• Nie Znaleziono Wyników

Development of in/outflow boundary conditions for MPM simulation of uniform and non-uniform open channel flows

N/A
N/A
Protected

Academic year: 2021

Share "Development of in/outflow boundary conditions for MPM simulation of uniform and non-uniform open channel flows"

Copied!
9
0
0

Pełen tekst

(1)

Delft University of Technology

Development of in/outflow boundary conditions for MPM simulation of uniform and

non-uniform open channel flows

Zhao, Xuanyu; Bolognin, Marco; Donfang, Lian; Rohe, Alexander; Vardon, Phil

DOI

10.1016/j.compfluid.2018.10.007

Publication date

2019

Document Version

Final published version

Published in

Computers & Fluids

Citation (APA)

Zhao, X., Bolognin, M., Donfang, L., Rohe, A., & Vardon, P. (2019). Development of in/outflow boundary

conditions for MPM simulation of uniform and non-uniform open channel flows. Computers & Fluids, 179,

27-33. https://doi.org/10.1016/j.compfluid.2018.10.007

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

Green Open Access added to TU Delft Institutional Repository

‘You share, we take care!’ – Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher

is the copyright holder of this work and the author uses the

Dutch legislation to make this work public.

(3)

Computers and Fluids 179 (2019) 27–33

ContentslistsavailableatScienceDirect

Computers

and

Fluids

journalhomepage:www.elsevier.com/locate/compfluid

Development

of

in/outflow

boundary

conditions

for

MPM

simulation

of

uniform

and

non-uniform

open

channel

flows

Xuanyu

Zhao

a,∗

,

Marco

Bolognin

b

,

Dongfang

Liang

a

,

Alexander

Rohe

c

,

Philip

J.

Vardon

b

a Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

b Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft GA 2600, the Netherlands c Deltares, Delft HV 2629, the Netherlands

a

r

t

i

c

l

e

i

n

f

o

Article history:

Received 2 May 2018 Revised 20 September 2018 Accepted 5 October 2018 Available online 6 October 2018

Keywords:

Material point method

Inflow/outflow boundary conditions Open channel flows

Free overfall

a

b

s

t

r

a

c

t

Thispaperdescribesthedevelopmentandapplicationofinflowandoutflowboundaryconditions(BCs) forthematerialpointmethod(MPM)inordertosimulatefluidflowproblems.Thiscorrespondsto ve-locityandpressurecontrolledBCs.DuetothecoupledLagrangianand Euleriandescriptionofthefluid motioninMPMitisnecessarytoaddandremovematerialpoints,withappropriatekinematicproperties, toandfromthecomputationaldomain.Thenewly-developedBCshavebeenusedtosimulateuniform openchannelflowandthephenomenonoffreeoverfallinopenchannels,whichistransientconditions leadingtonon-uniformflowduetoasuddenbedleveldrop.Itisshownthatthenumericalresults pre-dictwelltheflowgeometryincludingenddepthratio,pressuredistributionandaccelerations,therefore thevelocitiesanddisplacements.

© 2018ElsevierLtd.Allrightsreserved.

1. Introduction

Freesurfacefluidflowsarecommonproblemsinmanyfieldsof engineering. Severalarbitrary Lagrangian–Eulerian(ALE) methods havebeendevelopedforfluiddynamicsinrecentyears(e.g.[1–4]) to simulate free surface flow. The material point method (MPM)

[5]isaspecificvariantofanALEmethod.

MPMisawell-suitedmethodforthesolutionofflow-like prob-lemsinvolvingarbitrarylargedeformationsincontinuum mechan-ics[4,6–10].Inparticular,MPMiswellsuitedforthecoupled sim-ulation of fluid and solids, where large deformation andhistory trackingofvariablesisrequired.

The position of the material is traced by the material points (MPs)thus nospecific procedureisneededtocaptureortotrace interfaces. MPs can move througha fixed background mesh dur-ing the simulationand, consequently, in orderto model continu-ous flows,MPsmustbe insertedtoand/or removedfromthe do-main at boundaries. This paper describes the development, veri-fication andvalidationofvelocity-controlled inflowand pressure-controlledoutflowBCsforMPM.Theimplementationhasbeen un-dertakenintheAnura3Dsoftware(www.anura3d.com).

Originally, the modelling approach to simulate quasi-steady in/outflow conditions in MPM was to use large reservoirs in

or-∗ Corresponding author.

E-mail address: xz328@cam.ac.uk (X. Zhao).

dertosupplythedomainofinterestwithMPs (e.g.[11–13]).This requiredalargereservoir,increasingthecomputationaleffort,only approximated steady conditions andlimited the time able to be simulated.Being ableto prescribe in/outflowBCsallows: (i) true steady-state conditions; (ii) a large reduction of computational cost; (iii) the simplification of the geometry; and (iv) improving thegeneralapplicabilityofthemethod.

