured r a t h e r than B , .the u l t i m a t e c o u r s e i s d i f f i c u l ^ t

to d i s c e r n and the v a l u e o f K i s a l s o u n c e r t a i n . Again t h i s i s o n l y one example t e s t e d , but i n the c a s e o f a f u l l

(24)

s h i p typo, thoro i s an example of non-damped yawing b e i n g c a u s e d , thought to bedue to the phenomenon, p e c u l i a r to the s h i p , o f break away f l u t t e r a t the s t e r n , r e s t o r i n g the advance p o s i t i o n a f t e r the c o m p l e t i o n of the s t e e r i n g , i n which ckne t h i s t e s t i s m e a n i n g l e s s . (2) I n the f r e q u e n c y a n a l y s i s of the t u r n i n g t e s t , th© r e l i a b l e K determined from s t e a d y t u r n i n g a u t o m a t i c a l l y r e s t r i c t s Yg f o r and i n the a n a l y s i s of th© s i n u s o i d a l s t e e r i n g Yg from s t e a d y amplitude r e s t i ^ i c t s Yg f o r Wp, but i n p u l s e s t e e r i n g , no r e l i a b l e i n d i c a t i o n of Yg f o r t h e s e e x i s t s f o r any 0 ) .

(3) I n s h i p s which have poor d i r e c t i o n a l s t a b i l i t y , s i n c e K and markedly i n c r e a s e when a p p r o a c h i n g the advance p o s i t i o n , t h e r e i s consequent n o n - l i n e a r e f f e c t i n Yg due to t h i s method, and i t i s d i f f i c u l t t o ^ s p e c ^ f y the l e v e l of a n g u l a r v e l o c i t y s i n c e the motion i s not p e r i o d i c even though i t i s s t e a d y .

1 . 5 D e t e r m i n a t i o n of m a n o e u v r a b i l i t y I n d i c e s K ^ T ^ ^ T^' ,

The i n d i c e s of m a n o e u v r a b i l i t y a r e determined from I Yg (ifd ) | o b t a i n e d by combining the r e s u l t s o f a\\ the above t e s t s . F i r s t we take a s a s t a n d a r d the s i n u s o i d a l s t e e r i n g t e s t s f o r which frequency a n a l y s i s i s c a r r i e d out to determine the i n d e x c l o s e to the advance p o s i t i o n , and we determine from th© r e s u l t s o f t u r n i n g t e s t s the average f o r ( L / R ) e q u a l to ^ tf^, the a m p l i t u d e of the

non-d i m e n s i o n a l a n g u l a r v e l o c i t y . P l o t t i n g l o g W a g a i n s t l o g 1 Y, we d e s c r i b e Che a v e r a g e curve o f (*•** ) L p a s s i n g through each p o i n t o f the s i n u s o i d a l s t e e r i n g f r e q u e n c y a n a l y s i s , and each p o i n t o f the s i n u s o i d a l s t e e r i n g o f a s t i l l l a r g e r . Then f o r s u f f i c i e n t l y s m a l l W , we approximate K

/

determined p r e v i o u s l y , and w i t h a l a r g e W , we c o n s i d e r i t a s a s t r a i g h t l i n e o f s l o p e - 1 . Because ( L / R ) f o r

(25)

-2^1-/ .

s i n u s o i d a l s t e e r i n g f o r l a r g e id i s smaBar than the s t a n d a r d ( L / R ) ^ , i t may be c o r r e c t e d by a p p l y i n g

s i n u s o i d a l s t e e r i n g w i t h a l a r g e r rudder a n g l e than the s t a n d a r d , f o r l a r g e «, but the e f f e c t seems to bo s l i g h t . A c c o r d i n g l y , we must c o n s i d e r t h e IVgI c u r v e , now drawn, a s b e i n g f o r a s t a n d a r d ( L / R ) ^ . Vo r e a d o f f

c o r r e s p o n d i n g to t h r e e v a l u e s o f |*' j on the s t r a i g h t l i n o o f s l o p e - 1 , a s u i t a b l e d i s t a n c e below the

h o r i z o n t a l l i n o o f l o g K , and i n between those two.

