• Nie Znaleziono Wyników

Growth of longshore currents downstream of a surf-zone barrier

N/A
N/A
Protected

Academic year: 2021

Share "Growth of longshore currents downstream of a surf-zone barrier"

Copied!
22
0
0

Pełen tekst

(1)

GROHTH OF LONGSHORE CURRENTS DOlVNSTREAN OF A SURF-ZONE BARRIER

Peter S. Eagleson Professor of Civil Engineering

Massachusetts Institute of Technology, Cambridge, Nassachuset ts

ABSTRACT

Momentum flux considerations are used to formulate a differen-tial equation governing the growth, with distance, of the mean longshore current velocity in the surf-zone on a plane, impermeable beach due to monochromatic \.,aves. The equation is solved for the flOl., situation dOlm-stream of a surf-zone barrier and is shOlm to compare favorably \.,i th laboratory measurements.

The asymptotic (uniform flow) form of the relation is also. shOlm to be in good agreement with the field and laboratory data of other 1nves-tigators.

Conclusions are reached governing the size of laboratory models necessary to represent conditions of fully developed longshore currents.

INTRODUCTION

A thorough understanding of the mechanics of sand transportation parallel to coasts must ultimately be based upon detailed knOlvledge of :he complicated fluid motions Iolhich occur \.,ithin the surf zone. This work 1S devoted to the formulation and evaluation of a rational analytical model for the prediction of mean longshore current velocity as a functi-on of beach and \.,ave parameters.

THEORETICAL DEVELOPMENT

~lOMENTUM EQUATION

The momentum equation lVill be written for the stationarY surf-zone control volume illustrated in Figure 1. This control volurne lVas first used in the analysis of longshore currents by Putnam, Hunk a.nd Traylor (1949), and the follolVing development represents a refinement and extension of their pioneering study. The control volume is bound ed by) (1) the still-Hater surface ABED, (2) the plane beach surface CBEF, (3 a vertical plane ADFC parallel to the shoreline just offshore of

t~e

breaker line, and (4) parallel vertical planes ABC and DEF perpend1cular to the shoreline and a distance 6x apart.

The longshore (i.e., x) component of the instantaneous rooment~m equation for the fluid system occupying the control volume at t :L-rne , t, 1S

F sx

+

Iff

BxPdV

(1)

C.v. c.s. c.v.

(2)

/

BREAKE R LIN E

i

o I-H (— 1 o (a ) PLA N VIE W (b ) SID E ELEVATIO N Figur e 1 . Contro l Volum e fo r Momentu m Analysi s

(3)

i n w h i c h :

F = l o n g s h o r e component o f s u r f a c e f o r c e s sx

= l o n g s h o r e component o f body f o r c e s p e r u n i t mass p = mass d e n s i t y o f f l u i d dV = volume e l e m e n t ->-V = f l u i d v e l o c i t y w i t h r e s p e c t t o c o n t r o l volume = l o n g s h o r e component o f f l u i d v e l o c i t y dA = a r e a element r = u n i t o u t w a r d n o r m a l t o c o n t r o l s u r f a c e t = t i m e C V . s i g n i f i e s i n t e g r a t i o n t o be p e r f o r m e d over t h e c o n t r o l volume C . S . s i g n i f i e s i n t e g r a t i o n t o be p e r f o r m e d o v e r t h e c o n t r o l s u r f a c e We assume t h a t s t a r t e d f r o m r e s t , t h e f l o w w i t h i n t h e c o n t r o l volume o f F i g u r e 1 , l o c a t e d a t an a r b i t r a r y x , w i l l r e a c h a q u a s i - s t e a d y s t a t e w h i c h i s d e f i n e d ( i n p a r t ) by t h e t i m e a v e r a g e o f E q u a t i o n ( 1 ) . T h i s t i m e a v e r a g e must be t a k e n o v e r an i n t e g r a l number o f wave p e r i o d s . E q u a t i o n ( 1 ) w i l l now be expanded and t i m e a v e r a g e d t e r m by t e r m .

I n a d d i t i o n , i t i s e x p e d i e n t t o n e g l e c t a l l l o n g s h o r e v a r i a t i o n s i n t h e t e m p o r a l mean v a l u e o f t h e b a s i c p a r a m e t e r s d e s c r i b i n g t h e i n c i d e n t wave, t h e beach and t h e mean w a t e r l e v e l . Only t h e f l u i d v e l o c i t i e s i n t h e s u r f z o n e w i l l be c o n s i d e r e d dependent upon x . I t i s w o r t h w h i l e n o t -i n g t h a t t h -i s may be an a p p r o x -i m a t -i o n , even u n d e r h y p o t h e t -i c a l l a b o r a t o r y c o n d i t i o n s i n w h i c h t h e i n c i d e n t wave i s a p u r e l y t w o - d i m e n s i o n a l mono-chrome and where t h e beach i s t r u l y p l a n a r . The d i f f i c u l t y a r i s e s f r o m t h e p r o b a b l e d i f f e r e n c e between ( 1 ) t h e l o n g s h o r e p r o j e c t i o n o f t h e i n c i -d e n t wave l e n g t h an-d ( 2 ) t h e l o n g s h o r e wave l e n g t h o f t h e uprush-backwash p r o c e s s on t h e f o r e s h o r e . T h i s i n e q u a l i t y causes a l o n g s h o r e " b e a t " phe-nomenon w h i c h i s p r o m i n e n t i n t h e v i c i n i t y o f an i m p e r m e a b l e s u r f - z o n e b a r r i e r and w h i c h p r o d u c e s s p a t i a l l y p e r i o d i c v a r i a t i o n s i n such q u a n t i -t i e s as b r e a k e r p o s i -t i o n and mean v/a-ter l e v e l . The a u -t h o r b e l i e v e s -t h i s phenomenon t o p l a y an i m p o r t a n t r o l e i n t h e f o r m a t i o n o f beach cusps and r i p c u r r e n t s .