The proposed algorithm allows the enforcement of different upstream and downstream conditions. Forthe purpose of model validation,the paperapplies thenewBCs formodellingeventual steady-statesubcriticalflow inanuniformopen channel andfree overfall, comparing the results with experimental measurements andanalyticalsolutions.

Thispaperisstructuredasfollows:inSection2thetheoretical andnumerical formulationof MPM as implemented in Anura3D isbrieflyintroduced;Section3discussesthedevelopmentand im-plementationoftheproposedin/outflowBCs;inSection4thenew algorithmisverifiedbysimulatingasubcriticalflowthat requires propersimultaneousimpositionofupstreamanddownstreamBCs; inSection 5thenumericalresultsofafreeoverfallfloware com-paredwithexistinganalytical andexperimental resultsas valida-tion;andtheconclusionsarepresentedinSection6.

https://doi.org/10.1016/j.compfluid.2018.10.007 0045-7930/© 2018 Elsevier Ltd. All rights reserved.

(4)

28 X. Zhao et al. / Computers and Fluids 179 (2019) 27–33

2. Theoreticalandnumericalformulation

2.1.Governingequations

The strong form partial differential governing equations that describethe motion offluidsare conservation equationsof mass (Eq. (1)) and momentum (Eq. (2)). These are more commonly knownasNavier–Stokesequationsincomputational fluid dynam-ics:

∂ρ

t +

ρ

·v=0 (1)

ρ

a=·

σ

+

ρ

g (2)

where

ρ

is the fluiddensity, t istime, vis the velocity, ais the acceleration,

σ

istheCauchystresstensorandgisthebodyforce exerted,forexample, bygravity. The Cauchy stress tensorcan be decomposedin

σ

=p+

σ

devwherepisthefluidpressureandthe subscript (dev) indicates the deviatoric component of the Cauchy

stresstensor. Thedynamicviscosity

μ

isintroduced intothe for-mulationbydefining

σ

dev=

μ

ε

˙dev,where

ε

˙dev istheshearstrain rate.

For weakly compressiblefluids, the massdensityis relatedto thefluidpressureas:

∂ρ

t = 1 c

p

t ; c=



K

ρ

(3)

wherec isthecompressionwave velocityandK isthebulk mod-ulusofthefluid.

In MPM, the nonlinear convective term is not present (in

Eq.(2)) asaresultoftheLagrangian framework[14].Instead,the positionsof theMPs are updated each time step. Heateffects or anysource of thermal energyis disregarded and the mechanical workistheonlyconsideredsource/sinkofenergy.

2.2.Numericalalgorithm

The Navier-Stokes equationsare discretized in spaceandtime usingstandard finiteelement methodtechniques. AmixedGauss algorithm isused in which integration isat the elements’ Gauss point locations for fully filled element, and at MPs for partially filledelements,e.g.atfluidsurfaces.Thisleadstosmootherstress fieldsandmitigatessomeeffectsofgridcrossingerror[6].Explicit timeintegrationandtetrahedralelementswithlinearshape func-tionsareusedhere.

MPMrequiresasecondsolutiondomaindiscretizationthat con-sistsofaclusterofMPs,eachonewithafixedmass.Itisassumed thateach MPcorresponds toa representativevolumeof the con-tinuumbody



,withtheinitialvolumeV0

p,wherethesuperscripts

(0)indicates thetimestep,thesubscript(

p) indicatestheMP

val-uesanditiscalculatedas:

V 0 p = 1 n ep  de d



≈ 1 n ep neq  q=1 w q

|

J

(

xq

)

|

(4)

wherenep isthenumberofpointsperelement,neq isthenumber

ofintegrationpoints(i.e. Gauss pointsorMPs) perelement, d



e

isthevolumeassociatedwiththeethtetrahedralelement,sothat



=nel

el=1



el, wq isthe localintegration weightassociated with

theintegrationpoint(q),JistheJacobianmatrix,xqistheposition

vector.

Information canbe mappedbetweenpointsandnodes by lin-earinterpolationwiththesameshapefunctionsusedforthe map-pingbetweenglobalandlocalcoordinatesystems.Thisprocess is doneinfullyfilledelementstomapinformationtotheintegration pointslocation priorto numericalintegration.Forexample,when

mappinginformationbetweennodesandMPs,adisplacementfield

ucanbewrittenas:

up

(

xp

)

nn

 j=1

N j

(

xp

)

uj

(

t

)

(5)

in which the subscript (j) indicates the nodal values, nn is the

numberofnodesperelement andNistheinterpolation function (fromthecombinationoflinearshapefunctionsofthenodes eval-uatedinglobalcoordinatesystem).Thesameinterpolationcanbe appliedforotherquantities(i.e.acceleration,mass,stress,etc.).

