• Nie Znaleziono Wyników

Systematic tetst with ship models with δpp = 0.600 - 0.750

N/A
N/A
Protected

Academic year: 2021

Share "Systematic tetst with ship models with δpp = 0.600 - 0.750"

Copied!
32
0
0

Pełen tekst

(1)

ME DD E LAN D EN

PRAN

STATINS SKEPPSPROVNINUSANSTALT

(PUBLICATIONS OP THE SWEDISH STATE SHIPBUILDING EXPERIMENTAL TANK)

Nr44

OOTRBORU

1959

SYSTEMATIC TESTS

WITH SHIP MODELS WITH

8= 0.600

- 0.750

INFLUENCE OF

AT L/B = 7.24

BY

E. FREIMANIS AND UANS LINDOREN

GUMPERTS FORLAG

GOTEBORG

(2)

GöTEBORG 1959

(3)

1)

References on page 26.

1.

Introduction

In a series of publications [1 3]i) the results of systematic

tests

with ship models With 6

= 0.675 are described.

The influence

of shape of sections and shape of waterlines, main dixñensions and

the position of LCB on the resistance and propulsive

qualities are

investigated.

Starting from the parent model No. 720 in the previous

series,

-a new series of models with varying block coefficients has been

investigated. Models with block coefficients between 0.600 and 0.750

have been tested and the experimental results are given in this

report.

The tests were carried out in smooth Water in the towing basin of

the Swedish State Shipbuilding Experimental

T a n k The experimental results have been converted to the scale

of ships having a length of 120 m The main dimensions were the

same for all the models, but due to the variation in block coefficients

(between 0.600. and 0.750), the displacement varied between

8669

and 10837 m.

The results have also been expressed in dimensionless form in order

to facilitate their application to similar

bips of different size.

2.

Symbols, Units and Methods of Calculation

The symbols have been chosen in accordance with the nomenclature adopted by

the Sixth International Conference of Ship Tank

Super.

i n t e n d e n t s as a tentative standard.

Ship Dimensions

L

= length on waterline

Lpp

= length between perpendiu1ars

LE

= length of entrance

(4)

L1

= length of run

B

= breadth on waterline

T

= draught

AM

= immersed midship section area

= load waterline area

S

= wetted surface area

17 volumetric displacement

4

= weight displacement; Br. tons in sea water

= distance of L. C. B. forward of

midships (Lpp/2)

'/ CE

= half angle of entrance on LWL

Jz Xmax = maximum half angle on LWL of forebody

1s cA

= half angle at station 0 on

LWL

Propeller Dimensions

D

= propeller diameter

P

= propeller pitch

I D2

A0

propeller disc area

=

-A1)

= developed blade area

Kinematic and Dynamic Symbols and Ratios

V

=speed

VE

= speed of advance

B

= resistance

2'

= propellar thrust

Q

= propeller torque

a

rate of revolution (revs. per unit time)

P5

= effective power

= shaft power (at tail end of

shaft)

V - VE

w

-

- wake fraction (TAoB)

TR

=

- thrUst deduction factor

2'

(102.0 kg sec.2/m4 for fresh water)'

= density of water ((104.5

kg sec.21m4 for sea water)

v

= kinematic viscosity of water

C1

= I72I V3/P5 (m3, Metr. knots and HP)

PR

tj)

= 427.1

(Br. HP, tons and knots)

4213

C8 = 17213 V3IPs (m3, Metr. knots and HP)

PS

427.1

(Br. HP, tons and knots)

(5)

= Vi

iTh

= Faomz number, displacement

= VI

= Fao

number, length

v/ /i

= speed-length ratio (knots, feet)

Coefficients and Ratios

a

LB T

J7

Lp B T

Aw

=

- load waterline coefficient

LB

M

= midship section coefficient

BT

AM L

= prismatic coefficients (horizontal)

pp =

AMLPP

r

v

= prismatic coefficient (vertical)

Aw T

Ôpp 1;

length-breadth ratio

B

B

= breadth-draught ratiO

T

L

= length-displacement ratio

'1I3 Afl

= disc area ratio

A0

= - = propulsive efficiency

PS

lt

- hull efficiency

H

1w

= block coeffiOients 5

Lpp

= L C B. forward of Lpp/2 as % of

P

D

= pitch ratio

(6)

6

Units and ConversiOn Factors

1 metre

3.28 1 ft.