/ / /

Wo o b t a i n Tj^ , , T. by s o l v i n g s i m u l t a n e o u s l y the

/

e q u a t i o n c o n s t r u c t e d f o r each w t '

T a k i n g more v a l u e s o f w , the l e a s t square method may be used but t h e c a l c u l a t i o n becomes somewhat c o m p l i c a t e d . F o r c o n f i r m a t i o n , when , then i t c o r r e s p o n d s to tho h o r i z o n t a l l i n o o f l o g K\ and we draw a l i n e o f s l o p e - 1 ftpom t h a t t o le • l / T ^ , h o r i z o n t a l up to l/T^'', and a f t e r t h a t a g a i n o f s l o p e - 1 . ThB p r e v i o u s l o g /T^'jcurvo must approximate to t h i s when tt i s ' f a i r l y s m a l l and when i t i s l a r g e . T h i s Bode approximate a n a l y t i c a l l i n e i s e a s i l y deduced from the form of Yg (i«). The p r o c e d u r e f o r d e t e r m i n i n g T^^, Tg^ , T^ ^ from K f o r ( L / R ) under t u r n i n g s i n u s o i d a l s t e e r i n g c o n d i t i o n s i s e x a c t l y tho same. Here ( L / R ) i s on the b a s i s o f s t e a d y t u r n i n g and

' I

K i s the l o c a l K determined from the s l o p e o f the curve fL/rO - from the t u r n i n g t e s t s .

I n t h e i n i t i a l s t a g e s o f tho a n a l y s i s , we

determined from the t u r n i n g t e s t s the s t e a d y a m p l i t u d e o f the s i n u s o i d a l s t e e r i n g , and t r i e d to f i n d the rough v a ^ o o f Tj^ , Tg , T^ w i t h o n l y Yg f o r a c o m p a r a t i v e l y l a r g e U and K . I n t h i s c a s e , tho f o l l o w i n g s i m p l e method I s

(26)

u s e f u l . We p l o t tho l o g a r i t h m s o f tho s i n u s o i d a l s t e e r i n g r e s u l t s , a g a i n s t \Y^'\ - w, and p r o d u c i n g tho s t r a i g h t l i n o o f the s l o p e - 1 shown by a l a r g e a» , we^take tho p o i n t s o f i n t e r s e c t i o n w i t h t h e h o r i z o n t a l l i n e o f K , and make »J the c o r r e s p o n d i n g <#)^ ( F i g . 4 ) . From tho Bode a n a l y t i c a l l i n e a p p r o x i m a t i o n , because

° ^3 / ^ l ' "^2^ • *e e l i m i n a t e T^' by u s i n g t h i s , the p r e v i o u s e q u a t i o n becomes .

/ / I • \ I Hence we determine Tj^ , , from j Yg i n the two «l', the s m a l l e r o b t a i n e d from the

s i n u s o i d a l s t e e r i n g , and a much l a r g e r v a l u e . I n t h i s method, tho t e s t tank i s wide and tho Tj^ o f the model i s s m a l l , and when we a r e a b l e to c a r r y out the

s i n u s o i d a l s t o o r i n g f o r t> a p p r o a c h i n g Q W ^ / , the v a l u e s appear to be a c c u r a t e , not m e r e l y approximate. However i t i s n e c e s s a r y to measure tho speed a c c u r a t e l y by u s i n g a speed gauge.

iié' P l a n f o r s t a n d a r d i s a t i o n o f m f t n o e u v r a b i l i t v t e s t s w i t h f r e e - r u n n i n g models bv the

f r e q u e n c y r e s p o n s e method

Summarising the above remarks, we c o n s i d e r s t a n d a r d i s i n g m a n o e u v r a b i l i t y t e s t s w i t h f r e e - r u n n i n g models h> the f r e q u e n c y r e s p o n s e method i n o r d e r to o b v i a t e e f f o r t and i n e f f i c i e n c y r e s u l t i n g from r e p e a t i n g t e s t s . Tho i n d i c e s o f m a n o o v r a b l l i t y c l o s e to the advance p o s i t i o n o b t a i n e d from t h e s e t e s t s show tho c h a r a c t e r i s t i c o f tho s h i p under a u t o m a t i c s t e e r i n g and when k e e p i n g <

(27)

- 2 6 .

c o u r s e on voyage, and c a n be used I n t h e a n a l y s i s o f t h e s e problems. They a r e most important f a c t o r s i n t h e m a n o e u v r a b i l i t y o f a merchant s h i p . Again, t h e i n d i c e s under t u r n i n g motion show the c h a r a c t e r i s t i c s o f a s h i p under f a i r l y s t r o n g s t e e r i n g such a s c o l l i s i o n a v o i d a n c e , and change o f d i r e c t i o n and t o g e t h e r w i t h t h e r e s u l t s o f Z t e s t s and t u r n i n g t e s t s g i v e a c l e a r i n d i c a t i o n o f the n o n - l i n e a r e f f e c t i n manoeuvring. 1. C a r r y i n g out l e f t and r i g h t t u r n i n g t e s t s of r u d d e r a n g l e 5 ° , 1 0 ° , 1 5 ° , 2 0 ° , 3 0 ° and 3 5 ° we c a l c u l a t e t h e p r o p e l l e r r.p.m., R by o b s e r v a t i o n o f 8 the b e a r i n g o f tho i n t e r c e p t on t h e t u r n i n g c i r c l e V by speed gauge, and ^ ( t ) a n d S ( t ) . Ve a r r a n g e t h e r e s u l t s i n the form (L/Rg) - S jj and d e t e r m i n e K ' a c c o r d i n g to 1 . 1 . I f advance i s necessairy, we c a l c u l a t e from B