Thedetailsofthemathematicalframework,includinga descrip-tion ofthe computational cyclecan be found in, e.g., [15]. Using theconstitutiveequation(Eq.(3))andthestandardfiniteelement method (FEM) spatial discretisations, the weak form of the mo-mentumbalanceequation(Eq.(2))canbewrittenas:

Mtjatj=F int,t

j +F

ext,t

j (6)

whereMisthelumpedmassmatrix,Fint andFextaretheinternal andexternalnodalforcesandaisthevectorofnodalacceleration. Thesearerespectivelydefinedas:

Mtj= ne j  e=1 neq  q=1 N j

(

xq

)

m q





t (7) Fintj ,t= ne j  e=1 neq  q=1 BTj

(

xq

)

σ

qV q





t (8) Fextj ,t= ne j  e=1 neq  q=1 m qN j

(

xq

)

g





t+ fextj





t (9)

whereBisthestrain-displacementmatrix,fextj arethe prescribed

boundarynodaltractions andmq isthe massassociatedwiththe

integration point in consideration. The general MPM explicit nu-merical algorithmforweakly compressibleNavierStokes solution isasfollows:

1. Map the information carried by the MPs to the background meshusinglinearshapefunctions;

2. Determinethelumped massmatrix(Eq.(7)),theinternalforce

Fint (Eq. (8)) and external force Fext (Eq. (9)) vectors at the nodes;

3. Computethe nodal acceleration field from(Eq.(6)), imposing zeroaccelerationattheinflownodes(seeFig.1a);

4. MPvelocitiesareupdatedusingthenodalaccelerationas:

vt+1 p =vtp+



t nn  j=1 N j

(

xp

)

atj (10)

5. TheMPpositionsareupdated:

xt+1 p =xtp+



t nn  j=1 N j

(

xp

)

vtj+1 (11)

6. TheincrementalMPstrainsarecalculatedas:



ε

t+1

p =B

(

xp

)

utj+1 (12)

7. Thestressesarederivedfromtheconstitutiverelation(Eq.(3)); 8. DeterminethedensityofMPs,whichisusedtoupdatetheMP’s

volumes,as:

ρ

t+1 p =

ρ

t p 1+



ε

t+1 vol,p (13)

(5)

X. Zhao et al. / Computers and Fluids 179 (2019) 27–33 29

Fig. 1. Illustration of the BCs: (a) Inflow BC, with inflow elements (green) and (b) outflow BC, with outflow elements (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Inordertosolvethesystemofgoverningequations,itis possi-bleto distinguishthree kindsofBCs:essential (Dirichlet, acceler-ation), natural(Neumann,force)oracombinationofthetwo(e.g. Newton/Robin).Otherstatevariables,i.e.acceleration,velocitiyand pressureinthiscase,alsoneedtobeinitialised.Further,strainand pressuresmoothingproceduresareusedtomitigatethestress os-cillationsduetogridcrossing[16].

Toensurethestabilityoftheexplicitscheme,thecriticaltime stepshouldsatisfytheso-calledCourant–Friedrichs–Levy(CFL) con-dition[17],meaningthat thetimeincrementshouldnotexceeda certainvaluedependingonmaterialdensity,stiffnessandthe min-imumsizeoftheelements.



t crit= l e

c p

(14)

where



t is the critical time step, le is the minimum length of

the element. In our study, a reduction factor

α

Courant is

intro-duced in the above expression to obtain the time step size (i.e.



t=

α

Courant×



tcrit),where

α

Courantisfixedas0.98inourstudy.

3. In/outflowboundaryconditions

Fluid flows are problems of practical interest for many engi-neering applications. Their simulation requires accurate and effi-cient numerical methodsin versatilenumerical toolsthat can be furtherusedtostudyrealindustrialproblems[18].As opposedto solid mechanicsproblems,inproblemswhichconsiderfluid flow-ing,massgenerallyentersandleavesanareaofinterest.For exam-ple,thismaybethe flowovera weirordykeovertoppingwhere theareaofinterestisfixedaroundthestructure(theweirordyke) and water flows into and out of the area. This may also apply in,forexample,porousmediaorinerosionalordepositional pro-cesses.Therefore,tomakeanefficientcomputationalsolution,BCs allowing this mass to enter or leave the domain under realistic conditionsareessential.Thenovelcontributionhereisthe

descrip-tion of well-posed problems ableto simulateflows, with special emphasisonBCs.

BCsexist innature asnaturalboundaries. Due mainly to lim-itations in computational power, large domains are often trun-cated andconfined between artificial boundaries (ABCs). The lo-cationof therequired ABCscan be fabricated by intuition, expe-rience,asymptoticbehaviourandnumericalexperimentation[19]. Clearly, the minimal necessary requirement of ABCs isto ensure thesolvabilityofthetruncatedproblem,butthisdoesnot ensure aphysciallyreasonableresponse.

Tosimulatea segment ofa flow, theBCs mustallow mass to enterandleavethe domainatapredefinedflowrate,andto con-trolthe pressure imposed from the water outsidethe boundary. Fora solvablegoverningequation, all boundariesmustonly have oneoftheseABCs.However,thiswouldnotnecessarily(i) impose aprescribedflow,or(ii)ensuremassentersandleavesthedomain betweentimesteps.Toensureasegmentofflowisachieved,a spe-cificcombination of ABCs to solve the governing equation along withastrategy on howto consistentlyadd andremove mass(to ensuremasscontinuityandthussatisfyingEq.(1)isneeded.These areheretermedinflowandoutflowBCs.

