• Nie Znaleziono Wyników

Properties of nitracrine-nucleic acids complexes in selected enzymatic systems

N/A
N/A
Protected

Academic year: 2021

Share "Properties of nitracrine-nucleic acids complexes in selected enzymatic systems"

Copied!
9
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA BIOCHIMICA ET BIOPHYSICA 6, 1988

E wa C i e si e ls k a, M a r i o l a P i e s t r z e n i e w i c z , W ł a d y s ł a w Ga łasi ńs ki , M a r e k G n i a z d o w s k i

P R O P E R T I E S O F N I T R A C R I N E - N U C L E I C A C I D S C OM P L EX E S IN S E L E C T E D E NZ Y M A T I C SY ST E MS *

Some properties of the covalent complexes, of the anticancer drug - nitracrine ( l-nitro-9-(3,3-N,N-dimethylaminopropylamino) acridine, Le- dakrin, C-283, NAC) with nucleic acids have been tested in DNA or RNA- -dependent enzymatic systems.

NAC-DNA complexes exhibit decreased template activity in an RNA synthesis in vitro system. They show an increased resistance to DN-ase I and DN-ase Sj and to acid hydrolysis. Binding of NAC to tRNA decrea-ses aminoacylation of the latter. On the other hand, such aminoacyl- -tRNA does not loose activity in the protein synthesis in vitro. Preli-minary experiments on the chromatographic resolution of the hydrolyzed complexes are presented here.

A n a n t i c a n c e r drug, n i t r a c r i n e (l - n i t r o - 9 - ( 3,3 - N , N- d i m et h yl a - m i n o - p r o p y lamino) ac ri di ne, NAC, Le da kr in , C-283) in h ib i ts DNA, RNA, a nd to a lo we r e x t e n t p r o t e i n s y n t h es i s e i t h e r in v iv o or in the ce l l c u lt u r e (see [4] for rev iew) . In th e p r es e n c e of su lfhy - d r yl c o m p o u n d s s e ve r al b i o l o g i c a l l y a ct i v e 1 n i t r o a c r id i n e d e r i v a -ti v es f or m c o v a l e n t c o m p l e x e s w i t h DNA, R N A a nd pr ot ei ns . A stru c- t u r e - a c t i v i t y r e l a t i o n s h i p e x h i b i t e d b y the n i t r o a c r i d i n e s b ot h in th is r e a c t i o n an d in t he b i o l o g i c a l e x p e r i m e n t s p r o m p t e d us to u se the t h i o l - d e p e n d e n t s y s t e m as a m o d e l of the d r u g fa te in the cell. It h as b e e n f o un d th at c o m p l e x e s of N A C w i t h D N A s ho w c o n s i d e r a b l y lo w er t e m p l a t e a c t i v i t y in th e R N A s y nt h es i s in v it r o s y st e m [5, 6, 12, 13]. A s e n s i t i v i t y of N A C - D N A c o m p l e x e s to n u c l e as e s and

(2)

the e ff e ct of the d ru g b i nd i n g to t RN A on t RN A f u n ct i on w e re a s -s ay e d in the e xp e r i m en t s r e p o rt e d here. T h e y e n a b l e d a fu rth er c h a r a c t e r i z a t i o n of the N A C - D N A c o mp l e x es an d a p p r o a c h i n g other p o s s i bl e m o l e c u l a r m e c h a n i s m s of the d r u g action.