S u r f a c e f o r c e s - To e v a l u a t e t h e s u r f a c e f o r c e , F , we w i l l sx

make t h e a d d i t i o n a l a s s u m p t i o n s :

1 . The mean shear f o r c e on t h e v e r t i c a l f a c e ACDF i s s m a l l enough t o be n e g l e c t e d . T h i s a s s u m p t i o n i s a i d e d by l o c a t i n g t h i s f a c e j u s t o f f s h o r e o f t h e b r e a k e r l i n e where t h e m o t i o n i s c l o s e l y i r r o t a -t i o n a l .

(4)

490 C O A S T A L E N G I N E E R I N G

2. Wind s t r e s s e s a r e absent f r o m t h e f r e e s u r f a c e . S i n c e t h e mean w a t e r l e v e l i s b e i n g t a k e n as c o n s t a n t e v e r y w h e r e , t h e n o r m a l f o r c e s on v e r t i c a l f a c e s ABC and DEF a r e e q u a l and o p p o s i t e . The o n l y e f f e c t i v e s u r f a c e f o r c e i s t h u s t h e f r i c t i o n a l r e s i s t a n c e on f a c e CBEF, t h e t i m e a v e r a g e o f w h i c h i s w r i t t e n Ax b c. pu ^ ( x , y, t ) s i n 6 sec a d y d x d t ^ s s ( 2 ) i n w h i c h t h e s u b s c r i p t , s, i s used t o d e n o t e l o c a l c o n d i t i o n s i n t h e s u r f -zone and t h e v e l o c i t y u ^ ( x , y, t ) r e p r e s e n t s t h e l o c a l a v e r a g e , o v e r t h e d e p t h , o f u ^ ( x , y, z, t ) . We w i l l s i m p l i f y E q u a t i o n ( 2 ) b y t h e f u r t h e r a s s u m p t i o n s :

1 . The R e y n o l d s numbers o f t h e s u r f - z o n e m o t i o n a r e h i g h enough t o i n s u r e f u l l y d e v e l o p e d " r o u g h " s u r f a c e b e h a v i o r f o r a l l x , y, t and f o r a l l p r a c t i c a l s u r f a c e r o u g h n e s s e s . 2. The f r i c t i o n f o r c e i s d e f i n e d w i t h s u f f i c i e n t a c c u r a c y by n e g l e c t i n g t h e l o n g s h o r e v a r i a b i l i t y o f u and 9 . s s E q u a t i o n ( 2 ) c a n t h e n be w r i t t e n c p sec a Ax rl 2 T ( x , y, t ) s i n d y d t ( 3 )

Body f o r c e s - W i t h g r a v i t y t h e o n l y body f o r c e , B = 0 and

B pdV = 0 X

( 4 )

Momentum f l u x - The c o n v e c t i v e momentum t e r m o f E q u a t i o n ( 1 ) i n v o l v e s t h e n e t r a t e o f momentum o u t f l o w a c r o s s f a c e s DEF and ABC minus t h e i n f l o w r a t e a c r o s s ADFC. U s i n g t h e d e f i n i t i o n s o f F i g u r e 1 , t h i s t e r m c a n be w r i t t e n

(5)

<Q) V ^ ( p V T ) d A ph. Ax rT rb [ u ( x , y, t ) s i n 6 ] 2 ( 1 - ^ ) d y d t S S D 3 Ax T o J-h sb 3 , c o s e , d z d t sb sb i n w h i c h t h e s u b s c r i p t , b, s i g n i f i e s c o n d i t i o n s a t t h e b r e a k e r . ( 5 ) Unsteady t e r m S i n c e we a r e assuming t h e p r o c e s s t o be s t a -t i o n a r y i n -t h e -t i m e a v e r a g e ( i . e . , q u a s i - s -t e a d y ) , -t h e l o c a l momen-tum change v a n i s h e s . T h a t i s dt V^(pdV) = 0 (6)

Summary - E q u a t i o n s ( 3 ) , ( 4 ) , ( 5 ) and ( 6 ) a r e now s u b s t i t u t e d i n t o E q u a t i o n ( 1 ) t o o b t a i n t h e l o n g s h o r e momentum e q u a t i o n : c^ sec a rT rh 2 T ~ ( x , y, t ) s i n Ogdydt I k T ^ [ u ^ ( x , y, t ) s i n e ^ ] 2 ( l - | ) d y d t (7) - h u ^ 2 ( 2 t ) s i n 6 , cos 6 , d z d t sb ' sb sb

VELOCITY DISTRIBUTION ASSUMPTIONS

I n t e g r a t i o n o f E q u a t i o n (7) depends c r i t i c a l l y upon t h e assumed f o r m o f t h e f u n c t i o n s u ^ , u^^^, 6^ and 6^^^. As a f i r s t a p p r o x i m a t i o n , l e t us assume t h a t

(6)

492 C O A S T A L E N G I N E E R I N G 1. u ( x , y, t ) s i n 6 i s u n i f o r m l y d i s t r i b u t e d ( i . e . , con¬ s s s t a n t ) i n t h e y d i r e c t i o n f o r any x and t . 2. u ( x , t ) s i n 6 v a r i e s l i n e a r l y w i t h t i m e such t h a t o v e r s s each wave p e r i o d u ^ ( x , t ) s i n = u ^ ^ d - f ) ( 8 ) 3. The mean l o c a l l o n g s h o r e c u r r e n t v e l o c i t y i s i n d e p e n d e n t o f y and i s g i v e n by 1 s u ( x , t ) s i n 6 dA d t ( 9 ) J A s' ' s s o •'A s U s i n g E q u a t i o n ( 8 ) i n ( 9 ) u ( x ) V j x ) = (10)