Oneofthe BCsmust controlthe kinematics,i.e.fix the accel-erationorvelocity.Ifboth theinflowandoutflowconditions con-trolkinematics,physicallyimpossiblesituationsmayarise,e.g.not enoughmassinthedomaintosatisfytheABC,thiscouldbe con-sideredto beover-defined.IfneitherBCscontrolsthekinematics, theproblem isnot well-posed. Many flow segments finishin ei-thersubcritical hydraulic conditionsor zeropressure conoditions andthereforeapressureboundaryismoreappropriateforthe out-flow boundary.Therefore, theinflow boundary hasbeen selected tocontrolthekinematics.

Asteady inflow is considered here forthe inflow boundaries, althoughitwouldbestraightforwardtoupdate thisprocedurefor atemporallyvaryinginflow.Afixedpressureisconsideredforthe outflowboundaries; againit would be straightforward to update thisprocedureto changeintime. Toconsistentlyadd andremove mass, an ad-hoc element layer is attached to the computational domainwheretheABCsareapplied.

The steadyinflow BC,i.e. constantvelocity and zero accelera-tion,isappliedtotheboundaryshownbythedottedlineinFig.1a. Thead-hoc element layer,called hereinflowelements(shown in greeninFig.1a),isaddedtothecomputationaldomain(shownin blue).Atthebeginningofthecomputationalcycle,MPsareplaced in the inflow elements with appropriate Initial Conditions (ICs), i.e.theprescribedvelocityandzeroacceleration.Theinflownodes that are shared withthe elementsof the computational domain (highlightedin Fig.1a by red ellipses)havea prescribed acceler-ation(zero)so astomaintainthe prescribedvelocity field atthe boundary,appliedtothesolutionofthegoverningequationby up-datingainstep3ofSection2.2.Whenaninflowelementisempty, newMPs will be introduced in the inflowelements atthe same localposition asmaterial which is initially discretized inside the domain,i.e.the Gausspoint locations.Since themassoftheMPs isinitializedaccordingtothe initial(inflow)element volumeand it is constant throughout the calculation, it is straightforward to imposeavelocitysuchthattheMPsmovebythelengthofone el-ementbeforeanewsetofMPscanbeintroduced,i.e.ateverynth

timestep,definedas:

n =



L

v0



t i

(15)

where



Listheelementsizeindirectionparalleltotheprescribed velocityvector,v0istheprescribedinputvelocityand



t

iistheith

timestepsize.

Inorder to impose on the outflowBC, a fixed pressure is re-quired at the boundary. This is achieved by fixing the external

(6)

30 X. Zhao et al. / Computers and Fluids 179 (2019) 27–33

Fig. 2. (a) Computational mesh of a rectangular channel and application of in/outflow BCs for the simulation of a subcritical flow. Representation of the fluid flow converging to a steady solution enforced by the downstream BC: (b) Pressure field; (c) Velocity field at different time steps.

forcesatthenodesofthebackgroundgridattheboundary.Again astrategyofremovingmassisneeded:MPsareremovedfromthe computationaldomainassoon astheyenter anoutflowelement. Ifonedesirestomodeltheoutflowofasteadilyflowingfluid,itis reasonabletoassumeahydrostaticdistributionofthepressureon theoutflownodeswhensolvingthemomentumbalanceequations, althoughanypressuredistributioncouldbeapplied.

For the outflow BC, additional elements, called outflow ele-ments, are also introduced (Fig. 1b). The fixed pressure BCs are assignedonthe nodes sharedwiththe computational domain in step2ofSection 2.2.As soonasaMPentersan outflowelement itisremovedfromthecomputation.Thetargetlevelofaccuracyof thenumericalsolvercanbesystematicallyachievedadjustingtime andspacediscretization.

4. Verificationofboundaryconditions

In ordertoverifythe applicationofthein/outflowBCsa sim-plecaseis simulated.Aninitially empty domainis considered of 0.15× 0.15× 0.01 m, in x-, y-, z-direction, with frictionless walls, a prescribed horizontal inflow velocity of1.0m/s anda zero ac-celerationalong the inflow boundaryasindicated in Fig. 2a.The three-dimensional domain is discretised by linear tetrahedral el-ementsand has a thickness of one element with only the front face shownin Fig. 2. A band of outflow elementsis attached to the right side of the computational mesh with a prescribed hy-drostaticpressure. Outflow elementsandtheir BCsare only acti-vatedwhen MPsenter theadjacent elements.The wateris mod-elledby a Newtonian compressible constitutive model. It has an initialdensity

ρ

0 = 1000kg/m3, dynamicviscosity

μ

= 1× 10−6

kPa· sandbulkmodulusK=20,000kPa.Thewaterbulkmodulus wasreducedby a factor of100 fromreality in orderto increase thetimestepasanexplicitintegrationschemeisadopted.Itwas pointedout inLiang[20] that,aslongasthemodelledwaterhas aspeedofsoundover10timeslargerthanthemaximumflow ve-locity,theincreasedcompressibilityofwaterdoesnotsignificantly affecttheresults.Theminimumtimestepisobtainedasdescribed inSection2.2.

