• Nie Znaleziono Wyników

Tests for Ratio of Two Means in Case of Small Areas

N/A
N/A
Protected

Academic year: 2021

Share "Tests for Ratio of Two Means in Case of Small Areas"

Copied!
9
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S

F O L IA O E C O N O M IC A 194, 2005

K r y s t y n a P r u s k a *

T E ST S FOR R A I I O OF TW O M E A N S IN CASE OF SM A LL AREAS

Abstract

T h e re la tio n s betw een ch aracteristics for su b p o p u la tio n s an d for th e w hole p o p u latio n are very im p o rta n t in sm all area investigations.

In the p a p e r there are p ro p o sed testing p ro ced u res fo r verification o f hyp o th esis which says th a t there is n o difference betw een the ra tio o f sm all a re a m ean and p o p u la tio n m ean for analysed v ariab le and auxiliary variable. T h e p ro p e rties o f one considered p ro ced u re arc investigated w ith the use o f sim u latio n m ethods.

Key words: sm all area, synthetic estim ato r.

I. IN T R O D U C T IO N

In sm all area statistics estim ation o f unknow n p aram eters fo r su b ­ p o p u la tio n is con sidered as general p roblem . D ifferen t e stim a to rs are constructed and applied and their pro perties arc investigated. T h e synthetic estim ato rs are considered, too. They can be used w hen som e assum ptions arc true. In this p ap er we consider possibility o f verification w hether these assum ption s are fulfilled.

II. S Y N T H E T IC E S T IM A T O R S

In statistical literature different definitions o f synthetic estim ators are given (see: D ol, 1991; B racha, 1996; S ärndal et al., 1997; K o rd o s, 1999, D om ański and P ru sk a, 2001). G enerally, their constru ctio n is possible w hen som e relations betw een param eters for subpo p u latio n and p o p u la tio n are constant.

(2)

In the p ap e r there arc considered finite p o p u latio n only. W e will in troduce the follow ing notations:

Y - investigated variable, X - auxiliary variable,

T Y P - to tal value o f variable Y for p op u latio n , T X P - to tal value o f variable X for po p u latio n ,

T Y g - to tal value o f variable Y for stratu m g o f p o p u latio n , TX.g - to tal value o f variable X for stratu m g o f p o p u latio n ,

TYhe — to tal value o f variable У for stratu m g and sm all area h o f pop u latio n ,

7 X hg — to tal value o f variable X for stratu m g an d sm all area h o f po p u latio n ,

T Y ,,. — to tal value o f variable У for small area h o f p o p u latio n , w here g = 1, ..., G; h — l, ..., H and G is n u m b er o f s tra ta in the po p u latio n , H is num ber o f small areas in the p o p u latio n .

If we assum e (see D ol, 1991):

th en we can consider the synthetic estim ato r o f to tal value o f variable Y for small a re a h o f the follow ing form:

where Д, is estim ato r o f value Т ^ сге are different form s o f statistic Д, (see: D ol, 1991).

E stim a to r (2) can be used when assum ptions (1) are fulfilled. In em pirical investigations we ou g h t to verify w hether the con ditio ns are true. We m ay apply the estim ato r o f T X hg instead T X hg in fo rm u la (2).

0

)

G

T Y k. = 1 1 T X hg (2)

ÍU . F O R M U L A T IN G O F H Y P O T H E S IS

We can consider verification of possibility o f the use o f synthetic estim ator as the verification o f a suitable statistical hypothesis. S ynthetic estim ato r (2) is constructed for the pop u latio n which is divided into stra ta . A ssum ptions

(3)

(1) can be verified on the basis o f independent sam ples d raw n from each stra ta . All hypotheses which have the form:

я . П л ш П м m

09' Т Х . в Т Х * (- }

for д = 1, G an d for the fixed h from the set {1, H} against an altern ate hypothesis:

H i g : ~ H 0g (4)

can be verified analogously as hypothesis:

h ° ' ' W =1 Л р j1 Л мо^ (5)

against hypothesis:

H i : ~ H 0, (6)

where T Y M0 and T X M0 are to tal values for variables Y and X for fixed sm all area.