MATERIALS AND METHODS

9 [ 14 C] NAC, the u n l a b e l l e d d r u g a nd s yn t he t ic p o l y n u c l e o ti d e s w e re the s ame as d e s c r i b e d b e f o re [3, 11]. Y e a st t R NA i s ola te d a c co r d i ng to [15], p a n c r e at i c d e o x y r i b o n u c l e a s e I (E.C. 3.1.21.1). D NA (Wo rthi ngto n, U S A ) , d e o x y r i b o n u c l e a s e S^ f rom A s p er g il l us o ry z ae (E.C. 3.1.30.1, Ca lb io ch em , USA) w e re used. O th e r a n a l y -ti ca l g ra d e c h e m i c al s w e re p u r c h a s e d f r om Cefarm, Poland. C o m p l e x es of N A C w i t h DNA, t RN A or s y nt h et i c p o l y n uc l e o t i d es w e re f o rm e d in the p r e s e n ce of d i t h i ot h re i to l , p u r i f i e d a n d their s t o i ch i o m e t r y w as e s t im a t e d as d e s cr i b e d b ef o re [11]. A m i n o a c y l a t i o n of t R NA w a s a s s a y ed a c c o r d i ng to M an s a nd No- ve ll i [8] u s in g y ea s t t RN A as a c o n tr o l a nd an e q u i v a l e nt a mo un t of N A C - t R N A co mple x, U - [ 14C] a mi n o a ci d m i x t u r e (A me rs ha m England) an d rat live r a m i n o a c y l - t R N A s yn t h e ta s e s p r e pa r a t i o n (E.C. 6 . 1 . 1 V T r a n s l a t i o n te st w as p e r f o r m e d as d e s c r i b e d b e f or e [7]. D N - a s e I d i g e s t i o n a ss a y w as c a r r i e d ou t in 50 m M T r i s/ H Cl b uf f er pH 7.5 c o n t ai n i n g 4 m M m g 2 + , 1 un it of the e nz y me an d 30 yg of D N A or an e q u i v al e n t a mo u nt of the N A C - D N A c o m p l e x pe r ml. Th e c o m p l e x e s w er e f or m ed as d e s c r i b e d ab o ve w i t h D N A p r e v i o u s l y p u -r i f i ed b y p h en o l e xt-ra ct ion . T h e s am pl e s w e r e i n cu b a t ed at 20°C a nd the c o ur s e of the r e a c t io n w a s f o l l o we d for t w o h o u rs by the a b s o r ba n c e m e a s u r e m e n t s at 260 nm.

D N -a s e S.^ di gestion assay w a s performed according to V o g t

[14] as desc rib ed by P u l k r a b e k [10] usi ng 0.28 m g

of the control D N A or the N A C - D N A complex and 0.0 02 I.U. of the e n zy m e p er ml. Pa pe r c h r o m a t o g r a p h y of th e

[

14

c]

N AC - p o l yn u c l e o t i d e c o m -p l ex e s a ft er h y d r o l ys i s (0.3 M H C1 at 100° C for 1 h) w a s p e r f o r -m ed in the i s o pr o pa n ol ( co n ce n t r at e d HCl) H 20 s ol v ent (65 ¡1 6 .7 : 18.3). T he s am pl e s c o r r e s p o n d i n g to 2 00-3 00 yg of n e u t r a l y ze d h y d r o l y z a t e w e re s p ot t ed o n t o W h a t m a n p ap e r No. 2 an d d e v e l o pe d for 18 h b y the d e s c e n d i n g t ec hn iq ue. T h e n r a d i o a c t i v i t y of 2 cm p ap er c h r o m a t o g r a m s tr ip s w a s m e a s u r e d in l iq ui d s c in t i l l a t io n c o un t e r u si n g t o lu e ne s c i n t i la t o r w i t h 0.4% P PO a nd 0. 01 % POPOP.

(3)

RESULTS AND DISCUSSION

E f f e c t of N AC on t R N A fu nc tio n. In o rd er to c h e c k w h e t h e r i r -r e v e -r s i b l e b i n d i n g of N A C to t R NA im pa r is its fun ctio n, N A C - t R N A c o m p l e x c o n t a i n i n g o n a v er a ge t wo d r u g m o l e c u l e s p er R N A c ha i n w a s f o r m e d in t he p r e s e n c e of d i t h i o t h r e i t o l a n d a s s a y e d for ami- n o ac y l a c c e p t i n g a c t i v i t y a n d its a b i l i t y to m a i n t a i n t r a n s l a -t i o n p ro ce ss. W h e n th e d r u g - t R N A c o m p l e x w as u se d in am in o ac y l- -t R NA s y n t h es i s s y s t e m th e a mo u n t of r a d i oa c t i v e a mi n o acid s b o u n d to t R N A w a s 58% of t he c o n t r o l (Tab. 1). T a b l e 1 Aminoacylation of the NAC-tRNA complex

Aminoacylacja tRNA związanego z NAC

Spécification CPMa % control

tRNA control (20 pg) 638 ± 72 100

NAC-tRNA (20 JJg) 373 ± 52 58 ± 8

tRNA control (10 pg) 472 ± 22 74 ± 3

NAC-tRNA (10 u g )

a CPM • counts per minute.