Fig.2showsthesimulationresultsintermsofpressure(b)and velocity(c)atdifferenttimesteps.Afteraninitialtime intervalof transientmovingwaterfront,asteadyuniformflowisachieved.It isworthmentioningthattheprescribedtractionBCattheoutflow boundarynodescausesunreasonablyhighpressuresnearthe

bot-tomwhentheflow isnotyetfullydeveloped,whichisespecially evidentat0.15sand0.20s.Thisiscausedbytheprescribed hydro-staticpressure whichis initiatedbased onthe final waterdepth. Asthecalculationcontinues,andtheoutletwaterlevelkeeps ris-ing,thisinconsistencyvanishes.Thisphenomenoncanbe avoided ifthehydrostaticpressure attheoutflowelementswouldbe up-dated duringcalculationbased onthe waterdepth.However, the purpose of presentsimulation is to verify the capabilitiesof the newly proposed in/outflow BCs.After 0.8s it can be seen that a constantvelocity,ahydrostaticpressureandahorizontalfree sur-faceisachieved,whichprovesthecorrectnessoftheappliedBCs.

5. Validationbenchmark

In order to validate the theoretical formulation and numeri-cal implementation of in/outflow BCs, a well-known open chan-nelflow problemhasbeensimulated.Thisisthesituationwhere a fluidflow encountersa sudden dropatthebed, alsoknown as afreeoverfall. Thefreeoverfallsimulationischosen asvalidation benchmark forthe in/outflow BCssince the rapid change inbed geometryisconsideredastringentvalidationcase.

5.1. Existingfreeoverfallstudies

Rouse[21]measuredthepressuredistributioninasteady hori-zontalrectangularfreeoverfallusingwallandbedpiezometers.It wasobservedthatafreeoverfall inrectangularchannelscould be usedasa simpleflow measuringdevice that requiredno calibra-tion. Since then,due toits practical importance, many investiga-tors havestudied free overfall invarious channels(e.g., [22–24]). In[24],waterwasprovidedfromaconstantheadtanksuppliedby apumpandwasmeasuredbymeansofacalibratedorificemeter locatedinthesupplyline.Attheendofthechannel,thesidewalls werecontinuedbeyondthebrinksothatthenappe wasconfined between the side walls. The watersurface profile was measured by means of a point gauge. The pressure distribution atthe end section,aswellasintheupstreamregion,wasmeasured.

Whenthefreeoverfallenters theair,thereisnoreversecurve inthe watersurfaceuntil it strikesthe bottom ata lower eleva-tion.Accordingtothemomentumconservationlaw,providedthat noexternalenergyisaddedto thesystem,the watersurfacewill seekitslowestpossibleenergyconfiguration.Thetheoretical flow depth for parallel flows with a rectangular cross-section is then

(7)

X. Zhao et al. / Computers and Fluids 179 (2019) 27–33 31

Fig. 3. Free overfall problem.

Fig. 4. Computational mesh of a rectangular channel for free overfall simulation. The in/outflow BC elements are highlighted respectively in green and red. At the overfall brink two cross sections (A-A and B-B) are investigated. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

equaltothecriticalflowdepthyc,asshowninFig.3[25],where Histhetotalwaterhead.Thecriticalflowdepthycisexpressedas yc= 3



α

(

v

¯hi

)

2/g,where

v

¯ isthemeanflowvelocityofthe

cross-section,hiistheinitialflowdepthand

α

isthevelocitycoefficient

whichcanbeapproximatelytakenas1.0.

Forthefreeoverfallflowandrapidlyvariedbedgeometry prob-lems,theactualsurfacefollowstheprofilerepresentedbythesolid bluelineinFig.3.Rouse[21]experimentallyfoundthatforalmost horizontalgeometries,thecomputedcriticaldepthbasedon paral-lelflowassumptionycisabout1.4timesthebrinkdepthyb.

Montes [26] proposed an analytical solution for the analysis of open channel flows near a discontinuity of the bed geometry (i.e. free overfall).Assuming the flow ineach terminal section to be nearly parallel withthe bottom, negligible viscous effects, ir-rotational flow and energy conservation, it is possible to use a potential-flowsolutionoftheinversetype(avariantofStokes in-verse mapping[27]). Thesolution ofthepotential-flowequations

wassolvednumericallybyafinitedifferencegrid(successive over relaxationmethod), andthe unknowns(free-surface location, ve-locityandpressurefields)were determinedbyan iterative proce-dure.Thissolutionisusedasreferenceforthenumericalsolution asshowninFigs.7and8.