and V . F u r t h e r , i n t h i s t e s t , i t i s d e s i r a b l e to

photograph t h e motion o f t h e s h i p i n t h e r e g i o n o f t h e p o i n t s o f i n t e r s e c t i o n o f t h e two i n t e r c e p t l i n e s , from a p o i n t on the shore, w i t h a c i n e - c a m e r a . The d r i f t

a n g l e i n t u r n i n g i s o b t a i n e d from t h e s e r e s u l t s and c a n be used i n t h e c a l c u l a t i o n o f the r e s i s t a n c e d e r i v a t i v e . 2 . Ve c a r r y out t h e s i n u s o i d a l s t e e r i n g t e s t s s e t t i n g t h e s t a n d a r d r u d d e r a n g l e a t 1 5 ° . Tho p e r i o d i s t a k e n a s s t a n d a r d up to t h e maximum p e r i o d which i t i s p o s s i b l e t o have, from where tho c u r v e l o g

-YJ - log»'' c o i n c i d e s w i t h t h e s t r a i g h t l i n e o f s l o p e -1 and t h e x n t e r v a l i s t a k e n a t about e v e r y e. l ^ *6 . 2 ,

o f l o g V i t h a U'^6H model, i t i s u s u a l f o r T^ = f r o m- 2 ~ 5 seconds to about 20/^^30 s e c o n d s . From t h i s < s e r i e s o f t e s t s , we measure t h e a m p l i t u d e o f t h e s t e a d y yawing and d e t e r m i n e | / f o r tho 6> o f tho s t e e r i n g p e r i o d } and u s i n g K from t h e t u r n i n g t e s t s tho roi:,':h

(28)

2 7

-/ -/ I

v a l u o s o f Tj^, T^, BJCO f i r s t determined by t h e s i m p l e method o f 1 . 3 •

3 . S e l e c t i n g two p e r i o d s . o f t h e o r d e r o f a few seconds and t e n s o f seconds, we, d e t e r m i n e the s i n u s o i d a l s t o o r i n g b e g i n n i n g from l e f t and r i g h t , w i t h a rudder a n g l e o f 10 1 5 ° . Wo c a r r y out c a l c u l a t i o n s o f f r e q u e n c y a n a l y s i s f o r t h i s s e r i e s o f t e s t s , and d e t e r m i n e (Yg ( f o r a s m a l l Here t h e i n d i c e s o f m a n o e u v r a b i l i t y

K / , and c l o s e to the advance p o s i t i o n , a r e d e t e r m i n by c a l c u l a t i n g a c c o r d i n g to 1 . 3 .

k. T a k i n g a s s t a n d a r d a s t e a d y rudder a n g l e o f

1 5 ° , and a s i n u s o i d a l s t e e r i n g a n g l e o f 1 0 ~ 1 5 ° , we c a r r y out t u r n i n g s i n u s o i d a l t e s t s . T^ c o r r e s p o n d s to s i n u s o i d a l s t e e r i n g . [Yb''! i s o b t a i n e d f o r tho l a r g o a n g u l a r v e l o c i t y l e v e l from t h e ampllttide o f t h e s t e a d y s i n u s o i d a l motion, and combining t h e r e s u l t s o f the t u r n i n g t e s t s , K, T^, T^. T^ under i h e t u r n i n g motion a r e determined.

C o n c l u s i o n and Acknowledgmentè.

The above completes t h e r e p o r t on f r e e - r u n n i n g model m a n o e u v r a b i l i t y t e s t s by the frequency r e p o n s e method. As r e g a r d s t h e a n a l y s i s o f t h e r e s i s t a n c e d e r i v a t i v e r e f e r r e d to i n t h e i n t r o d u c t i o n , t h e Z t e s t s , and the e x p e r i m e n t a l methods, i t i s hoped to g i v e some account l a t e r i f space p e r m i t s .

