• Nie Znaleziono Wyników

Effect of nickel on austenite stabilization during quenching and partitioning process in medium-Mn steels

N/A
N/A
Protected

Academic year: 2021

Share "Effect of nickel on austenite stabilization during quenching and partitioning process in medium-Mn steels"

Copied!
22
0
0

Pełen tekst

(1)

Delft University of Technology

Effect of nickel on austenite stabilization during quenching and partitioning process in medium-Mn steels

Ayenampudi, Sudhindra; Celada-Casero, Carola; Sietsma, Jilt; Santofimia, Maria Jesus

Publication date 2019

Document Version Final published version Citation (APA)

Ayenampudi, S., Celada-Casero, C., Sietsma, J., & Santofimia, M. J. (2019). Effect of nickel on austenite stabilization during quenching and partitioning process in medium-Mn steels. Material Science and Technology 2019, Portland, United States.

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

1

Effect of nickel on austenite stabilization during

quenching and partitioning process in medium-Mn steels

Sudhindra Ayenampudi

a

, C. Celada-Casero

b

, J. Sietsma

a

and M.J. Santofimia

a a) Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2,

2628 CD Delft, The Netherlands.

b) Tata Steel Europe, IJmuiden Technology center, 1970 CA IJmuiden, The Netherlands.

(3)

2

Introduction :

3

rd

generation AHSS

• Quenching & partitioning (Q&P)

process: Combination of high strength

and ductility

• Medium Mn steels are considered as potential candidates for 3rd generation AHSS

• Strong austenite (γ) stabilizers – C, Mn, Ni.

Medium Mn steels

(4)

3

Introduction:

Quenching & partitioning (Q&P) process

Ac3– Austenite finish temperature, Ms - Martensite start temperature, R.T. – Room temperature

Partitioning of interstitial/substitutional alloying elements from martensite (α|)

to austenite (γ)

Retained austenite (RA): Ductility

(5)

4

Research Objective

Mn - Manganese

In this study, we investigate:

Effect of nickel on austenite stabilization during Q&P process

in medium-Mn steels.

(6)

5

Approach:

Experiments & characterization techniques

Microstructure characterization

Dilatometry

Scanning electron microscopy (SEM)

X-ray diffraction (XRD)

Reactions competing for carbon:

• Carbide precipitation

• Alloying element (C/Mn) partitioning • Phase transformations

Steel compositions in wt.%:

• Alloy Mn: 0.19C-6.0Mn

• Alloy MnNi: 0.19C-6.0Mn-2.1Ni

(7)

6

Quantification of phase fractions and carbon

MnNi

• Carbon in M2: Upper & Lower limits

➢ Fractions of phases

➢ Carbon content

• Retained austenite: XRD

• M1 and M2: Lever rule on dilatometry data. • Pearlite (when present): fM1+ fM2+ fRA+ fp = 1

(8)

7

Quantification of phase fractions and carbon

ሶ𝒙 = 𝒇𝜸 ∙ 𝒙𝒄𝜸 + 𝒇𝑴𝟐∙ 𝒙𝒄𝑴𝟐 + 𝒇

𝑴𝟏 ∙ 𝒙𝒄𝑴𝟏 + 𝒇𝒑∙ 𝒙𝒄𝒑

• Carbon in M2: Upper & Lower limits

• Carbon in M1: All carbon in M1, including solid solution and carbides, from carbon balance.

➢ Fractions of phases

➢ Carbon content

• Retained austenite: XRD

• M1 and M2: Lever rule on dilatometry data. • Pearlite (when present): fM1+ fM2+ fRA+ fp = 1

• To estimate the range of carbon partitioning from primary martensite to austenite carbon balance is

performed by assuming:

➢ carbon content in M2 is same as in RA: Upper limit

➢ carbon content in M2 is same as nominal composition

(0.19 wt. %): Lower limit

(9)

8

Quantification of phase fractions and carbon

MnNi

ሶ𝒙 = 𝒇𝜸 ∙ 𝒙𝒄𝜸 + 𝒇𝑴𝟐∙ 𝒙𝒄𝑴𝟐 + 𝒇

𝑴𝟏 ∙ 𝒙𝒄𝑴𝟏 + 𝒇𝒑∙ 𝒙𝒄𝒑

• Carbon in M2: Upper & Lower limits

• Carbon in M1: All carbon in M1, including solid solution and carbides, from carbon balance.