In this p ap e r we will consider the following equivalent form o f hypothesis H n:

H o .ßrP = MrMO (7)

Mx p Hx m o

where ц УР, ц Хр> Hy m o, Hx m o are m eans for variables У and X for po p u latio n and for sm all area, respectively.

IV. T E S T P R O C E D U R E S

T est statistic fo r the verification o f hypothesis (7) can be ra n d o m variable:

Z = b - J ü ? - (8)

Л P л МО

o r its fu nction where Y P, X P, Y мо , X M0 are sam ple m ean s fo r variables У and X fo r p o p u latio n and for sm all area, respectively.

(4)

У MO ~ X m o X р - м о У P - MO j $ Y M O I T 2л MO ■j V2YP MO V N M O X 2P„M0 N P M O Y .___ У MO X р - м о л MO У P - M O I Sx m o у 2 ' MO Ь х р - м оV2

D eterm ining the d istrib u tio n of statistic Z is difficult when wc do not know the d istrib u tio n o f variables У and A".

N o w th e test p ro c ed ú re fo r verification o f h y p o th esis (7) will be proposed. In this p ro cedure the con ditio nal d istrib u tio n s (fo r fixed values o f statistics X u o , X p - M o or У m o, X ^p- m o respectively) o f the following

statistics are used:

Ur - -

77

, (

9

) and U x = — === —^ ^ —--- (10) I ß x M O У M O S X P - M O V N M O Y 2p„m o N P M O where

Y p m o, X p m o arc sam ple m eans for set which is difference between

p o p u latio n and small area and for variables У and X , respectively; Sx m o, Sx p- m o are sam ple variances for variable X fo r sm all area and for set which is difference between pop ulation and sm all area, respectively;

Symo, $yp - mo arc sam ple variances for variable У for small area and for set which is difference betw een population and sm all area, respectively;

N M O is the n u m b er o f these elem ents o f sam ple from p o p u latio n , which belong to sm all area;

N P M O is the num ber o f these elem ents o f sam ple from p op ulatio n, which do no t belong to small area.

T h e test algorithm is the following:

1. We draw independently iVP-element sam ple from the whole population. T h e elem ents o f the sam ple belonging to sm all area are the sam ple for the sm all area and the elem ents w hich do n o t belong to sm all area are the sam ple for set which is difference between p o p u latio n an d small area, respectively.

2. W e determ ine the value o f the follow ing statistics: I MO, 1CP - M0,

Sx m o, $х р- м о> У m o, У р - м о , $y m o, Sy p- m o, U x, U y

-3. We verify w hether /их/ ^ 1,96 or / uľ/ > 1,96 where ux and uY are values o f variables Ux , U Y, respectively. I f one inequality is n o t tru e then we reject hypothesis (7).

(5)

W e can notice that:

P(/Uxl > 1.96 or / Url > 1.96) = P(IUXI > 1.96) + P(IUrl > \ . % ) - P ( / U x/ > l . % and / Uy / > 1.96) < P ( / U x/ > 1.96) + P ( / U r/ > 1.96) = 0.05 + 0.05 = 0.1,

when we con sider the probability for suitable cond itio n al d istrib u tio n o f statistics U X and UY which are asym ptotic norm ally.

If we know to tal values o f auxiliary variable for p o p u latio n and small area (i.e. wc know T X P and T X M0) then we can use the follow ing random variable as test statistic:

Y ___t x mo y r МО гт ч у * pMO * Л. p- Mn (1 1) / Symo T X l t o Ьу р - моV2 v N M O T X 2P- MO N P M O

A sym ptotic d istrib u tio n o f statistic (11) is no rm al N ( 0; 1). In this case rejection region o f hypothesis (7) is determ ined in th e classic way. W e reject hypothesis w hen the value o f statistic (11) calculated on the basis o f sam ple belongs to the rejection region.

V. M O N T E C A R L O A N A L Y S IS O F P R O P O S E D T E S T P R O C E D U R E P R O P E R T IE S

M o n te C arlo analysis deals with the first presented test pro ced ure, it m eans the case w hen the to tal values o f auxiliary variable for p op ulation and small area are unknow n.

T h e aim o f the conducted experim ents was d eterm ining the num b er of cases in w hich the hypothesis (7) was rejected in 1000 rep etitio n s for fixed d istrib u tio n o f po p u latio n .