Then we can c a r r y o u t t h e f i r s t momentum f l u x i n t e g r a l o f E q u a t i o n (7) t o o b t a i n T g | [ u j x , y, t ) s i n e j 2 ( l - ^ ) d y d t 2bh^ d V ^ 2 ( x ) 3 dx (11) To i n t e g r a t e t h e f r i c t i o n t e r m we w i l l make t h e a p p r o x i m a t i o n T fb [ u ( x , y, t ) s i n 6 ] ' s s d y d t (12) T s i n b Jo [u ( x , y, t ) s i n e ] 2 d y d t s s

(7)

whereupon

sec a fT

2T u 2 ( x , y, t ) s i n e d y d t s s 2bc sec a

The second momentum f l u x t e r m w i l l be i n t e g r a t e d by assuming t h e i n s t a n t a n e o u s v e l o c i t y d i s t r i b u t i o n a l o n g f a c e ADFC as shovm i n F i g -u r e 2. I n t h i s f i g -u r e t h e l o c a l E -u l e r i a n p a r t i c l e v e l o c i t y , -u^(z, t ) , due t o t h e b r e a k i n g wave i s superimposed on a mean m o t i o n w h i c h c o n s i s t s o f two p a r t s : ( 1 ) a l o n g s h o r e component, V ( x ) , n e c e s s a r y i n o r d e r f o r t h e X component o f t h e mean v e l o c i t y t o be c o n t i n u o u s a c r o s s t h e b r e a k e r l i n e and ( 2 ) an o n s h o r e component, A V ( x ) , n e c e s s a r y f o r s a t i s f a c t i o n o f c o n s e r v a t i o n o f mass i n t h e case o f a n o n - u n i f o r m l o n g s h o r e c u r r e n t . A p p l y i n g t h e c o n t i n u i t y e q u a t i o n t o t h e c o n t r o l v o l u m e , i t i s e a s i l y seen t h a t AV(x) = dV ( x ) h. Ax b b ^ ! L ^ 2 dx (14) whereupon u ^ ^ ( z , t ) s i n 8^^ = Vj^(x) + u ^ ( z , t ) s i n 6^ (15) and u ^ ^ ( z , t ) cos

b

^V!!l

2 dx + u, ( z , t ) cos 0, b b (16) U s i n g E q u a t i o n s (15) and ( 1 6 )

(8)

t o Figur e 2 . Assume d Velocit y Distributio n a t Breake r

(9)

o J - h . u , 2 ( z , t ) s i n 8 , cos 8 , d z d t = sb sb sb (17) 2T u 2 ( z ^ t ) s i n 28 d z d t -- h . 4 d x Summary - S u b s t i t u t i n g E q u a t i o n s ( 1 1 ) , ( 1 3 ) and ( 1 7 ) i n t o ( 7 ) y i e l d s t h e s i m p l i f i e d l o n g s h o r e momentum e q u a t i o n : „ be sec a (18) c d V / ( x ) T2 2T - h . u, 2 ( z t ) s i n 28, d z d t b b i n w h i c h t h e i n t e g r a l on t h e r i g h t - h a n d s i d e i s r e c o g n i z e d as t h e "wave t h r u s t " ( L u n d g r e n , 1 9 6 3 ) . U s i n g s m a l l a m p l i t u d e wave t h e o r y , we have irH, c o s h k , ( h , + z ) f ^\ D D D U ^ ( Z , t ) = 3 i „ h k , h , ^ " ' ^ b D (19) f r o m w h i c h 2T gH, 2n u^^(z, t ) s i n 29j^ d z d t = - — s i n 28^ ( 2 0 ) where 1 2k h "b " 2 + s i n h 2k^h,_ b b (21)

(10)

496 C O A S T A L E N G I N E E R I N G

SOLUTION OF THE MOMENTU^I EQUATION

U s i n g (20) i n (18) t h e d i f f e r e n t i a l e q u a t i o n has t h e s o l u t i o n : V / ( x ) v / ( 0 ) = 1 - [ 1 - ^ i — - ] e-'^^ (22) i n w h i c h A = [ ] cos a s i n 6^ s i n 26^ (23) J Z D C . . D D B = ^ [ "-^ ] (24) 5 h, cos a s i n Q, b b and V (0) i s t h e v a l u e o f V ( x ) where x = 0. L L As X becomes v e r y l a r g e , E q u a t i o n (22) r e d u c e s t o t h e r e l a t i o n f o r u n i f o r m l o n g s h o r e c u r r e n t s : V 2 = A (25) J-i N o t e t h a t t h e w i d t h , b, o f t h e s u r f zone i s d i f f i c u l t t o d e f i n e due t o t h e unknown i n c l i n a t i o n o f t h e mean w a t e r l e v e l . For p r a c t i c a l p u r p o s e s t h e r e f o r e V7e w i l l assume a h o r i z o n t a l mean w a t e r l e v e l , whereupon

b = h, c o t a ( 2 6 ) b

A l s o f o r p r a c t i c a l r e a s o n s , t h e unknown r e s i s t a n c e c o e f f i c i e n t , , w i l l be e x p r e s s e d i n t e r m s o f t h e Darcy-Weisbach, f . V a l u e s o f t h e l a t t e r co-e f f i c i co-e n t a r co-e w co-e l l k n o m , a t l co-e a s t f o r s t co-e a d y u n i f o r m f l o w , as a f u n c t i o n o f r e l a t i v e b o u n d a r y r o u g h n e s s and R e y n o l d s number. The r e l a t i o n between t h e s e two c o e f f i c i e n t s i s , f o r s t e a d y u n i f o r m f l o w .