1 metric ton

1000 kg

=

1 metric lmot

1852 m/hour =

1 metric HP = 75 m kg/sec. =

(redipr. 0.3048)

0.984 British tons

(recipi. 1.016) 0.999 British koTots (reeipr. 1.001)

0.986 British HP

(recipr. 1.014)

For g (acceleration due to gravity) the value 9.81 m/sec. has been used.

Methods of Calculation

The model-scale results from the resistance tests havC been converted to the scale

of the full sized ships

in the conventional way in accordance with FiiOvDE S method

The frictional resistance has been calculated using the formulas decided upon at the

Ship Tank Superintendents' Conference in Paris in 1935. No

length correction has been, employed.

All the self-propulsiOn experinents were carried out according. to the so-called

Continental method (GEBEB8) with the skin friction correction applied as a towing

force

The results have been converted to full scale in the conventional manner

In converting the measured values to ship scale, no corrections for scale effects,

ar resistance hull condition etc have been applied since the experiments were only

concerned with comparisons between the different versions of the models.

Wake fractions have been calculated in the usual way using the propeller as a

wake integrator.

Values of wake fraction were worked out, both on the basis of

thrust identity and on the basis of torque identity, with the aid, of the curves of the

results from the open water propeller tests. A mean between the two values so

obtained was then taken in each case This method of calculating wake fraction is

the normal practice at the Tesik.

3.

Ship Models Tested

Model No. 720 was used as the parent form for' this family of

models. This model has also been the parent form for the systematic

tests with ship models with â1 = 0.675, [1-3] and has proved to

be a good model from a resistance and propulsive pomt of view

The main particulars, in ship scale, were as follows

6

= 0.658

= 0.675

= 0.984

= 0.760

= 0.669

t/L

= 075 %

Length of parallel middle

body = 12 % of

From this parent form, six new ship forms were developed with

app = 0600, 0.62, 0.650, 0.700, 0725 and 0;750. The new forms

= 123.00 m

= 120.00 m

B

= 17.00 m

11

= 7.083 m

= 9750

m3

LI V1t3

=5.76

b/B

= 7.24

BIT

= 240

Model scale = 1 :20

(7)

'-P

Fig. 1.

were derived from the parent form with a method called the one

minus prisniatic method.

The method is ifiustrated in Fig. 1. To increase ô, for example,

the length of entrance is decreased from L to L and the length

of run decreased from LR to L. The length of the parallel middle

body is increased from L0 to L. Thus the sections, which befOre

the alteration were distributed over the distances L and L, now

become distributed over the distances L and L

The values of

L, L, L are chosen to get the block coefficient and position of

LCB deired. Accordingly, the length of the parallel middle body

decreases with decreasing block coefficient. For block coefficients

below â

= 0.625 the parallel middle body becomes virtually

nega-tive and the lowest block coefficient, â

= 0.600 has been obtained

partly by decreasing the nidhip section coeffiôient from 0.984 (for

the forms with

0.625-0.750) to 0.976.

Drawings showing contours, load waterlines and section area curves

are given in Figs. 2-4 respectively.

Complete body plans for all the models are also given, Figs. 5=11.

Curves of length-displacements rations (L/V'3), position of the

centre of buoyancy (t/Lpp) and angles of entrance and run of the

load Waterlines are shown in Fig. 12.

Complete data for all the models are given in ship scale in Table ,1

(Appendix I).

All the models were fitted with a rudder and a 1 mm triwire at

Station 19.

p

H

p

r,'

F

,n in'

(8)

Moc,No. dpp

835 0600

833

0625

795

0650

72b 0675

796

0700

799 0725

83'

0750

6,. a000

0.625 .. 0.650 ópp.O.675

" 0.700

.'

0.725 0.750

0

AP

/8

/

/9

20

PP

(9)

243 23.2 22.3 - 21.6 - ao.8 -

Iq.q

/0 Al teP Body

Load Waterlines

//

\

ia

'3

'4

IE

-

-. -

.. O.72f

0-0--

us 0.750 :: :

: ;::

8.s

/

2 '3 7 8 9

/0

Pore So

/6

/7

/8

/9

20

1.-p/a

60.00m

(10)

% of

/00

90

80

70

60

50

40

30

20

/0

0

Sectional Area C urves

2 3

4

6

/2

/3

/6

/5

.16.

4pp/a60.00m

-'I

-,.

--

, O p 0

-

-o0 , , 00

N

'N

Sppso.00

.. 0.700 ,.