T h e experim ents were conducted in the follow ing way:

1. C re a tin g the p o p u la tio n consisting o f 50 000 values o f variable ( Y , X ) w hich are generated from fixed d istrib u tio n o r two fixed dist­ ributions.

2. D eterm in in g the sm all area which consists o f 5000 elem ents. 3. D raw ing и-elem ent sam ple from p o p u latio n (n = 2000, 2500).

(6)

4. V erification o f hypothesis (7) by m eans o f test w hose statistics are variables (9) and (10).

5. C o n d u ctin g 1000 repetitions o f stages 3. and 4.

6. D eterm in ing the nu m b er o f cases in w hich the hypothesis (7) was rejected in 1000 repetitions.

T he results o f M o n te C arlo experim ents arc presented in fa b le s 1. and 2.

T able 1. N u m b e r o f cases o f rejection o f h y p o th esis (7) a m o n g 1000 experim ents fo r the sam e d istrib u tio n o f (У, X ) in p o p u la tio n a n d sm all area

No. Distribution of variable (Y, -Ю Size of sample from population Minimal size of sample from small area Average size of sample from small area Maximal size of sample from small area Number of rejection of //» 1 N (m , I ) , m — [100; 20 2000 156 200 251 123 1 = TOO 36“ 2500 207 250 299 113 36 16 2 N (m , £ ), T m = [10; 20 2000 156 200 251 136 E =Г1 0,8 2500 207 250 299 140 L0,8 l j 3 X ~ N ( 10; 1) 2000 149 200 247 0 Y = m 2500 196 250 305 0 4 X ~ N (60; 12) 2000 149 200 247 0 Y = [X] 2500 196 250 305 0 5 X Y = x + z 2000 161 200 252 0 Z ~ N / 5 v 5N 2500 188 250 312 1 \ 2 10,

1

6 X ~ P 10 У = X + Z 2000 158 200 253 0 Z ~ N is 2500 209 250 293 0 \ 10

J

(7)

T able 2. N u m b e r o f cases o f rejection o f hyp o th esis (7) a m o n g 1000 experim ents fo r the d ifferen t d istrib u tio n s o f (У, X) in p o p u la tio n an d sm all area

No. Distribution of variable (У, X) in small area Distribution of variable (У, X) out of small area Size of sample from popu­ lation Minimal size of sample from small area Average of sample from small area Maximal size of sample form small area Number of cases of //„ 1 N (m , I ) , N (m , 1 ), m 1 — [120; 25 m 1 = [1 0 0 ; 20 2000 156 200 251 120 1 = 100 3 6 ' [ 1 0 0 3 6 ' 2500 207 250 299 113 1_3 6 16 I 36 1 6 . 2 N(m , £ ), N(m , I ) , „ 7 _ Ш = [12; 21 m r = [10; 20 2000 156 200 251 1000 ľ = '1 0,8" i - Г * ( 2500 207 250 299 1000 .0 ,8 1. L0,8 1. 3 X = U - 1-2 У = У + 1 X ~ N ( 1 0 ; 1) 2000 149 200 247 1000 U ~ N (10; 1) Y - [ X ] 2500 196 250 305 1000 V= [{/] 4 X = U + 2 Y V + \ X ~ N (60; 12) 2000 149 200 247 0 U ~ N (60; 12) *■< II 5 2500 196 250 305 0 V= 1Щ 5 X = U + 2 Y V + \ X ~ P S U ~ P > Y = X + Z / 5 V5N 2000 161 200 252 1000 V= u + z z ~ n( - ; — 1 in 2500 188 250 312 1000 (5 ■J 5\ Z ~ N [-'■ — I \ 2 1 0 / 6 X = U + 2 Y = V + \ V ~ P , a У = X + z / 5 y / } \ 2000 158 200 253 1000 K = U + Z z ~ n( - ; — ) 2500 209 250 293 1000 (5 . \ 2 1 0 / Z ~ N ---- j \2 1 0 /

(8)

W e can notice th a t the considered test procedúre does not reject hypothesis (7) o r rejects in a few cases am ong 1000 repetitions when hypothesis is true. If hypothesis (7) is no t tru e and distrib u tio n s o f investigated variable in populatio n and small area differ significantly then hypothesis (7) is rejected in all repetitions for a given case. If the distributions d o not differ significantly th en hypothesis (7) is rejected in som e repetitions or in no repetitions. Such results are no t typical for significance tests. T h e proposed test procedúre can be m odified and its properties ou g h t to be investigated.