f " f = 4

(11)

U s i n g t h e f i n a l s i m p l i f i c a t i o n s ( 2 6 ) and ( 2 7 ) , t h e p a r a m e t e r s A and B become gH, n, s i n a s i n 6, s i n 2 0 , A = f [ 4 - ^ ] ^ ^ ( 2 8 ) b = ! [ h , cos I S i n 9, 1 ( 2 9 ) b b E q u a t i o n ( 2 8 ) d i f f e r s s l i g h t l y f r o m t h a t d e r i v e d e a r l i e r ( E a g l e s o n , 1964) i n t h e m a g n i t u d e o f t h e c o n s t a n t c o e f f i c i e n t . The d i f f e r e n c e a r i s e s f r o m a change i n t h e assumed s u r f z o n e v e l o c i t y d i s t r i b u -t i o n [ E q u a -t i o n ( 8 ) ] . EXPERIMENTAL PROGRAM E x p e r i m e n t s were c o n d u c t e d i n t h e H y d r o d y n a m i c s L a b o r a t o r y o f t h e D e p a r t m e n t o f C i v i l E n g i n e e r i n g a t M.I.T. The model b a s i n used was 45 f e e t by 2 2 f e e t i n i t s h o r i z o n t a l d i m e n s i o n s , and s t i l l - w a t e r d e p t h i n t h e c o n s t a n t d e p t h p o r t i o n was a p p r o x i m a t e l y 1 f o o t . The beach was c o n s t r u c t e d o u t o f smooth cement on a 1 t o 10 s l o p e ( i . e . , t a n a = 0.1) and was 30 f e e t l o n g i n t h e x d i r e c t i o n .

M o n o c h r o m a t i c waves were g e n e r a t e d by a p l u n g e r - t y p e wave-maker o f v a r i a b l e p e r i o d and s t r o k e . T r a i n i n g w a l l s w e r e i n s t a l l e d p e r p e n d i c u -l a r t o t h e wave c r e s t s f r o m t h e wave maker up o n t o t h e b e a c h . These w a -l -l s were c u r v e d t o f o l l o w t h e c a l c u l a t e d r e f r a c t i o n o f t h e wave " r a y s " i n o r -d e r t o m a i n t a i n a u n i f o r m e n e r g y -d e n s i t y a t b r e a k i n g . The " u p s t r e a m " w a l l c o m p l e t e l y o b s t r u c t e d t h e s u r f - and swash-zones w h i l e t h e " d o M S t r e a m " w a l l s t o p p e d j u s t o f f s h o r e o f t h e b r e a k e r l i n e . The e x p e r i m e n t a l t e c h n i q u e used i s r e p o r t e d i n d e t a i l by G a l v i n (1965) and w i l l o n l y be summarized h e r e .

P a r a l l e l - w i r e , r e s i s t a n c e - t y p e wave p r o f i l e gages were used t o o b t a i n t h e b r e a k i n g wave h e i g h t , H^^, t h e mean w a t e r l e v e l a t t h e b r e a k i n g p o s i t i o n (and hence t h e b r e a k i n g d e p t h , h^) and t h e b r e a k i n g wave l e n g t h , L^ (used i n c a l c u l a t i n g n ^ ) . B r e a k e r p o s i t i o n was l o c a t e d v i s u a l l y u s i n g an o v e r h e a d s i g h t i n g d e v i c e d e v e l o p e d by G a l v i n ( 1 9 6 5 ) . M a j o r changes i n t h e b r e a k e r a n g l e were o b t a i n e d t h r o u g h c h a n g i n g t h e p o s i t i o n o f t h e wave-maker. M i n o r changes o f c o u r s e accompanied each change i n wave p e r i o d .

(12)

498 C O A S T A L E N G I N E E R I N G

The mean l o c a l l o n g s h o r e c u r r e n t v e l o c i t y V ( x , y ) was d e t e r

-Li

mined by u s i n g an A r m s t r o n g M i n i f l o k e t e r AWE 1 8 3 / 1 , I s s u e A, w h i c h c o u n t s e l e c t r o n i c a l l y t h e r e v o l u t i o n s o f a j e w e l m o u n t e d p r o p e l l e r i n a 5 / 8 i n c h -d i a m e t e r h o u s i n g . The p r o b e was c a l i b r a t e -d f o r each a n g l e o f t h e wavemaker by t i m i n g t h e d r i f t o f s u r f a c e f l o a t s i n t h e r e g i o n o f u n i f o r m c u r -r e n t s . The p -r o b e was i n s e -r t e d a t m i d - d e p t h a t t h e mean y p o s i t i o n o f t h e s u r f a c e f l o a t s i n t h e s u r f - z o n e and t h e p r o p e l l e r a x i s was a l i g n e d w i t h t h e X - a x i s . I n t h i s way t h e r e l a t i o n between p r o p e l l e r c o u n t s and f l o a t v e l o c i t y was o b t a i n e d . T h i s r e l a t i o n was assumed v a l i d i n t h e r e g i o n o f n o n - u n i f o r m c u r r e n t s as w e l l s i n c e a c c u r a t e L a g r a n g i a n v e l o c i t y measure-ments a r e d i f f i c u l t i n t h e p r e s e n c e e f c o n v e c t i v e a c c e l e r a t i o n .