ReadersarereferredtoDey[28]foracomprehensivereviewof theresearchonfreeoverfallinrectangularopenchannelsflows.

5.2.Computationalsetup

InFig.4,aninitiallyemptysectionofthecomputationaldomain of0.60× 0.21× 0.01minx-,y-,z-directionrepresentsa rectangu-laropen channel with a sudden discontinuity ofthe bed on the bottomrightpartrepresentedbyanadditionalsectionofthe com-putationaldomain of0.15× 0.28× 0.01 m inx-, y-, z-direction. A 0.15mdeepinflowBCwithhorizontalvelocityof1.213 m/sis pre-scribedasindicated ingreeninFig.4.All contactsurfacesofthe domainarefrictionless.Asinthesubcriticalflowcase(Section 4), thethree-dimensional domain is discretisedby lineartetrahedral elementsandhasa thicknessofone elementwithonlythe front faceshowninFig.4.AnoutflowBCisprescribedtotherightand bottomrightboundariesofthecomputationalmesh(outflow ele-ments showninred), withzerotraction prescribed atthenodes. The cross section for the analysisof the resultaround the brink areshowninFig.4.Frictionaleffectsare neglectedforallcontact surfaces.The material properties(e.g. density, viscosity andbulk modulus)are asassignedinSection4andthetimestepis calcu-latedasinSection2.2.Inthefollowingsection,thedependencies ofthesimulationresultsonthenumberofmaterialpointsper el-ementandmeshsizeareevaluated.

5.3.Results

5.3.1. Effectofmeshsizeandnumberofmaterialpointsperelement

Asensitivity study ofthe free overfall simulations by varying the computational mesh size and the initial number of material points per element (PPE) is given in this section. Figs. 5 and 6

show resultsof open channel flow simulations withinitial water depth of 0.15m and velocity of 1.213m/s. Three mesh sizes are used:0.03m,0.01mand0.005mwhenstudyingtheeffectofthe meshsize,and4PPEsareusedasfirstapproximation(Fig.5).

Itcanbeobservedthattherearefrequentpressurefluctuations whenusingfinermesheswhichareattributedtogrid-crossing er-rors. It is discussed in Guilkey et al. [29] and Al-Kafaji [6] that usinga finer meshcauses more frequentlymigration ofMPs be-tween elements andtherefore, the grid-crossing errors are more

(8)

32 X. Zhao et al. / Computers and Fluids 179 (2019) 27–33

Fig. 6. Comparison of open channel simulations with different PPEs. a) PPE = 4; b) PPE = 8; c) PPE = 10; d) PPE = 20 for different time instants.

Fig. 7. Pressure distribution at brink in rectangular overfall.

pronounced. The problem is more severe when the PPE is low

[6]and the stiffnessof the material is high. However, the mesh resolutionplaysan importantrole fortheaccuracy oftheresults: decreasingthemesh sizethe brinkheight inthe numerical solu-tionconvergestotheanalyticalone(seeTable1,where8PPEare used).

Fig. 6 shows the comparison of simulations of open channel flow withfour different values of PPE: 4, 8,10 and20 MPs per element,respectivelyforameshsizeof0.03m.Itcanbeobserved that4PPEisa toocoarsediscretisation asitemphasisesthegrid crossing error while simulations with 8, 10 and20 PPE produce muchbetterresultsintermsofpressuredistribution.

Fig. 8. Fluid velocity at the brink. Comparison of analytical solution with MP veloc- ity for steady state flow conditions.

Table 1

Relative error of brink depth estimation using meshes with various sizes (8 PPE) .

Mesh size Time yb Analytical Error

(m) (s) (s) (m) (%)

0.03 2 0.1109 0.10725 3.44 0.01 2 0.1093 0.10725 1.90 0.005 2 0.1093 0.10725 1.88

Theseresults led tothe conclusion that thenodal density os-cillations are the main cause of pressure fluctuationsdue to the weakly compressible behaviour of the fluid. The change in cal-culated nodal densityin this method is directly dueto the pro-portional change in PPE in the elements surrounding the node, andtherefore by increasing the PPE the oscillations are reduced.

Table1givesaquantitativeanalysisofthebrinkdepthrelative er-rorcombiningdifferentmeshsizesandusing8PPE.Inthispaper, we proposetousea finermeshbecausethat improvesthedepth atthebrinkandthedrawbackofmorepressureoscillationis com-pensatedbyintroducingahighernumberofPPE.