VI. FIN A L R E M A R K S

Different m ethods for the verification o f hypothesis ab o u t relations between to tal values for su b p o p u latio n and p opu latio n can be co nstructed. Some propositions arc presented in the paper, another one (using b o o tstrap m ethod) is given in the P ru sk a ’s pap er (2002). T he problem s, considered in the p ap e r, arc im p o rta n t in investigations o f small area. It seems neccssary to co n tin u e th e conducted analyses.

R E F E R E N C E S

B rach a Cz. (1996), Teoretyczne podstaw y m eto d y reprezentacyjnej, P W N , W arszaw a.

D oi W. (1991), S m a ll A rea Estim ation. A Synthesis between Sam pling T heory a n d Econom etrics, W o ltcrs N o o rd h o ff, G ro n in g e n .

D o m a ń sk i Cz., P ru s k a К . (2001), M e to d y sta ty s ty k i m ałych obszarów, W yd. U niw ersytetu Ł ódzk ieg o , Ł ódź.

K o rd o s J. (1999), P roblem y estym acji d an y ch d la m ałych obszaró w , W iadom ości S ta tystyczn e, 1, 85-101.

P ru sk a K . (2002), S taty sty czn a w eryfikacja m ożliw ości zasto so w an ia esty m a to ró w syntetycznych w b ad an iac h m ałych obszarów , referat w ygłoszony w Ł agow ie n a konferencji „ S taty sty k a re g io n a ln a w jednoczącej się E u ro p ie ” (2-5.09.2002).

S ärn d al C ., Sw ensson B., W retm an J. (1997), M o d el A ssisted S u rvey Sam pling, Springer-V erlag, N ew Y ork.

(9)

Krystyna Pruska

T E S T Y D L A S T O S U N K U D W Ó C H Ś R E D N IC H W P R Z Y P A D K U M A Ł Y C H O B S Z A R Ó W

Streszczenie

R elacje pom iędzy ch arak te ry sty k am i p o d p o p u lac ji i całej p o p u lacji są b a rd z o ważne w b ad an iac h m ałych obszarów .

W pracy tej zaproponow ane są procedury testowe, służące d o weryfikacji hipotezy o równości stosunku średniej d la m ałego obszaru d o średniej z populacji d la analizow anej zmiennej i zmiennej pom ocniczej. W łasności jednej z zap ro p o n o w an y ch p ro ced u r b ad an e są za p o m o c ą m etod sym ulacyjnych.

Cytaty

Powiązane dokumenty

funkcjonującego modelu świata każdej istoty żywej: musi istnieć struktura umożliwiająca zachowanie się tych istot zgodne z ich dą­ żeniem do przetrwania, do

In the Krasnoyarsk region complex non-carcinogenic risks (on the danger index) of res- piratory diseases, the central nervous system dis- eases, endocrine system

sek, jak bardzo rozciągiem stało się pojęcie podmiotowych praw publicznych i jak jedne sądy uznają prawo podmio­ towe tam, gdzie inne je negują. Klasycznym w niemieckiej

Przy stosowaniu sprawdzianów nieprzypadkowości zdarza się, że mamy kilka (powiedzmy k) ilorazów sprawdzeniowych otrzymanych z prób niezależnych (o równych liczbach stopni

ded table of t-distribution covering even numbers of degrees of freedom from 30 to 100 has been prepared by Elizabeth M. The table does well for two-sided test of significance,

In the preceding paper [1] we did not give the explicit form of the expectation of mean square for interaction AB for the mixed general model I k J (any I and any J &gt; 2) in

The effectiveness of screening for major cardiovascular risk factors in the population of small towns in Poland.. Eur J Transl

It is clear from our construction of the stationary Gaus- sian solution of the Schr¨odinger equation from classical modes shows that the classical and the quantum prob- lems