A b s o l u t e b o u n d a r y r o u g h n e s s was n o t measured b u t was s e l e c t e d f r o m p u b l i s h e d v a l u e s (Chow, 1959) f o r smooth cement as

k ^ = 1 X 10-3 f t . ( 3 0 )

Two s e t s o f e x p e r i m e n t s were c o n d u c t e d . T e s t S e r i e s 1 ( G a l v i n , 1965) c o n s i s t e d e f 26 i n d i v i d u a l r u n s d i v i d e d i n t o t h r e e g r o u p s a c c o r d -i n g t o t h e o f f s h o r e a n g l e o f wave -i n c -i d e n c e . T h -i s s e r -i e s was a-imed a t s t u d y o f t h e zone o f f u l l y d e v e l o p e d ( u n i f o r m ) c u r r e n t s and o n l y i n a d -v e r t e n t l y i n c l u d e d n o n - u n i f o r m -v a l u e s . T e s t S e r i e s 2 ( E a g l e s o n , 1965) c o n s i s t e d o f 7 i n d i v i d u a l r u n s a t a s i n g l e o f f s h o r e wave a n g l e and was s p e c i f i c a l l y d e s i g n e d t o i n v e s t i g a t e E q u a t i o n (22) o v e r as w i d e a r a n g e as p o s s i b l e w i t h t h e e x i s t i n g e q u i p m e n t . T a b u l a t i o n s o f t h e r e s p e c t i v e t e s t d a t a a r e g i v e n i n t h e r e f e r e n c e s c i t e d .

PRESENTATION OF RESULTS EVALUATION OF THE FRICTION FACTOR

I t has been assumed i n t h e d e r i v a t i o n o f E q u a t i o n ( 2 2 ) t h a t t h e i n s t a n t a n e o u s s u r f - z o n e f l o w i s a l w a y s h y d r a u l i c a l l y r o u g h a t a l l l o c a t i o n s . The Darcy-Weisbach c o e f f i c i e n t , f , w i l l t h u s be e v a l u a t e d f r o m t h e K a r m a n - P r a n d t l r e s i s t a n c e e q u a t i o n f o r s t e a d y , u n i f o r m , t u r b u l e n t f l o w i n r o u g h p i p e s . When w r i t t e n i n terms o f t h e h y d r a u l i c r a d i u s , R, t h i s w e l l - k n o T O e q u a t i o n becomes For t h e t r i a n g u l a r s u r f - z o n e c r o s s s e c t i o n I I \ R = — b s i n a - h t a n a =

( 3 2 )

(13)

whereupon f i s g i v e n by

\

f = [2 l o g ^ g ^ + 1.74] 2 (33)

i n w h i c h i s t h e a b s o l u t e roughness o f t h e beach s u r f a c e . E q u a t i o n (33) i s used t o e v a l u a t e f f o r a l l t h e d a t a p r e s e n t e d i n t h i s p a p e r . The v a l u e of k^ was chosen f r o m p u b l i s h e d v a l u e s a c c o r d i n g t o t h e kno\m c h a r a c t e r o f t h e beach s u r f a c e .

IMPORTANCE OF UPSTREAiM BOUNDARY CONDITION

I n t h e d e r i v a t i o n o f E q u a t i o n (22) i t was assumed t h a t o n l y t h e f l u i d v e l o c i t i e s i n t h e s u r f z o n e v a r i e d w i t h x. T h i s d e t e r m i n e d t h e o r i -g i n o f x t o be where t h e s u r f - z o n e c r o s s s e c t i o n f i r s t r e a c h e s i t s f u l l v a l u e and was t a k e n as t h e i n t e r s e c t i o n o f t h e b a r r i e r and t h e s t i l l - w a t e r s h o r e l i n e . The mean l o n g s h o r e c u r r e n t v e l o c i t y , V^(0), a t x = 0 i s t h e r e -f o r e q u i t e s e n s i t i v e t o t h e n a t u r e o -f t h e b a r r i e r , i . e . , t o such -f a c t o r s as i t s h e i g h t , l e n g t h , a n g l e and p e r m e a b i l i t y . No a t t e m p t i s made h e r e t o p r e d i c t as a f u n c t i o n o f t h e s e v a r i a b l e s ; hov/ever, t h e p r e d i c t e d e f f e c t o f V ^ ( 0 ) upon t h e g r o w t h o f t h e l o n g s h o r e c u r r e n t can be e v a l u a t e d . T h i s i s a c c o m p l i s h e d i n F i g u r e 4 where t h e e x p e r i m e n t s ( E a g l e s o n , 1965) h a v i n g t h e l a r g e s t and s m a l l e s t average v a l u e o f t h e measured p a r a m e t e r , V (0)/A-'''2^ aj-e compared w i t h E q u a t i o n ( 2 2 ) . The agreement appears q u i t e

t l

s a t i s f a c t o r y f o r t h e s e two r u n s .

CONSOLIDATION OF AVAILABLE EXPERIMENTAL DATA

D e v e l o p i n g l o n g s h o r e c u r r e n t - I n F i g u r e 5 a l l e x p e r i m e n t s kno^m t o t h e a u t h o r a r e p r e s e n t e d i n w h i c h t h e d i s t a n c e x was r e p o r t e d as one o f t h e measured v a r i a b l e s . A l t h o u g h t h e s e two s e t s o f t e s t s were b o t h p e r f o r m e d i n n e a r l y t h e same manner and u s i n g t h e same e x p e r i m e n t a l f a c i l i t i e s , t h e d a t a o f G a l v i n (1965) appear i n somewhat w o r s e q u a n t i t a -t i v e agreemen-t w i -t h E q u a -t i o n ( 2 2 ) . The r e a s o n f o r -t h i s i s u n k n o m . Two p o s s i b l e causes a r e w o r t h y o f m e n t i o n , however. 1. For t h e s e r i e s I I I t e s t s o f G a l v i n (1965) t h e t r a i n i n g w a l l s were s t r a i g h t r a t h e r t h a n b e i n g c u r v e d t o f o l l o w t h e wave r e f r a c t i o n . T h i s d e v e l o p s a l o c a l x^ave energy d e n s i t y g r a d i e n t i n t h e l o n g s h o r e d i -r e c t i o n . 2. T h r e e y e a r s e l a p s e d between t h e p e r f o r m a n c e o f t h e two s e t s o f e x p e r i m e n t s . I n t h e i n t e r i m t h e beach s u r f a c e r o u g h n e s s may have changed.