0.72f

O750

-0-a--pp

10 .7

8

/8

9. "7,

'9

20

AP

0

/

1/

I0

(11)

Fi

Model No.833

d=O.625

Fig. 6.

at__

_2O

if 4VMI1i

1

£11111111

ftIEIIIIIII

LLI_11II11II

&WVIII7ilMFA,

WL S

WI__

WAWSIIII

2O _ifØJ

"III'

IL%%15NUIIII

LI

I1NNNIIII

I%_ 111M111!

&1ffilhhA

1 1

Model No. 835

dO.6OO

LWL

LWL WLS

(12)

__

20

11111

__Mill

III'

iww_iIg_iii

&I_I__-111

L WL wL

Model No. 795

d=O. 650

Fig')

Mode! No. 720

0.675

Fig. S.

8 WL S B.L

(13)

L LW

IL_

H

11

It

20

11

1%

0

Iii

I;'

__I

/7_1

Fig. 10. 8.L WL 5 20

I,

&L. 1

113

1112

'

13

Model No. 796

d= 0.700

Fig

Model No. 799

0.725

(14)

LWL

-

--

I

T

_________

-"pp

0.600 .625 630

Fi

0

.6 7S

Fig 12.

700 .725

dpO.75O

.750

jpp

4

0.5-0

6.0

- 5.7-

3.6=-

£5-25 20

'5

'a '/2 4

---'/3 Va

ma'i1.3

-14

Model Nb. 834

H-

/

(15)

D,mnio,,s ,rn,

Fig. 13.

-

15

4.

Propeller Data and Open Water Propeller Tests

Propeller No. P 538 was used for the self-propulsion tests carried

out with all the ship models.

The main particuiais of this propeller (in full scale) are as follows:

Number of blades.

4

P/D

= 0.95

D

5.00 m

AD/AO = 47 %

P (mean)

= 4.75 m

Rake = 9.1 degrees

Model scale

1:20

The same propeller model was also used in the self-propulsion

tests described in ref. [1-3]. The outline of the propeller is shown

in Fig 13 and the results of the open water tests are given m Fig 14

in the usual diensiotiless form, i. e KT, KQ and m as functions

of J.

(16)

16

Fig. 14.

5.

Results of Resistance and Self-Propulsion Tests

With all the ship models, resistance as well as sell-propulsion

tests were carried out over a speed range of about 6 knots around

the economical speeds.

All the tests were carried out in smooth

water and the test results are given in detail in Tables 2-3

(Resist-ance Tests) and Tables 4-5 (Sell-Propulsion Tests), Appendix .11.

Resistance Tests

The resistance test results are plotted in Fig. 15 where the effective

I7'

173

power,

E,

and the coefficient C1 -

P1

are given as functions

of the speed and FROUDE numbers.

S 4 5 S / 0 a

PreJ/e, No 550

Ve?enp. /4.JC

/.

/7. 908/ A,. 2.2-04/0' 00 70 0 10 40 Jo 20 /0 a

_

-ai

as

o.j

a

as

ac

as

ao

oj

to

(17)

-C,

700

600

500

400

300

200

/00

0

0.600

0625

0650

6pp 0676

0700

0.725 0750 0.20 I I

I

I I 0.5$ 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.40 0.4.5

0(0

0.55 0.60 0.65

Fig. 15.

0.2 S 17

v/r

in HP

(Nefr)

8000

7000

6000

5000

+000

3000

2000

/000

0

-0---

-

0.600 0.625 0.650 0.675 0.700 '0.725 0750

.

--o--o- -C1 pp 12600 (II

/

/

/

750

UPILlI

uPhill

/6 /2 /4. 'S.

I,

là 'V/n knot5

(18)

18

The C1-values are also shown in a "three-dimensional" dliagram,

Fig 16

The bow wave formations around the extreme models at

normal speeds are ifiustrated in photographs, Fig. 17.

The "critical speed", defined as the speed at which the resistance

curve shows a more or less distmct change of slope, is treated in [4]

From a dingram in this reference, that gives the relation between

the critical speed, length, block coefficient and position of LOB the

following critical speeds are obtamed

In Fig. 18, the wave formations around the four models with

0.600, 0.650, 0.700 and 0.750 are shown at speeds somewhat

exceeding the critical speeds.

In another publication from SSPA [5], tests with stifi lower block

coefficients, 5

= 0.525, are described. Although those models do

not exactly belong to the. family described in this paper, the

differ-ences are so small that they can not be expected to give rise to any

trend, with regard to resistance.