O n th e o th e r hand, w h e n [1 4C] a m i n o a c y l - t R N A p r e f o r m e d e it he r w i t h t he c o n t r o l or N A C - t r e a t e d t R N A w e r e a d d e d to the p r o t e i n s y n t h e s i s in v i t r o s y s t e m n o d i f f e r e n c e s in th e a m in o a ci d i n c o r -p o r a t i o n t o the a c i d i n s o l u b l e m a t e r i a l w e r e observed' (not shown). H e n c e t he d r u g i n h i b it s a m in o a c id b i n d i n g to t RN A to so me e xt en t w h i l e it d o e s n ot s e e m to a f f e c t t he f u r th e r st ep s of p r o te i n sy nt h es i s. H o we v e r th e i n h i b i t i o n of a m i n o a c y l a t i o n is r e l a t i -v e l y l ow w h e n c o m p a r e d to the d r u g e f fe c t on t he t r a ns c r i p t i o n a l t e m p l a t e a c t i v i t y of DNA. R N A s y n t h es i s on D N A b e a r i n g c om p a r ab l e a m o u n t of N A C m o l e c u l e s c o v a l e n t l y b o u n d (i.e. 20 30 d r u g m o l e c u -les p er 1 0 3 of n uc l e o t i de s ) is r e d u c e d to f ew p e r ce n t [11, 13] . A r e l a t i v e i n s e n s i t i v i t y of a m i n o a c y l a t i o n m a y be d u e to the NAC p r e f e r e n c e to g u a n y l r e s i d u e s s h ow n e i t h e r w i t h s y n t h e ti c p o l y r i -b o n u c l e o t i d e s or p o l y d e o x y n u c l e o t i d e s [3]. T h e r e a re s ome g ur ny l m o i e t i e s in t he h e l ic a l p ar t of a mi n o a ci d a c c e p t i n g ar m w h i c h is p r o b a b l y r e s p o n s i b l e for b i n d i n g of t R N A - s y n t h e t a s e [1, 9]. Ami- n oa c y l r e s id u e s ar e h o w e v e r c o u p l e d to C C A s e q u e nc e s w h i c h o b v i o -u s l y do n ot c o n t a i n g-ua ni ne . A lo w e f f e c t of t h e d r u g on th e t RNA

(4)

f un c ti on s p r e s en t e d her e an d a h ig h i n hi b it i on of R NA sy nt hes is in v it r o [5, 12, 13] is in g o o d a gr e em e nt w i t h the o bs e r v a ti o n s m ad e in v i vo i n di c at i ng th at the d ru g in hib it s R N A s yn t he s is to a h ig h er e xt en t t h an p r o t e i n s yn t h es i s [2].

S e n s i t i v i t y of N A C - D N A c o m p l e x to nu cle ases . B i nd i n g of N AC to D NA d e c r e as e s b ot h the rate a nd the e xt e nt of h yd r o l ys i s of the c o m p l e x w i t h p a n c r ea t i c D N- a se I (Fig. 1) an d D N- a se S 1 from A s p e r g i ll u s o ry z ae (Fig. 2).

Incubation time ( min )

Fig. 1. Time course of DNA and NAC-DNA digestion by DN-ase I • — • control DNA (1), O — O NAC-DNA complex (2)

Rys. 1. Trawienie DNA wolnego i związanego z NAC przez DN-azę I 1 - DNA kontrolne, 2 - DNA związane z NAC

(5)

Incubation time ( min )

Fig. 2. Time course of DNA and NAC-DNA digestion by DN-ase Sj

® — • c o n t r o l native DNA (1), B — B control heat-denatured DNA (2), O O NAC- -DNA complex (3), □ — O h e a t- d e n at u r e d NAC-DNA complex (A)

Rys. 2. Trawienie DNA wolnego i związanego z NAC przez DN-azę Sj

1 - natywne DNA kontrolne, 2 - kontrolne DNA denaturowane termicznie, 3 - DNA związane z NAC, 4 - DNA związany z NAC denaturowany termicznie

L o w e r seJhsitivity of the c o m p l e x (eith er n o n - h e a t e d or after t h e r m a l d e n a t u r a t i on ) to the l at te r e n z y m e is of int eres t. D N- as e s ho ws a s p e c i f i c i t y to s i n g l e - s t r a n d e d DNA. L o w a f f i n i t y of t he e n z y m e to n a t i v e D N A in th e c o m p l e x i n d i c at e s t h at no si ng l e- - s t r a n d r e gi o n s a pp e a r in D N A u p o n the d r u g bin di ng . Th e time c o u r s e c u r v e of t he r e a c t i o n of d e n a t u r e d N A C - D N A c o m p l e x w it h D N - a s e fa ll s w e l l b e l o w the c o r r e s p o n d i n g c u r v e o b t a i n e d w it h t he h e a t e d c o n t ro l D N A (Fig. 2). T h i s r e su l t is c o n s i s t e n t w i t h ou r p r e v i o u s o b s e r v a t i o n s [3] t ha t i n t er s t r a n d li nk s are in trod