➢ Fractions of phases

➢ Carbon content

• Retained austenite: XRD

• M1 and M2: Lever rule on dilatometry data. • Pearlite (when present): fM1+ fM2+ fRA+ fp = 1

(10)

9

Results - QP400

M2

RA

(11)

10

Results - QP400

M2

RA

(12)

11

Results – QP500

M2

RA

P

(13)

12

Results – QP500

M2

RA

P

(14)

13

Results – QP600

M2

RA

Austenite fraction

untransformed at T

Q

(15)

14

Results – QP600

M2

RA

Austenite fraction

untransformed at T

Q

(16)

15

M1 – Primary martensite, RA – Retained austenite, ART – Austenite reverse transformation

Total carbon in austenite

(γ)

Carbon content in γ at the beginning of partitioning step (0.04)

Carbon content in γ assuming complete partitioning (0.18)

• To estimate the range of carbon partitioning from primary martensite to austenite carbon balance

is performed by assuming:

➢ carbon content in M2 is same as in RA: Upper limit

➢ carbon content in M2 is same as nominal composition

(0.19 wt. %): Lower limit

(17)

16

M1 – Primary martensite, RA – Retained austenite, ART – Austenite reverse transformation

Total carbon in austenite

(γ)

Carbon content in γ at the beginning of partitioning step (0.04)

Carbon content in γ assuming complete partitioning (0.18)

• Not all carbon is partitioned into austenite. A fraction of carbon remains in M1 in solid

solution or in the form of carbides.

Discussion: QP400

Alloy Mn MnNi

(18)

17

M1 – Primary martensite, RA – Retained austenite, ART – Austenite reverse transformation

Total carbon in austenite

(γ)

Carbon content in γ at the beginning of partitioning step (0.04)

Carbon content in γ assuming complete partitioning (0.18)

Discussion: QP500

• In alloy Mn, a fraction of carbon is also consumed by pearlite (~ 0.02 wt. % C).

• Hence, the austenite in alloy Mn is enriched with lower carbon content than in alloy MnNi.

Alloy Mn MnNi

(19)

18

M1 – Primary martensite, RA – Retained austenite, ART – Austenite reverse transformation

Total carbon in austenite

(γ)

Carbon content in γ at the beginning of partitioning step (0.04)

Carbon content in γ assuming complete partitioning (0.18)

Discussion: QP600

• Compared to lower partitioning temperatures, due to ART, more carbon is present in

austenite.

400 500 600 700 0.0 0.1 0.2 Total carbon in austenite (wt. %. C) Alloy Mn 300 400 500 600 Alloy MnNi

Partitioning temperature (°C) Alloy Mn MnNi

(20)

19

Summary: austenite stabilising effect of nickel

M1 – Primary austenite, RA – Retained austenite, fRA and 𝑥𝑐𝑅𝐴– fraction and carbon content of retained austenite.

Tp (°C) Influence of nickel

400 Results in higher fRAby decreasing the carbon content required to stabilize austenite at room temperature

500 Prevents the formation of pearlite, resulting in higher fRAwith higher 𝑥𝑐𝑅𝐴

600 Promotes a faster formation of reverse austenite, resulting in higher

fRA

• Depending on the partitioning temperature , the austenite stabilising effect of

(21)

20

Conclusions

1) At all partitioning temperatures, a fraction of

carbon is present in primary martensite in solid

solution or in the form of carbides.

2) Presence of nickel hindered the major processes

that consume available carbon during partitioning

stage.

3) Alloy with nickel stabilizes higher fraction of

retained austenite at all partitioning temperatures

despite of lower carbon content.

• This research investigates the effect of nickel on austenite stability at standard-high

partitioning temperatures in medium Mn steels

M1 – Primary martensite; RA – Retained austenite; ART- Austenite reverse transformation

(22)

21

Conclusions

• This research investigates the effect of nickel on austenite stability at standard-high

partitioning temperatures in medium Mn steels

Summary of major phenomenon at different P.Ts

THANK YOU

HIGHQP-RFCS ’15

1) At all partitioning temperatures, a fraction of

carbon is present in primary martensite in solid

solution or in the form of carbides.

2) Presence of nickel hindered the major processes

that consume available carbon during partitioning

stage.

3) Alloy with nickel stabilizes higher fraction of

retained austenite at all partitioning temperatures

despite of lower carbon content.

Cytaty

Powiązane dokumenty

rozw ijały się jedynie rzemiosła nastawione na potrzeby wojska (szewcy, krawcy, rusznikarze), co daje się także zaobserwować w innych miastach ·.. W tym czasie

The exploration of paths of self-realisation of Polish female emigrants has been analysed through the following variables: motivation for migration, being in a relationship and type

N iekonsekwentnie stosuje sie też kryteria formalne skoro, obok ' dziel „szkoły białoruskiej" (termin autorów album u) prezentowana jest ikona należąca do

Kończąc nasze rozważania dotyczące dźwięku [м], mamy nadzieję, że ćwiczenia, które wybraliśmy z naukowo-dydaktycznego skarbca petersbur- skiej szkoły mowy scenicznej,

Redakcja zastrzega sobie prawo dokonywania w ręko­ pisach: zmiany tytułów, dodawania podtytułów ogólnych i tekstowych, skrótów i przeróbek technicznych oraz

swym przemówieniu działalności kons­ piracyjnej S. Mierzwy w okresie oku­ pacji niemieckiej, jego zaangażowaniu w pracach ówczesnych polskich struk­ tur

Sprawa kolejności pytań w przewodzie sądowym. Zostałem obwiniony, że w zmianie kolejności widzę jedyny środek zaradczy przeciwko inkwi- zycyjności przewodu

As such, we designed a simulation framework called SIREN 1 (SImulating Recommender Effects in online News environments), that allows news content providers to (i) select