It has therefore been possible to

draw an extended diagram giving C1-values in the region from 6pp =

= 0.525 up to ô

= 0.750, Fig. 19. When fairing the diagram,

the results published by NORDSTRoM on tests with models with

= 0.575 and 0.625 [6-7] have been used for guidance.

Self-Propulsion Tests

All the self-propulsion tests were carried out with propeller P 538,

see Section 4.

The shaft power P, the rate of revolutions n, the

propulsive efficiency

, and the 02

values are plotted in Fig 20

The C values are also presented in a "three dimensional" diagram,

Fig. 21. The trends appear to be similar to those for the C1-values.

The propulsive factors, are given' in Fig. 22. The wake factors w,

show an expected trend to increase with increasing block coefficients.

Model No.

Block coefficient

"Critical speed", in knots

835

0.600

17.4

833

0.625

17.2

795

0.650

17.0

720

0.675

16.3

796

0.700

15.1

799

0.725

14.1

834

0.750

13.3

(19)

600 550 500 '.50 400

j-F

fC7

= v/v'g V"J

6 b0 0. O O 0 0

_

I

4JAiJAi1U

00 V

IA"

'

Q 625

P

ã700

urariraYrari srw125

A VA VA V VAfAA!

p4 adoO

(20)

20

Model No. 834, , 0.750, V 14O knots

_____i.

-.

-Model No. 835,

= 0.60ö, V = 18.0 knots

Fig. 17.

\

. -

I,

(21)

(pp

= 0.600, V = 18.0 knots

= 0.650. V = 17.0 knots

0.700, V = 16.0 knots

= 0.750, V

14.0 knots

JU!à

Fig. 18.

(22)

650

-N--.

-III..

L/8=7.24'

B/T= 2.40

'o

.,.

k/i/houf rudder

(23)

fl mr/rn

4

/20

I/O

l00

go

80

C2

50O

600

300

200

/00

'I

/2

'3

/4

23

9000

8000

7000

6000

5000

4000

3000

2000

/000

0

/6 /7

/8 Vrnkofs

0.20 - 0.25

PnL.V/jr!

0.5$ 0.60 0.65 0.70 0.75

aso

0.63

Q90

V/vT'

0.600

{o623\

\ \\\\

Fig. 20.

-A

UI:

.. n

J1iiiIilI

IIP

1i II

T:

L

iEiiiiii

-E

-

'% 11111

-0--rO-0.67$ 0.700 0.725

C2

4

4

:---.

-Ill

II 0.40 0.43 0.30 0.53 0.60 0.66

v/v"

(24)

350

/

v24

v3

4W

C2-A

r

_

I

Ar,

500

F

I I I 450 62 5

A'-400

v,Pr:

70:

675

d4IidhiLi

4!âI

---rivi

.300

0'

0b0° 0 0.750 0.125

P

rA4r4rJJra34

(25)

tin%

Thrust dethctien (ac/or

25

20

'S

Win%

Woke froc//on

30

25

1.10

0

iii

ill!

1/

/2

1.3 1*

/5

/6

Ship Speed, V, ,n knols

Pig. 22. - .700 .600

.650

625

25

Hull efficiency

I- t

,20IN!UEii

1.30

.725

/7

/6

(26)

26

The thrust deduction factors t, are more irregular, scattering around

the value t = 20 % The resultmg hull efficiencies increase in the

main with increasing block coefficients.

Acknowledgement

The expenments described were made possible by grants from

the Hugo Hammar Foundation for Maritime

Re-search and the Hugo Hammar Foundation for

International Maritime Research. The authors wish

to express their gratitude to the COmmittees of the Funds for these

grants.

The authors also wish to thank Dr. Hs EDSTRAND, Director of

the Swedish State Shipbuilding Experimental

T a n k, for his valuable advice and the staff of the Tank for their

assistance.

List of References

[1-3] FREIMANIS, E., LIMOGREN, HAN5 "Systematic Tests with Ship Models with

= 0.675, Part ILill", SSPA (Swedi8h Stae Shipbuilding

Experi-mental Tank) Pubhcatzon8 Nos 39 41 an4 42 Goteborg 1957 and 1958

LINDOREN, HANS- "Critical Ship Speed", Inter-national Shipbuilding Progres8

No. 9, 1955, p. 217.

EDSTRAD, HANS, LINDOREN, HANS: "Systematic Tests with Ships with

= 0.525", SSPA Publication No. 38, Gãteborg 1956.