Much i n v a l u a b l e and s y m p a t h e t i c h e l p h a s been r e c e i v e d from t h e Kawasaki Heavy E n g i n e e r i n g B a s i c D e s i g n Department. We would l i k e t o take t h i s o p p o r t u n i t y o f e x p r e s s i n g o u r a p p r e c i a t i o n f o r t h i s , a a - a l s o to a niimber of s t u d e n t s o f t h e U n i v e r s i t y o f Osaka, Messrs.Oka, Ota, ^ Furuhlma and Nagayakawa f o r t h e i r e f f o r t s on oxir b e h a l f .

(29)

p

2 8

-REFERENCES

S h i g e r u AKAZAKIi E x p e r i m e n t a l B t u d l e s on t h e t u r n i n g o f a Bhip ( B u l l e t i n o f J.S.N.A. Japan, él, 1 9 3 ? " [ 2 . ] HiramitBU SHIBA (SHINAMi), Tokio MIZUNO, T e t a u j i n

TODA ( T O M I D A ) , Haruzo ETAi S t u d i e s o f t h e optimum rudder a r e a , u a i n g s h i p models

(Review o f J.S.N.A. Japan, 103, 1959)

[ 3 . ] R e l e v a n t m a t e r i a l p r e s e n t e d t o the N i n t h N a t i o n a l V a t e r - t a n k Conference, 196O.

[ 4 . ] NOMOTO, TANAKA, HONDA, JilRANO:

The m a n o e u v r a b i l i t y o f s h i p s ( l ) , ( 2 ) Review o f J.S.N. Arch.Japan 9 9 , 101, 1936 and 1957. [3.1 NOMOTO, MOKUNAKA: Model t e s t s on tho r n a n o e u v r a b i l i t v o f l a r g e o i l t a n k e r s Review o f J.S.N.Arch.Japan, [ 6 . ] AklhioaMin^ASE. The d e t e r m i n a t i o n o f i n d i c e s o f m n n o e u v r a b i l l t v by phase measurement

Graduate Review o f Osaka U n i v e r s i t y S h i p b u i l d i n g Department, 1939.

[ 7 . ] D a v i d s o n & S c h i f f , T u r n i n g and Course-keepln>r Q u a l i t i e s at fih<p TVS.N.ATM.E. 1 9 4 é

(30)

B.S.R.A. T r a n s l a t i o n ^fo. 2 1 5 9 ( b ) On the u t i l i t y o f f r e e - r u n n i n g models i n r e s e a r c h e s i n t o m a n o e u v r a b i l i t y ( 2 )

( L e c t u r e d e l i v e r e d a t the autumn s e s s i o n o f the J.S.R.A.November I961)

By

Kensaku Norooto, Member o f the A s s o c i a t i o n and o f the F a c u l t y o f E n g i n e e r i n g i n t h e U n i v e r s i t y of Osaka,

H i s a y o s h i Tatano, Member o f t h e A s s o c i a t i o n and o f the F a c u l t y o f E n g i n e e r i n g i n t h e U n i v e r s i t y of Osaka,

and

A k i h i s a Murase, Member o f t h e A s s o c i a t i o n and o f the F a c u l t y o f E n g i n e e r i n g i n the U n i v e r s i t y of Osaka. ( R e c e i v e d 20th June, 1960) 2. The e s t i m a t i o n o f a l l hydrodynamic f o r c e s a c t i n g on a s h i p , from f r e e - r u n n i n g model t e s t s . 2.1 The d e t e r m i n a t i o n o f t h e r e s i s t a n c e d e r i v a t i v e s 'by f r e e - r u n n i n g model t e s t s . Tbe r e s i s t a n c e d e r i v a t i v e s a r e the c o e f f i c i e n t s

^y^> ^nt^^* e q u a t i o n ( l ) used i n d e s c r i b i n g tho f o r c e s a c t i n g on a s h i p , i n terms o f tho l i n e a r f u n c t i o n o f tho d r i f t

a n g l o ^ , t h e t u r n i n g angle v e l o c i t y ^ ( u s u a l l y made non-d i m e n s i o n a l , ( L / R ) o r H ) annon-d t h e runon-dnon-der angle ^ . I n

d e t e r m i n i n g these from t e s t s , the u s e o f the t u r n i n g tank i s t r a d i t i o n a l , and a l s o tho v i b r a t i o n p u l l method i n tho normal tank i s used w i t h i t . The u s e o f the d e r i v a t i v e s i s v e r y r e l i a b l e i n c a l c u l a t i n g the f o r c e s a c t i n g on any s h i p . I n t h e f r e e - r u n n i n g model t e s t s , the e s s e n t i a l aim i s the s t u d y o f the motion o f the s h i p , and s i n c e t h i s i s caused by t h e f o r c e s a c t i n g on the s h i p the o b s e r v a t i o n o f motion must n e c e s s a r i l y e n t a i l much i n f o r a a t i o n about thol f o r c e s , w h i c h giv« r i s e t o a s u b s i d i a r y purpose.