(6)

u-Migration distança . ( cm )

Fig. 3. Paper chromatography of [ ^ C ] NAC-RNA complex after its acid hydrolysis Rys. 3. Chromatografia bibułowa produktów chemicznej hydrolizy RNA związanego z

[U C ] NAC

c e d to D N A u p o n the a d duc t fo rma ti on . T h e e x i s t e n c e of the c ro ss- -l ink s in t he c o m p l e x e n a bl e s a p a r t i a l r e c on s t i t u t i o n of the d o u b l e - s t r a n d e d s t ru c tu r es in h e a t d e n a t u r e d D N A he n ce d e c r e a si n g its s e n s i t i v i t y to the s i n g l e - s t r a n d e d s p e c if i c n u c l ea s e

C h e m i c a l h y dr o l y s i s of N A C - p o l y n u c l e o t i d e com pl exe s. C om p le x es c.f N AC w i t h D N A or R N A e x hi b i t r e l a t i v e l y h i g h r e s i st a n c e in

(7)

va-ri ou s c o n d i t i o n ^ p a r t i c u l a r l y w h e n fo r m e d at th e hi g h dr ug p o -l y n u c-l e o t i d e m o -l a r ratio. W h e n [14 C] N A C - D N A or R NA c om p le x e s c o n t a i n i n g a b o ut 10- 20 d r u g m o l e c u l e s p er 1 0 3 of n u c l e o t i d es w e re h y d r o l y z e d w i t h 0.3 M H C 1 for 1 h at 100°C, a nd t h en s u b j e ct e d to p ap e r c h r o m a t o g r a p h y w i t h s e v er a l so l ve n ts la rg e a mo u nt of r a -d i o a c t i v i t y r e m a i n e -d at th e o r i g i n (not shown). T he h yd r o ly z a - tes of th e [14 C] NA C- D NA , RNA, or s y n th e t i c p o l y n u c l e o t i d e c o m -p l e x f o r m e d at the lo w er r a ti o n s r e s u l t i n g in b i n d i n g of 0. 2-0. 8 'mole cule s p er 1 0 3 of n u c l e o t i d e s are r e s ol v e d into th ree r a d i o

-a c t i v e sp o ts w h i c h a re d i f f e r e n t f r om the f ree d r u g (Fig. 3). T wo o f t h e m m i g r a t e a nd t he t hi r d on e c o n t a i n i n g a bo u t 20% of the r a -d i o a c t i v i t y r e m ai n s at the or ig in . " It c a n be c o n c l u d e d f ro m the r e su l ts p r e s e n t e d h er e t hat at le a st t hr e e d i f f e r e n t ty p es of the a dd u c t s ar e f o rm e d at the r e -l at i ve q u a n t i t i e s d e p e n d i n g on th e d r u g - p o -l y n u c -l e o t i d e ratio. The p r e s e n t o b s e r v a t i o n s a re c o n s i s t e n t w i t h o ur e a r l i e r r esu lt s w h i c h p r e d i c t e d d i f f e r e n t m o d e s of N A C b i n d i n g to D NA d e p e n d i n g on th e d r u g c o n c e n t r a t i o n [ l l ] . ( ACKNOWLEDGEMENT

We a p p r e c i a t e the r e a d i n g of the m a n u s c r i p t b y E. Sz adow ska. M.A, a n d th e c a p a b l e t e ch n i c a l a s si s t a n c e of M r s M. Fras unek .

REFERENCES

1 1 ] C h a m b e r s R. W. (1971), Progr. Nucl. Acid Res. Molec. Biol., U , 33.

[ 2 ] F l l i p s k i J., M a r c z y ń s k i B., C h o r ą ż y M. (1975), Acta Biochim. Pol., 22, 119.

[ 3 ] G n i a z d o w s k i M., C i e s i e l s k a E . , S z r a i g i e - r o L. (1981), Chem.-Biol. Interaction, 34, 355.

[ 4 ] G n i a z d o w s k i M., F i l i p s k i J., C h o r ą ż y M. (1979), Antibiotics. Mechanism of action of antieukaryotic and antivi-ral compounds, ed. F. E. Hahn, Springer-Verlag, Berlin, Vol. V/2, 275. [ 5 ] G n i a z d o w s k i M., S z m i g i e r o L., Ś l ą s k a K.

J a r o s-K a m i ń s k a B ., C i e s i e l s k a E. (1 9 7 5 ), Mol. Pharmacol., JU, 310.