NORDSTRoM, H. F.: "Some Systematic Tests with Models of Fast Cargo Vessels",

SSPA Publication No. 10, Gteborg 1948.

NORDSTROM, H. F.: "Systematic Tests with Models of Cargo Vessels with

=

(27)

1) Rudder area included

Rudder area = 30 in2

Appendix I, Dimensions

Table 1

Suffix f and a denote forebody and afterbody respectively.

27

Model No. 835 833 795 720 796 799 834 ÔPP 0.600 0.625 0.650 0.675

0.00

0.725 0.750 L m 123.00 123.00 123.00 123.00 123.00 123.00 123.00

Lpp

in 120.00 120.00 120.00 120.00 120.00 120.00 120.00 LE rn 68.50 64.00 58.70 52.80 46.40 40.50 35.10 Lo in

-9.50

-2.00

6.00 14.40 22.50 30.50 38.80 rn 64.00 61.00 58.30 55.80 54.10 52.00 49.10 B 17.00 17.00 17.00 17.00 17.00 17.00 17.00

T

m 7.083 7.083 7.083 7.083 7.083 7.083

7083

. 17 rn3 8669 9031 9392 9750 10114 10476 10837 17, rn3 rn3 4062 4607 427.4 4757 4512 4880 4767 4983 5059 5055 5329 5147 5555 5282 rn2 1473 1509 1548 1589 1630 1669 1710 in2 657 681 709 740 774 805 834 Awa in2 816 828 839 849 856 864 876

8')

m2 2676 2732 2792 2853 2912 2972 3032

4M

m2 117.54 118.50 118.50 118.50 118.50 118.50 118.50

L/B

7 235 7 235 7 235 7 235 7 235 7 235 7 235

BIT

2.40 2.40 2.40 2.40 2.40 2.40 2.40 5.99 5.91 5.83 5.76 5.69

£62

5.56

t/Lpp

%

-1.70 -1.50

-1.25

-0.75 -0.10

+0.45 +0.85

% ccE degrees 8.5 9.1 9.9 11.0 12.5 14.2 16.3 '4 amax degrees 12.9 13.7 14.9 16.5 18.5 21.0 24.0 1/2 OA degrees 19.0 19.9 20.8 21.6 22.3 23.2 24.3

a

0.704 0.722 0.740 0.760 0.780 0.798 0.818

-

0.976 0.984 0.984 0.984 0.984 0.984 0.984

-i

0.585 0.610 0.634 0.658 0.683 0.707 0.732 0.562 0.592 0.625 0.660 0.700 0.738 0.769 0.607 0.627 0.643 0.657 0.666 0.678 0.696 0.600 0.620 0.644 0.669 0.694 0.719 0.744

pp

0.615 0.635 0.661 0.686 0.711 0.737 0.762 0.831 0.845 0.857 0.866 0.876 0.886 0.895 0.873 0.886 0.898 0.910 0.923

0935

0.940 Va 0.797 0.811 0.821 0.829 0.834 0.841 0.851

(28)

28

') R = Residuary resistance

= Frictional resistance

Appendix II, Results

Table 2

Resistance Tests

V

FnL

FnV

v/fL

B

Ri'

R PD C1

©

knots

(metr)

(metr.)tons (rnetr.)

HP

13 0.193 0.471 0.647 16.24 0.307 1448 640 0.655 14 0.207 0.507 0.698 1936 0.360 1859 623 0.673 15 0.222 0.544 p.746 22.57 0.399 2323 613 0.684 16 0.237 0.580 0.796 25.73 0.417 2823 612 0.685 18.5 0.244 0.598 0.821 27.46 0.430 3108 610 0.688 17 0.252 0.616 0.846 29.33 0.446 3420 606 0.692 II 17.5 0.259 0.634 0.871 32.17 0.504 3860 586 0.716 18 0.267 0.652 0.895 36.31 0.613 4484 549 0.764 " 18.5 0.274 0.670 0.920 41.42 0.750 5256 508 0.826 19 0.281 0.689 0.945 47.08 0.895 6135 472 0.889 19.5 0.289 0.707 0.970 52.82 1.027 7067 443 0.947 20 0.296 0.725 0.995 58.54 1.146 8032 420 0.999 13 0.193 0.468 0.647 16.84 0.327 1501 635 0.661 14 0.207 0.504 0.696 20.01 0.378 1?22. 619 0.678 15 O222 0.540 0.746 23.21 0.408 2388 613 0.684 16 0.237 0.576 0.796 26.27 0.417 2881 616 0.681 16.5 0.244 0.594 0.821 28.22 0.439 3195 610 0.688 17 0.252 0.612 0.846 30.90 0.492 3603 591 0.710 17.5 0.259 0.630 0.871 34.55 0.582 4148 561 0.748 '© 18 0.267 0.648 0.895 40.07 0.743 4949 511 0.821 18.5 0.274 0.666 0.920 47.38 0.961 6012 457 0.918 19 0.281 0.684 0.945 55.74 1.197 7263 410 1.023-13 0.193 0.465 0.647 17.90 0.378 1596 613 0.684 14 0.207 0.501 0.696 20.86 0.403 2003 610 0.688 15 0.222 0.536 0.748 24.17 0.433 2487 604 0.695 15.5 0.230 0.554 0.771 25.97 0.450 2760 601 0.698 16 0.237 0.572 0.796 27.83 0.466 3053 597 0.703 16.5 0.244 0.590 0.821 30.17 0.503 3415 586 0.716 17 0.252 0.608 0.846 33.23 0.567 3875 564 0.744