(31)

-2-I n theory i t i s p o s s i b l e to determine the

d e r i v a t i v e s from f r e e - r u n n i n g model t e s t s , and i f t h i s can be done, the way i s c l e a r to obtainirg the d e r i v a t i v e s c l o s e to the advance p o s i t i o t v which are not o b t a i n e d w i t h the t u r n i n g tank, and the d e r i v a t i v e s f o r a r e a l s h i p . Again, t h e r e i s tho p r a c t i c a l a t t r a c t i o n t h a t knowledge can be obtained o f t h i s f i e l d w i t h o u t the t u r n i n g tank and the s p e c i a l equipment a s s o c i a t e d w i t h i t . Hence i t may be expected i n t h i s a n a l y s i s t h a t we can combine the two streams o f r e s e a r c h on m a n o e u v r a b i l i t y which have t a k e n p l a c e h i t h e r t o , v i z i by i n v e s t i g a t i n g the f o r c e s a c t i n g on the s h i p , and by o b t a i n i n g more d i r e c t l y a c t u a l d a t a by o b s e r v a t i o n o f the motion.of f r e e - r u n n i n g models and r e a l s h i p s .

However, the f o u r i n d i c e s o f m a n o e u v r a b i l i t y , K , Tj^ , , T j , obtained from s t e a d y t u r n i n g and

s i n u s o i d a l s t e e r i n g , d e s c r i b e the t u r n i n g motion, but do not g i v e any i n f o r m a t i o n about tho d r i f t motion of the s h i p . Hence i n a n a l y s i n g the f o r c e s which cause i t i t i s probably n e c e s s a r y to c o n s i d e r not o n l y the n a t u r e o f the s h i p ' s motion, but a t the same time a l s o the d r i f t motion which always accompanies tho t u r n i n g motion. I n f a c t , i f we s e p a r a t e tho f o r c e o f i n e r t i a , t h e r e a r e s i x c o e f f i c i e n t s which d e s c r i b e the f o r c e s a c t i n g on a s h i p and t h e s e f o r c e s cannot be determined from f o u r c o e f f i c i e n t s . Hence we attempt to d e s c r i b e the d r i f t motion by tho same procedure as t h a t by which we obtained e q u a t i o n ( 2 ) , which d e s c r i b e s the t u r n i n g motion, from the o r i g i n a l e q u a t i o n ( l ) ,

mentioned i n the i n t r o d u c t i o n . I . e . i f we c o n s t r u c t an e q u a t i o n i n ^ by e l i m i n a t i n g 0 from ( l ) , we o b t a i n an e q u a t i o n of t h a same type, w i t h two new i n d i c e s o f m a n o e u v r a b i l i t y a s c o e f f i c i e n t s .

Cytaty

Powiązane dokumenty

Spotkanie urozmaicił występ Zespołu muzycznego Cieszyńskiego Centrum Kultury oraz recytacje u- czennic Zespołu Szkół Zawodowych w Cieszynie.. Udział w spotkaniu

This was shown by applying retentostat regimes, both to a non- producing yeast strain (CENPK113-7D) and an engineered succinic acid (SA) producing yeast strain (SUC632), whereby

IN „SCHIP EN WERF” IS OPGENOM EN HET MAANDBLAD „D E TECHNISCHE KRON IEK”. VIERENTWINTIGSTE

Na czoło tych ostatnich w ysu w a się konieczność ratow ania i zabezpieczenia dokum entów geod e­ zyjnych (mapy, dokum enty pom iarow e, operaty) istotnych z punktu

Six aqueduct canals for drinking water and irrigation in Edo (Kanda, Tamagawa, Aoyama, Mita, Senkawa and Honjo) also connected to garden ponds with diversions.However, kanda

The purpose of this paper is to investigate the effects of technology on commensality by presenting an experiment in which a toy robot showing non-verbal social behaviours tries

Wyjaśnienie  zwrotu  obscura luna  przywodzi  Augustynowi  jak  widać  na 

rocznicy powołania U niw ersytetu będzie zain­ westowanie w organizację nadzw yczajnej serii sesji, konferencji, zjazdów i sym pozjów naukowych; serii, której w