(9)

X. Zhao et al. / Computers and Fluids 179 (2019) 27–33 33

5.3.2. Pressuredistributionatbrink

Thepressuredistributionwiththenumericalsolutionprovided byMPMarecomparedwithlaboratorymeasurements(Section5.1) andtheanalytical solution.Thepressuredistribution atthebrink (cross-section A-A in Fig. 4) is plotted with data from literature in Fig. 7, where

γ

is the water unit weight andy is the height ofthe MPabovethe brink.Notethat theMPs selectedfor analy-sis are actuallylocated within athinarea (about onefifth ofthe element size)in the flow direction containingthe chosen cross-sections. From the comparison,it can be seen that nearthe free surface, thenumericalpressuredistributioninbothcrosssections agreerelativelywellwithexperimentaldataobtainedbyother re-searchers.Fortheregion nearthebed, thenumericalsimulations seem to over-predict thepressure incross section A-A.This may be attributed to the vertical fixities applied on the cornernodes of thebrink, which prevent the material pointsfromleavingthe mesh. This vertical fixity also restricts the material point from moving freelydownwardoncetheypassthebrink,withinone el-ement,causingthepressurenearthebottomtoincrease.Thiscan beshownbyselectingMPsoneelementaway(cross-sectionB-Bin

Fig.4),wheretheinfluenceoftheverticalfixityisnegligible,and thepressuredistributionnearthebedissignificantlyclosertothe experimentalresults.

5.3.3. Velocitydistributionatbrink

Fig. 8 showsthe comparison ofthe velocity distribution with the results calculated by semi-analytical solution given in [26], wherev andvc are thevelocity andcriticalvelocity, respectively.

Materialpointsarechosen inthesamemannerasinFig.7.Itcan be seen thatthe velocity closetothe channelbedis slightly un-derestimated incross-section A-A.Several factorsmay contribute to that: in experiments there is a slightcontraction of the flow atthebrinkwherethewaterdetachesfromthebedwhichisnot occurringinthenumericalsimulation; thelow ordershape func-tions produce a slightlyover stiff behaviour that reducesthe ve-locitywherethelargestdeformationsoccur.Lastbutnotleast,the impactofthefixitymentionedabovealsoaddstounderestimation ofthevelocityincross-sectionA-A.

6. Conclusions

In/outflow BCs suitable forMPM simulations ofopen channel flow havebeen developed. These have been applied to the sim-ulation of eventually steady subcritical flow and free overfallsin rectangularopenchannelstoeffectivelyvalidatetheBCs.Thebrink depth,pressuredistribution andvelocitieshavebeenanalysed for severalgeometries andflow velocitiesanda goodagreement be-tween theMPM results,analyticalsolutions andexperimental re-sultsisseen.TheBCsareconsideredvalidatedandcanbeusedto simulateawiderangeofflowconditions.

Acknowledgments

XuanyuZhaoacknowledgesthesupportfromtheFundamental ResearchFundsfortheCentralUniversities,MinistryofEducation ofChina(2017B12214).MarcoBologninisgratefulforthefinancial supportbytheNWOProjectMPM-FLOW:Understandingflowslides inflood defences(Grant No. 13889).The authorsare thankfulfor the technical support from the MPM research group at Deltares, The Netherlands. TheAnura3D softwareis madeavailable by the Anura3DMPMResearchCommunity.

References

[1] Yan J , Deng X , Korobenko A , Bazilevs Y . Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput Fluids 2017;158:157–66 .

[2] Cremonesi M, Ferri F, Perego U. A basal slip model for lagrangian finite el- ement simulations of 3D landslides. Int J Numer Anal Methods Geomech 2017;41(1):30–53. doi: 10.1002/nag.2544 .

[3] Maljaars J, Labeur RJ, Möller M, Uijttewaal W. A numerical wave tank using a hybrid particle-mesh approach. Procedia Eng 2017;175:21–8. doi: 10.1016/J. PROENG.2017.01.007 .

[4] Zhang F, Zhang X, Sze KY, Lian Y, Liu Y. Incompressible material point method for free surface flow. J Comput Phys 2017;330:92–110. doi: 10.1016/j.jcp.2016. 10.064 .

[5] Sulsky D , Chen Z , Schreyer H . A particle method for history-dependent mate- rials. Comput Methods Appl Mech Eng 1994;118(1–2):179–96 .

[6] Al-Kafaji IKJ . Formulation of a dynamic material point method (MPM) for ge- omechanical problems. Stuttgart University, Germany; 2013 .

[7] Bandara SS . Material point method to simulate large deformation problems in fluid-saturated granular medium. University of Cambridge, UK; 2013 . [8] Soga K, Alonso E, Yerro A, Kumar K, Bandara S. Trends in large-deformation

analysis of landslide mass movements with particular emphasis on the mate- rial point method. Géotechnique 2016;66(3):248–73. doi: 10.1680/jgeot.15.LM. 005 .

[9] Wang B, Vardon PJ, Hicks MA. Investigation of retrogressive and progressive slope failure mechanisms using the material point method. Comput Geotech 2016;78:88–98. doi: 10.1016/j.compgeo.2016.04.016 .

[10] Li J , Hamamoto Y , Liu Y , Zhang X . Sloshing impact simulation with material point method and its experimental validations. Comput Fluids 2014;103:86–99 . [11] Zhao X, Liang D. MPM modelling of seepage flow through embankments. In: Proceedings of the twenty-sixth (2016) international ocean and polar engi- neering conference; 2016. p. 1161–5. ISBN 9781880653883 . Rodos, Greece doi: 10.13140/RG.2.2.33519.23208 .

[12] Bolognin M, Martinelli M, Bakker KJ, Jonkman SN. Validation of material point method for soil fluidisation analysis. J Hydrodyn 2017;29(3):431–7. doi: 10. 1016/S1001- 6058(16)60753- 9 .

[13] Martinelli M, Tehrani FS, Galavi V. Analysis of crater development around dam- aged pipelines using the material point method. Procedia Eng 2017;175:204– 11. doi: 10.1016/J.PROENG.2017.01.010 .

[14] Sulsky D , Zhou S-J , Schreyer HL . Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 1995;87:236–52 .

[15] Ceccato F, Yerro A, Chmelnizkij A, Fern EJ, Martinelli M, Rohe A. Scientific man- ual MPM software Anura3D. Tech. Rep.. Delft: Deltares; 2017 . www.anura3d. com .

[16] Martinelli M . Soil-water interaction with material point method. Tech. Rep.. Delft, the Netherlands: Deltares; 2016 .

[17] Courant R, Friedrichs K, Lewy H. On the partial difference equations of mathe- matical physics. IBM J Res Dev 1967;11(2):215–34. doi: 10.1147/rd.112.0215 . [18] Constant E , Favier J , Meldi M , Meliga P , Serre E . An immersed bound-

ary method in openfoam : verification and validation. Comput Fluids 2017;157:55–72 .

[19] Papanastasiou TC, Malamataris N, Ellwood K. A new outflow boundary condition. Int J Numer Methods Fluids 1992;14(5):587–608. doi: 10.1002/fld. 1650140506 .

[20] Liang D . Evaluating shallow water assumptions in dam-break flows. Proc ICE Water Manage 2010;163(5):227–37 .

[21] Rouse H . Discharge characteristics of the free overfall: use of crest section as a control provides easy means of measuring discharge. Civil Eng ASCE 1936;6(4):257–60 .

[22] Veronese A . Rilievi sperimentali sugli sbocchi liberi. L’Energia Elettrica 1948:441–638 .

[23] Replogle J . Discussion on ’end depth at a drop in trapezoidal channels’ by M.H. diskin. J Hydraul Div 1962;88(2):161–5 .

[24] Rajaratnam N, Muralidhar D. Characteristics of the rectangular free overfall. J Hydraul Res 1968;6(3):233–58. doi: 10.1080/002216 86 809500236 .

[25] Chow VT . Open-channel hydraulics. New York: McGraw-Hill; 1959 .

[26] Montes JS. Potential flow solution to 2D transition from mild to steep slope. J Hydraul Eng 1994;120(5):601–21. doi: 10.1061/(ASCE)0733-9429(1994)120: 5(601) .

[27] Stokes G.G.. Supplement to a paper on the theory of oscillatory waves. In: Mathematical and Physical Papers vol.1. Cambridge: Cambridge University Press; p. 314–326. doi: 10.1017/CBO9780511702242.016 .

[28] Dey S. Free overall in open channels: state-of-the-art review. Flow Meas In- strum 2002;13(5–6):247–64. doi: 10.1016/S0955- 5986(02)00055- 9 .

[29] Guilkey JE, Hoying JB, Weiss JA. Computational modeling of multicellular constructs with the material point method. J Biomech 2006;39(11):2074–86. doi: 10.1016/j.jbiomech.2005.06.017 .

Cytaty

Powiązane dokumenty

Goście zaproszeni do rozmowy o filozofii codzienności przybyli na spotkanie ze swoim psem i kotem oraz plikiem zdjęć przedstawiających wnętrze drewnianej chaty

2 OOŚ wymogu uzyskania decyzji o środowiskowych uwarunkowaniach nie stosuje się także w przypadku zmiany planu ruchu dla wykonywania robót geologicznych związanych z

European Guidelines 2004 Nie jest wymieniany jako metoda leczenia It is not mentioned as a treatment method Tabela 3. EEG biofeedback and guidelines on treatment of

Our proposed evacuation choice model along with a risk-recognition class can evaluate quantitatively the influence of disaster mitigation measures, risk ed- ucation, and

Pod­ kreślając, że przez publicystykę praw niczą należy rozumieć nie tylko reportaż, ale i felieton oraz kom entarz dotyczący w ydarzeń praw no-społecznyeh,

W okresie poprzedzającym powołanie zespołów organizacja pracy adwo­ katów niczym się nie różniła od wykonywania zawodu w ustroju kapita­ listycznym. Indywidualna

to „zanieczyszczenie” spo- wodowane jest dostosowaniem się przedstawicieli mass mediów do nowej rzeczywis- tości społeczeństwa sieciowego.. Aby utrzymać swoją pozycję na

(Notabene, w liście z 19 stycznia 1837 roku Niedźwiecki wyznał, że jego sąd o Irydionie wynika z nie­ chęci do domniemanego autora: „Ja zabrałem się do Irydiona