175

0.259 0.626 0.871 37.83 0.692 4540 526 0.798 18 0.267 0.644 0.895 45.04 0.914 5563 467 0.898 18.5 0.274 0.662 0.920 55.03 1.225 6983 404 1.038 19 0.281 0.679 0.945 66.23 1.550 8630 354 1.185 13 0.193 0.462 0.647 18.47

0394

1647 609 0.689 14 0.207 0.498 0.696 21.36 0.408 2051 610 0.688 15 0.222 0.533 0.746 24.75 0.438 2546 605 0.693 15.5 0.230 0.551 0.771 26.62 0.457 2830 601 0.698 16 0.237 0.569 0.796 28.73 0.484 3152 -593 0.707 16.5 0.244 0.586 0.821 31.56 0.541 3573 574 0.731 17 0.252 0.604 0.846 35.53 0.643 4142 541 0.775

'

17.5 0.259 0.622 0.871 42.10 0.846 5052 484 0.867 18 0.267 0.640 0.895 51.69 1.153 6383 417 1.008 18.5 0.274 0.657 0.920 64.54 1.558 8190 353 1.188

(29)

i) BR = Residuary resistance

= Frictional resistance

Table 3

Resistance Tests

29

V

E L

F5

V//L

B

Pj

C1

BF

knots

(motr.)

tons

(metr.)

HP

(metr.) 12 0.178 0.424 0.597 16.24 0.391 1336 605 0.693 13 0.193 0.459 0.647 19.30 0.429 1721 597 0.703 14 0.207 0.494 0.698 22.55 0.458 2166 592 0.709 14.5 0.215 0.512 0.721 24.27 0.472 2414 591 0.710 15 0.222 0.530 0.746 28.55 0.513 2732 578 0.726 Z 15.5 0.230 0.547 0.771 29.22 0.569 3106 561 0.748 16 0.237 0.565 0.796 32;37 0.840 3551 540 0.777 16.5 0.244 0.583 0.821 35.83 0.716 4056 518 0.810 17 0.252 0.800 0.846 40.50 0.837 4723 487 0.861 17.5 0.259 0.618 0.871 48.60 1.091 5832 430 0.976 18 0.267 0.636 0.895 60.05 1.454 7416 368 1.140 11 0.163 0.386 0.547 14.03 0.383 1058 602 0.697 12 0.178 0.421 0.597 17.07 0.436 1405 589 0.712 13 0.193 0.456 0.647 20.30 0.475 1810 581 0.722 13.5 0.200 0.474 0.672 22.13 0.501 2049 575 0.730 14 0.207 0.492 0.696 23.94 0.520 2299 72 0.733

Z

14.5 0.215 0.509 0.721 28.56 0581 2641 553 0.759 15 0.222 0.527 0.746 30.14 0.687 3102 521 0.805 15.5 0.230 0.544 0.771 34.53 0.820 3671 486 0.863 16 0.237 0.562 0.796 39.23 0.952 4304 456 0.920 16.5 0.244 0.579 0.821 44.08 1.073 4990 431 0.973 17 0.252 0.597 0.846 48.99 1.182 5712 412 1.018 10 0.148

0349

0.497 11.71 0.342 803 610 0.688 11 0.163 0.384 0.547 14.49 0.396 1093 596 0.704 12

0178

0.419 0.597 17.53 0.441 1443 586 0.716 12.5 0.185 0.437 0.622 19.15 0.460 1642 582 0.721 13 0.193 0.454 0.647 21.08 0.496 1879 573 O732