(14)

Basi n Wall s fee t Wate r Leve l Poin t Gog e Plunge r Upstrea m Trainin g Wal l Botto m o f Beac h S W Lin e Downstrea m Trainin g Wal l Piezomete r Conduit s Piezomete r Well s @ © @ @ Figur e o. t-isn. vie w o f Laborator y Basi n @ @ @

(15)

4. 0 I

T

1

1—

\

\

I

\ \

1

1

1

1—

r

DEVELOPIN G LONGSHOR E CURREN T 2. 0 LEGEN D FO R EXPERIMENTA L POINT S V L(0 ) SYMBO L SOURC E Al/ 2 + 0.37 5 EAGLESO N (1965 ) A 0.09 2 EAGLESO N (1965 ) NOT E ; EXPERIMENTA L POINT S AR E PLOTTE USIN G AVERAG E VALUE S O F A AN AN D WIT H A N ASSUME D ABSOLUT ROUGHNESS , k . = I x 10" ' FT . VL(X ) A 1/ 2 1. 0 I U I M I I V|_(0 ) 0.37 5 (UNIFOR M LONGSHOR E CURREN T THEORY ) LEGEN D FO R THEORETICA L CURVE S B X V2(x ) V ^ (0) ' si n a si n 6^^ si n Zd^

-I

h[ j co s a si n 0.0 4 0.0 6 0.0 8 1 0 0. 2 0. 4 0. 6 0. 8 I B X Figur e 4 . Evaluatio n o f th e Importanc e o f V, . (0 )

(16)

502 C O A S T A L E N G I N E E R I N G D i s c o u n t i n g t h e s e r i e s I I I t e s t s o f G a l v i n (1965) i t may be^ c o n c l u d e d f r o m F i g u r e 5 t h a t E q u a t i o n (22) p r o v i d e s an a d e q u a t e d e s c r x p t i o n o f t h e g r o w i n g c u r r e n t , a t l e a s t a t l a b o r a t o r y s c a l e . U n i f o r m l o n g s h o r e c u r r e n t - S e v e r a l e x p e r i m e n t e r s have r e p o r t e d l o n g s h o r e c u r r e n t o b s e r v a t i o n s i n w h i c h no m e n t i o n o f p r o x i m i t y t o an up s t r e a m o b s t r u c t i o n i s made. I n F i g u r e 6^ t h e s e f i e l d and l a b o r a t o r y meas u r e m e n t s a r e compared w i t h t h e t h e o r e t i c a l uniform^ l o n g s h o r e c u r r e n g i v e n by E q u a t i o n ( 2 5 ) . B e f o r e e v a l u a t i n g t h i s c o m p a r i s o n we shou no e t h e f o l l o v 7 i n g .

1. The b r e a k i n g d e p t h , h^, was n o t measured i n any o f t h e f i e l d o b s e r v a t i o n s . I n o r d e r t o a p p l y E q u a t i o n ( 2 5 ) , t h e t h e o r e t i c a l b r e a k i n g h e i g h t t o d e p t h r a t i o o f McCowan (1894) was assumed a p p l i c a b l e ; i . e . , ( h ) b = (34) 2. The a b s o l u t e r o u g h n e s s o f t h e v a r i o u s s u r f a c e s w a s chosen a c c o r d i n g t o t h e f o l l o w i n g t a b l e : R e f e r e n c e Putnam e t a l . (1949) Putnam e t a l . (1949) Putnam e t a l . (1949) Putnam e t a l . (1949) Inman and Q u i n n (1951) L a b o r a t o r y D e s c r i p t i o n o r F i e l d o f S u r f a c e A s s u m e c M l ^ ^ o i u t e R o u g h n e s s , k^

-(fïö

( 1 mm.) L a b o r a t o r y N a t u r a l Sand 0.0033 L a b o r a t o r y 1 / 4 - i n c h Pea G r a v e l 0.0208 ( 1 / 4 - i n c h ) L a b o r a t o r y Sheet M e t a l o r Smooth Cement F i e l d F i e l d G a l v i n and Savage F i e l d (1965) N a t u r a l Sand N a t u r a l Sand N a t u r a l Sand O.OOlO 0 . 0 0 3 3 ( 1 ™"-) 0 . 0 0 3 3 ( 1 I ™ - ) 0 . 0 0 3 3 ( 1 ^ T h i s r e p r e s e n t s a m o d i f i c a t i o n o f w o r k p r e s e n t e d e l s e w h e r e C E a g l e s o n , 1 9 6 4 ) .

(17)

~i i i I 1 ! I [ r — DEVELOPIN G LONGSHOR E CURREN T EXPERIMENTA L POINT S AR E PLOTTE D USIN G AVERAG E VALUE S O F A AN D B AN D WIT H A N ASSUME D ABSOLUT E ROUGHNESS , k, = I X 10" ^ FT " AL L DAT A AR E FRO M LABORATOR Y EXPERIMENT S (UNIFOR M LONGSHOR E CURRENT-THEORY)-, LEGEN D FO R EXPERIMENTA L POINT S SYMBO L RU N REFERENC E 0 m NO T MEASURE D GALVI N [ 1965 ) 9 n NO T MEASURE D GALVI N ( 1965 1 Q m NO T MEASURE D GALVI N (1965 ) 2400(0 ) 0.3 0 EAGLESO N (1965 ) A 2400(b ) 0.09 2 EAGLESO N (1965 ) O 245 0 0. 1 8 6 EAGLESO N (1965 1 + 2500(a ) 0.37 5 EAGLESO N [1965 1 V 2500(b ) 0.34 3 EAGLESO N (1965 ) 252 0 0.35 2 EAGLESO N (1965 ) 0 1 1 255 0 0.35 0 1 1 EAGLESO N (1965 ) 1 0 10 ' B X Figur e 5 . Th e Developin g Longshor e Curren t

(18)

504 C O A S T A L E N G I N E E R I N G

3. There i s g r e a t s c a t t e r i n s u c c e s s i v e o b s e r v a t i o n s o f V r e

L l

p o r t e d b y Inman and Quinn (1951) under t h e same a p p a r e n t wave c o n d i t i o n s O n l y t h o s e mean v a l u e s o f V w h i c h exceed t h e s t a n d a r d d e v i a t i o n o f t h e

Ll

g i v e n s e t a r e i n c l u d e d h e r e .

I t i s i n t e r e s t i n g t o n o t e i n F i g u r e 6 t h a t t h e t h e o r y p r o v i d e s an u p p e r bound f o r t h e l a b o r a t o r y v a l u e s w h i l e t h e f i e l d d a t a s c a t t e r a b o u t t h e t h e o r e t i c a l c u r v e . Perhaps t h i s d i f f e r e n c e i s due t o some v i s cous o r s u r f a c e t e n s i o n s c a l e e f f e c t a r i s i n g f r o m i n e x a c t f o r m u l a t i o n o f t h e p r o b l e m , o r p e r h a p s t h e e x p e r i m e n t a l b a s i n was n o t l a r g e enough f o r u n i f o r m c o n d i t i o n s t o be d e v e l o p e d . C o n s i d e r a b l e s c a t t e r i n t h e f i e l d d a t a i s t o be e x p e c t e d due p r i n c i p a l l y t o ( 1 ) a c t u a l n o n - u n i f o r m i t i e s i n t h e beach and wave p a r a m e t e r s and ( 2 ) d i f f i c u l t y i n e s t i m a t i n g t h e c r i t i c a l b r e a k e r p a r a m e t e r s u n d e r f i e l d c o n d i t i o n s .

I t i s c o n c l u d e d f r o m F i g u r e 6 t h a t E q u a t i o n ( 2 5 ) p r o v i d e s a good e s t i m a t e o f t h e u n i f o r m l o n g s h o r e c u r r e n t u n d e r b o t h l a b o r a t o r y and f i e l d c o n d i t i o n s .

APPLICATIONS OF THE THEORY

The r a t i o n a l p r e d i c t i o n o f l i t t o r a l t r a n s p o r t s t i l l a w a i t s de-v e l o p m e n t o f a s u i t a b l e e n t r a i n m e n t f u n c t i o n f o r t h e s u r f - z o n e f l u i d mo-t i o n and mo-t h e " m a r r y i n g " o f mo-t h i s f u n c mo-t i o n mo-t o a mean f l o w e q u a mo-t i o n s u c h as E q u a t i o n ( 2 2 ) .

M e a n w h i l e , however, E q u a t i o n ( 2 2 ) can be u s e f u l l y employed t o e s t i m a t e , among o t h e r t h i n g s , t h e s i z e o f l a b o r a t o r y b a s i n n e c e s s a r y i n o r d e r t o o b t a i n a f u l l y d e v e l o p e d l o n g s h o r e c u r r e n t f o r g i v e n wave and beach p a r a m e t e r s . I f we r e q u i r e t h a t t h e l a b o r a t o r y l o n g s h o r e c u r r e n t be a t l e a s t 95% o f t h e f u l l y d e v e l o p e d v a l u e , E q u a t i o n ( 2 2 ) r e d u c e s t o Bx = 2.32 f o r 95% development ( 3 5 ) T h i s means t h a t a m o d e l w h i c h i s b u i l t t o s t u d y a p r o t o t y p e s h o r e p r o c e s i n w h i c h a f u l l y d e v e l o p e d l o n g s h o r e c u r r e n t p l a y s an i m p o r t a n t r o l e s h o u l d have a beach w h i c h e x t e n d s a t l e a s t 2.32/B f e e t " u p s t r e a m " o f t h e a r e a o f i n t e r e s t . For t h e t y p i c a l l a b o r a t o r y s c a l e v a r i a b l e s , h, = 0.2 f t . b k^ = 1 X lQ-3 f t . cos a-1 \ = 20°

E q u a t i o n ( 2 9 ) g i v e s B = 0.14 f e e t , and t h e added model l e n g t h becomes a t l e a s t X = = 16 f t .

(19)
(20)

506 C O A S T A L E N G I N E E R I N G

SUMMARY AND CONCLUSIONS

1. An e x p r e s s i o n i s d e r i v e d f o r t h e mean l o c a l l o n g s h o r e c u r r e n t v e l o c i t y i n t h e s u r f z o n e on a p l a n e , impermeable beach. T h i s e x -p r e s s i o n i s i n t e r m s o f r e a d i l y o b t a i n e d beach and wave -p a r a m e t e r s and a r e s i s t a n c e c o e f f i c i e n t f o r h y d r a u l i c a l l y r o u g h s u r f a c e s . 2. When t h e r e s i s t a n c e c o e f f i c i e n t i s c a l c u l a t e d u s i n g an e s -t i m a -t e o f -t h e a b s o l u -t e s u r f a c e r o u g h n e s s i n c o n j u n c -t i o n w i -t h -t h e Karmön-P r a n d t l r e s i s t a n c e e q u a t i o n f o r s t e a d y , u n i f o r m f l o w i n r o u g h p i p e s , t h e v a l i d i t y o f t h e d e r i v e d r e l a t i o n s h i p i s s a t i s f a c t o r i l y d e m o n s t r a t e d . 3. V e r i f i c a t i o n o f t h e t h e o r y i s o b t a i n e d f o r t h e n o n - u n i f o r m d e v e l o p i n g c u r r e n t do\mstream o f a s u r f - z o n e b a r r i e r t h r o u g h c o m p a r i s o n w i t h l a b o r a t o r y e x p e r i m e n t s . V e r i f i c a t i o n f o r t h e u n i f o r m case i s ob-t a i n e d u s i n g b o ob-t h l a b o r a ob-t o r y and f i e l d d a ob-t a .

4. The d e r i v e d e x p r e s s i o n appears t o have p r e s e n t u t i l i t y i n t h e d e s i g n o f c o a s t a l model t e s t s and t o p r o v i d e a n e c e s s a r y component f o r t h e f u t u r e u n d e r s t a n d i n g o f l o n g s h o r e sediment t r a n s p o r t .

ACKNO;^^LEDGEMENTS

F i n a n c i a l s u p p o r t f o r t h i s w o r k was p r o v i d e d by t h e C o a s t a l E n g i n e e r i n g Research C e n t e r o f t h e Department o f t h e Army, Corps o f Eng i n e e r s u n d e r C o n t r a c t No. DA49005CIVENG629. Mr. Dara Z a r Eng a r a s -s i -s t e d w i t h t h e d a t a r e d u c t i o n .

REFERENCES

Chow, V. T., Open Channel H y d r a u l i c s , M c G r a w - H i l l Book Company, I n c . , New Y o r k , 1959, p. 196.

E a g l e s o n , P. S., " U n i f o r m L o n g s h o r e C u r r e n t s on a P l a n e Beach," P r o c . L a t i n Amer. Cong, on H y d r a u l i c s o f I.A.H.R., P o r t o A l e g r e , B r a z i l , A u g u s t , 1964.

E a g l e s o n , P. S., " T h e o r e t i c a l Study o f L o n g s h o r e C u r r e n t s o n a P l a n e Beach," M.I.T. D e p a r t m e n t o f C i v i l E n g i n e e r i n g . H y d r o d y n a m i c s Lab-o r a t Lab-o r y R e p Lab-o r t NLab-o. 8 2 , 1965.

G a l v i n , C. J . , J r . , and E a g l e s o n , P. S., " E x p e r i m e n t a l S t u d y o f Long-s h o r e C u r r e n t Long-s on a P l a n e Beach," Tech. Memo. Ho. 10, U. S. Army C o a s t a l E n g i n e e r i n g Research C e n t e r , W a s h i n g t o n , J a n u a r y , 1965. G a l v i n , C. J . , J r . , and Savage, R. P., "Longshore C u r r e n t s a t Nags Head,

N o r t h C a r o l i n a , " ( u n p u b l i s h e d m a n u s c r i p t r e c e i v e d i n A p r i l , 1 9 6 5 ) . Inman, D. L., and Q u i n n , W. H., " C u r r e n t s i n t h e S u r f Zone," P r o c .

Sec-ond Conf. on C o a s t a l Eng., C o u n c i l on Wave R e s e a r c h , B e r k e l e y , C a l i f o r n i a , 1951.

(21)

L u n d g r e n , H., "Wave T h r u s t and Wave Energy L e v e l , " Paper No. 1.20, I.A.H.R. Congress, London, 1963.

McCowan, J . , "On t h e H i g h e s t Wave o f Permanent Type," The London,

E d i n b u r g h and D u b l i n P h i l o s o p h i c a l Magazine and J o u r n a l o f S c i e n c e , V o l . 38, 1894.

Putnam, J . A., Munk, W. H., and T r a y l o r , M. A., "The P r e d i c t i o n o f Long-s h o r e C u r r e n t Long-s , " T r a n Long-s . A.G.ÏÏ., 3 0 , pp. 337-345, 1949.

(22)

Cytaty

Powiązane dokumenty

The inaugural April workshop, which was based in London, showcased recent research on coronavirus discourses going viral by Johannes Angermuller (Open University) and Juliane

Urban Landscape Infrastructure: Strategizing green space for urban development.. Urban China,

Instrukcja na sejm nakazywała posłom domagać się zachowania wolnej i zgod‑ nej elekcji, tak aby na polu elekcyjnym nie doszło do scysji, a także lepszego — podobnie jak na

Autorka Kultur narodowych u korzeni przywołuje w tym kontekście prace Jerzego Smo- licza, który badając członków wieloetnicznego społeczeństwa australijskiego wskazywał na to,

(An Epistemo/ogica/ Hierarchy?); autora interesują tu także relacje między wiarą, rozumem i opinią (Faith, Reasoa, and Opinion); chociaż pierwsza z nich

W tekstach oryginalnych peryfraza wydaje się być rzadsza, w zależności od językowego konserwatyzmu i stylistycznych preferencji autora; nie pozwala to jednak na wnioskowanie o

[r]

EWOLUCJA UBEZPIECZEŃ SPOŁECZNYCH W POLSCE OD 1919 DO 1935 R. Polska polityka socjalna, realizowana w ubezpieczeniach spo­ łecznych w pierwszym okresie budowy państwa, była