(8)

[ 6 ] G n i a z d o w s k i M., ś l ą s k a K., S z m i g i e r o L., J a r o s-K a m i ń s k a B. (1972), Stud. Biophys., 31/ 32. 417. [ 7 ] J a b ł o n o w s k a K. , T e 1 e j k o E., K o p a ć z-J o d-

c z y k T . , G a ł a s i ń s k i U. (1981), Bull. Acad. Pol. Biol. Cl. XI, 29, No. 9-10, 361.

[ 81 M a n s R. J., N o v e l l i G. D. (1961), Arch. Blochem. Bio-phys. , 94, 48.

[ 9 ] M i r z a b e k o v A. D., L a s t i t y D . , L e v i n a E. S., B a y e v A. A. (1971), Nature New Biol., 22 9 , 21.

[10] P u l k r a b e k P., L e f f 1 e r S., W e i n t e i n I. B., G r u n b e r g e r D. (1977), Biochemistry, 16, No. 14, 3127.

[11] S z m i g i e r o L., G n i a z d o w s k i M. (1981), Arzneim.- Forsch. Drug Res., XI, 1875.

[12] S z m i g i e r o L., Ś l ą s k a K., C i e s i e l s k a E., J a r o s-K a m i ń s k a B., G n i a z d o w s k i M. (1977), Acta Biochim. Polon., 24, 35.

[13] Ś l ą s k a K., S z m i g i e r o L., J a r o sK a m i ń -s k a B., C i e s i e l s k a E. , G n i a z d o w s k i M. (1979), Mol. Pharmacol., 16, 287. [14] V o g t V. M. (1973), Eur. J. Biochem., 33, 192. [15] W a s i a k T., G n i a z d o w s k i M. (1978), FEBS Letters, 89(2), 260.

Department of General Chemistry Institute of Physiology and Biochemistry Medical Academy of Łódź

Department of General and Organic Chemistry Institute of Chemistry Medical Academy of Białystok

Ewa Ciesielska, Mariola Piestrzeniewicz, Władysław Gałasiński, Marek Gniazdowski

WŁAŚCIWOŚCI KOMPLEKSÓW NITRAKRYNY Z KWASAMI NUKLEINOWYMI W WYBRANYCH UKŁADACH ENZYMATYCZNYCH

Przebadano niektóre właściwości kompleksów leku przeciwnowotworowego, ni- trakryny ( l-nitro-9-(3,3-N,N-dimetyloaminopropyloamino) akrydyna, Ledakrin, C- -283, NAC) z kwasami nukleinowymi w wybranych układach enzymatycznych

(9)

zależ-nych od DNA lub RNA. Kompleksy NAC-DNA charakteryzują się obniżoną aktywno-ścią matrycową w układzie syntezy RNA in vitro. Wykazują one pewną oporność na działanie DN-azy X i DN-azy Sj i na hydrolizę chemiczną. Wiązanie NAC do tRNA obniża jego aminoacyXację. Z drugiej strony, taki aminoacylo-tRNA wykazu-je niezmienioną aktywność w układzie syntezy białka in vitro. W niniejszym artykule przedstawiono również wstępne wyniki chromatografii zhydrolizowanych kompleksów.

Cytaty

Powiązane dokumenty

W przypadku pobrania wycinka do ceny dodatkowo należy doliczyć koszt badania - Badanie podstawowe (1 blok parafinowy) - 65,00 (3310 - Zakład Patomorfologii). W przypadku

Quality engineering tools in analysis of failure of longwall mining complex Downtimes caused by machine failures translate into a loss of effectiveness in the mining process.. The

Sekwencja aminokwasowa, czy specyficzne oddziaływania w obrębie reszt bocznych (np. znaczny udział fragmentów hydrofobowych w łańcuchu, zneutralizowany ładunek molekuły

sprawdzenia poprawności działania urządzen w roznych trybach pracy, sprawdzen ie działan ia urządzeń sterujących,. pomiar parametrow

If Player II has not fired before, reach the point a 31 , fire a shot at ha 31 i and play optimally the resulting duel.. Strategy of

INF-γ, interferon-γ; KYN, kynurenine; KYNA, kynurenic acid; LAAD, L-amino acid decarboxylase; l -DOPA, L-3,4-dihydroxyphenylala- nine; LPS, lipopolysaccharides; NFTs,

CIĄGI – zadania

Dostępne dane literaturowe wskazują, że przyjmowanie z żywnością i suplementami diety kwasów tłuszczowych z rodziny n-3 może odgrywać rolę zarówno w patogenezie,