Z

135 0.200 0.471 0.672 23.73

0572

2197 548 0.766 14 0.207 0.489 0.696 26.93 0.670 2586 520 0.807

'

14.5 0.215 0.508 0.721 31.02 0.805 3085 484 0.867 15 0.222 0.524 0.746 36.57 1.000 3763 439 0.956 15.5 0.230 0.541 0.771 43.33 1.232 4606 396 1.059 16 0.237 0.559 0.796 50.65 1.462 5557 361 1.162

(30)

30

Table 4

Self-Propulsion Tests

V

F

fl

P5

C2

'2=

W 1)H

knots

(metr.) .

HP

r/min (metr)

/0

/

13 0.471 80.7 1831 506 0.829 79.1 18.5 28.2 1.135 14 0.507 87.7 2368 489 0.858 78.5 18.9

2.2

1.130 15 0.544 94.4 2948 483 0.869 78.8 18.8 27.8 1.125

o

16 0 580 101 3 3601 480 0 874 78 4 19 1 26 9 1 107 16.5 0.598 104.6 3987, 476 0.881 78.0 19.1 26.9 1.107

°

17 0.616 108.4 4444 466 0.900 77.0 19.8 26.6 1.093 II 17.5 0.634 112.5 5004 452 0.928 77.1 19.4 26.7 1.100 18 0.652 118.3 5998 410 L023 74.8 20.9 268 1.081

'

18.5 0.670 124.5 7206 371 1.131 72.9 21.8 26.9 1.070 19 0.689 131.0 8563 338 1.241 71.6 21.8 26.2 1;060 19.5 0.707 20 0.725 13 0.468 80.3 1856 513 0.818 80.9 19.2 30.6 1.164 14 0.504 87.4 2413 493 0.851 79.7 20.2 30.3 1.145 15 0.540 94.6 3070 477 0.879 77.8 20.9 29.7 1.125 16 0.576 101.5 3758 473 0887 76.7 21.9 28.8 1.097

°

16.5 0.594 105.1 4127 472 0.889 77.4 21.1 28.3 1.100

-

17 0.612 108.7 4568 467 0898 78.9 19.3 28.0 1.121 17 5 0 630 113 6 5324 437 0 960 77 9 19 9 28 0 1 113

'

18 0648 119.8 6512 388 1.081 76.0 20.5 28.9 1.118 18.5 0.666 128.1 8143 337 1.245 73.8 19.7 27;4 1;106 19 0.684 137.1 10424 285 1.472 69.7 21.1 27.3 1.085 13 0.465 81.4 1982 493 0.851 80.5 18.6 30.8 1.176 14 0.501 88.3 2512 486 0.863 79.7 '18.7 29.9 1.160 15 15.5 0.536 0.554 94.8 98.4 3094 3451 485 480 0.865 0.874 80.4 80.0 190 19.2 297 29.5 1.152 1.146 16 0.572 102.2 3869 471 0.891 78.9 19.6 288 1.129 16.5 0.590 106.2 4362 459 0.914 78.3 19.5 28.6 1.127 17 0.608 110.7 4987 439 0.956 77.7 19.8 28.4 1.120 17.5 0.626 116.7 6022 396 1.059 75.4 21.0 28.8 1.110 18 0.644 124.1 7603 341 1.230 73.2 21.5 29.7 1.117 185 0.662' 1337 9916 284 1.477 70.4 21.7 296 1.112 19 0.679 13 0.462 81.8 2113 475 0.883 77.9 20.7 33.1 L185

o

14 0.498 88.5 2631 476 0.881 78.0 20.6 31.9 1.166 15 0.533 95.3 3245 475 0.883 78.5 20.2 31.1 1.158 15.5 0.551' 99.3 3651 466 0.900 77.5 20.4 30.2 1.140

°

16 0.569 103.3 4095 456 0.920 77.0 20.7 29.5 1.125 16.5 0.586 107.6 4676 438 0.958 76.4 21.1 29.6 1.121 17 0.604 112.7 5465 410 1.023 75.8 20.6 29.5 1.126 ' 17.5 0.622 119.4 6725 364 1.152 75.1 21.0 30.4 1.135 18 0.640 128.3 8794 303 1.384 726 21.0 31.2 1.148 18.5 0.657 137.3 11165 259 1.620 73.4 16.9 31.4 1.211

(31)

Table 5

Self-Propulsion Tests

31 V

F '

n

Ps

C2 PSI

t

w 1H

kiots

(metr)

.

r/mm

(metr.)

HP

-- 0 / 0 /0 12 0.424 75.1 1622 498

0842

82.4 17.8 33.4 1.234 13 0.459 82.1 2109 487 0,861 81.6

183

32.5 1.210 14 0.494 89.0 2682 482 0.870' 81.4 18.1 31.7 1.199 14.5 0.512 92.6 3011 474 0.885 80.2 18.7 41.7 1.190 15 0.530 96.8 3476 '454 0.924 78.6 19.7 31.4 L171

Z

15.5 0.547 101.3 4014 434 0.967 77.4 20.5 31.3 1.157 16

0.565 106.0

4631 414 1.013 76.7 20.4 31.0 L154 16.5 0.583

111J

5366 392 1.070 75.6 21.1 30.5 1.135 17 0.600 116.9 6381 360 1.165- 74.0 2L6 30.5 1.128 17.5 0.618 123.9 7856 319 1.315 74.2 19.9 31.3 1.166 18 0.636 . 11 0.386 69.5 1297 491 0.854 81.6 18.1 33.5 1.232 12 .0.421 76.7 1754 472

0889

80.1 19.6 33.1

L22

13 0.456 83.9 2272 463 0.906 79.7 19.6 32.1 1.184 13.5 0.474 87.4 2561 480 0.912 80.0 19.0 31.7 1.186 14 0.492 91.2 2916 451 0.930

78.8

19.8 31.5 1.171 14.5 0.509 95.3 3364 434 0.967 78.5 20.0 .31.9

1i75

15 0.527 100.4 3991. 405 1.036 77.7 20.1 31.5 1.166 15.5 0.544 106.0 4770 374 1.122 77.0 19.8 31.3 1.167 16 0 562 111 6 5701 344 1 219 7o 5 19 7 31 7 1 176 16.5

0.5i9 '117.4

6728 320 1.311 74.2 19.3 31.2 1.173 17 0597 , 10 0.349 63.1 997 491

0854

80.5 19.3 35.1 1.243

ii

0384

69.5 1359 480 0.874 80.4 19.7 36.4 1.263 12 12.5 0.419 0.437 77.1

812

18562153 456 444 0.920 0.945 77.7 76.2 21.7 , 22.9 3&3 34.6 L210 1.179 13 0.454 85.4 2501 430 0.976 75.1 22.8' 33.4 1.159 ir 13.5 0.471 89.4 2872 420 0.999 76.5 21.4 33.2 1.177 14 0.489 93.5 3337 403 1.041 77.5 19.5 '33.7 1.214 14.5 0.506 98.2 3939 379 1.107 78.3 18.3 34.4 1.245 15 0.524 104.2 4828 342 '1.227 77.9 18.3 35.2 1.261 15.5 0.541 16 0.559

(32)

Contents

Page

Introduction

3

Symbols; Units and Methods of Calculation

3

Ship Models Tested

6

Propeller Data and Open Water Propeller Tests

. .

15

Results of Resistance and Self-Propulsion Tests .

16

Acknowledgement

26

List of References

26

Appendix.I, Dimensions

.

27

Cytaty

Powiązane dokumenty

[r]

The Land Administration Domain Model (LADM) and the related Social Tenure Domain Model (STDM) functionalities can be used for documenting primary and secondary land... rights

Wystawa o plebiscycie na Warmii i Mazurach. Komunikaty Mazursko-Warmińskie nr

do województwa olsztyńskiego — i to zarów no powodzian, jak i ludności ukraińskiej — przed­ stawia poufne pismo wojewody olsztyńskiego W iktora Jaśkiewicza,

Dlaczego uczniowie szkół specjalnych rekrutują się ze środowisk o dramatycznie niskim statusie ekonomicznym i jak to się dzieje, że nazywa się ich prze- de

The total dissolved Ca 2+ ion concentrations, measured using the ICP-OES method as a function of the pH at body temperature 37 ◦ C in the presence two different buffer solutions

fiir Einschub nacheinander (fiir Versuchsanstalten ist die Finanzierung stets das Problematischste) lief iiber knapp 3 Jahre; trotzdem funktionierten nach Lieferung des

pau- linów na Jasnej Górze (s. Grzegorza Poźniaka są zagadnienia dotyczące tradycji śląskiego budownictwa organowego, czego przykładem jest recenzowana pozycja, zatytułowana: