• Nie Znaleziono Wyników

Remarks on the generalized probability of the bifuzzy event

N/A
N/A
Protected

Academic year: 2021

Share "Remarks on the generalized probability of the bifuzzy event"

Copied!
7
0
0

Pełen tekst

(1)

Tadeusz Gerstenkorn , Jo a n n a Gerstenkorn *

REMARKS ON THE GENERALIZED PROBABILITY

OF THE BIFUZZY EVENT

A b str a c t. The presentation is a continuation o f a paper at M S A ’04 (T. Gerstenkorn,

J.

Gerstenkorn (2 0 0 7 )). In 1978 Ph. Sm ets proposed the so -ca lled g-p rob ab ility o f a fu zzy even t as a generalization o f the L. Z adeh’s probability o f 1968. In 1980 S. H eilp em also d iscu sscd ^-probability and analysed its properties. In 1992 Ph. Sm ets d iscussed o n ce again the sam e his ow n problem and dem onstrated its axiom atic proper­ ties. In this elaboration w e desire to d iscuss the g-probability o f the b ifu zzy (intuitionis- tic) event and its properties as consistent with K o lm o g o ro ff axiom atics.

K ey w o rd s: b ifu zzy (intuitionistic) event, generalized-probability, fu zzy set.

I. INTRODU CTIO N

In 1965 L. Zadeh introduced the notion o f a fuzzy set as a generalization of

the Cantor’s set that was dominated to this moment in science. Conception o f the

fuzzy set allowed the mathematical modelling o f not sharp formulated notions,

usable very often in the so-called soft-sciences, as e.g. economy, humanistics,

law, medicine. The characteristics o f the fuzzy set comes after the introducing

the so-called membership function of an element x o f a considered space X to

a fuzzy set A, defined as follows:

A = {(x, /лл (х))1 x ' . x & X ) ,

(1)

where X -> [0,1], i.e. f.tA(x ) is a characteristic function o f the set A, with this

difference to the characteristic function (flA (x) o f the Cantor s set A that it can

take all the values o f the interval [0, 1] and not only the values 0 or 1.

P rofessor em eritus o f the Ł ód ź U n iv., Fac. o f M athem atics, Prof. o f U niv. ot Trade in Łódź.

(2)

Already in 1968 L. Zadeh introduced also and discussed the idea o f prob­

ability o f the fuzzy event in relation to the fuzzy set. He has brought out the dif­

ference between the fuzziness and accidentalness.

Assuming a probability space (.X, .с/, P), the probability o f the fuzzy event

A

e S ’/

has been defined by

P ( A ) = \ n A( x ) P ( d x ),

(2)

x

where the meaning o f juA( x ) and o f the space X is as above and . с / is a ď -

Algebra.

One can easy see that the membership function

jlia(x)

has replaced in (2)

the characteristic function <pA(x ) o f the normal (crisp) set A.

The considerations relating to the probability of the fuzzy event were con­

tinued in following years by many authors. A review o f these problems one can

find in papers o f T. Gerstenkorn and J. Mańko (1994, 1996).

The idea o f the fuzzy set has been developed, extended and generalized for

the so-called bifuzzy set, called by K. Atanassov (1983, 1985, 1986) the in-

tuitionistic set.

The generalization consisted in introducing to considerations, besides the

membership function, also the so-called non-membership function o f the ele­

ment x to the set A, i.e. one has proposed the following definition o f that set:

A = {(M

a

( * ) . ( * ) ) / x : x e X } ,

(3)

where /лл ( х ) , v A( x ) : X —> [0,1] with the condition

0 < /uA( x ) + vA(x) < 1 f o r x e X .

(4)

The above statement assumes the existence o f the function

* л ( х ) = 1 - М л ( х ) - ул ( х )

called the intuitionistic index and the number я A{x) e [0,1] is treated as

a measure o f the hesitancy (indecision) connected with a valuation o f the degree

o f membership or non-membership o f the element x to the set A. Examples of

such interpretation and procedure one can find, e.g. in T. Gerstenkorn and

J. Mańko (2006a, 2006b).

(3)

Alike as for the fuzzy set, the probability o f the intuitionistic fuzzy set has

been introduced. The review o f some standpoints in this question was presented,

e.g. in T. Gerstenkorn and J. Gerstenkorn (2007) and in papers o f T. Gerstenkorn

and J. Mańko (1995-2006).

II. THE GENERALIZED PROBABILITY OF TIIE FUZZY EVENT

In 1978 Philippe Smets proposed the so-called g-probability o f the fuzzy

event as a generalization o f the probability of that event given by L. Zadeh

(1968, (5), p. 423). The definition is the following:

P { A ) = \g { /.iA( x ) ) d F ( x ) ,

(6)

x

where g is a monotonic and non-decreasing function with conditions:

g (0 ) = 0, g ( l) = 1 and F ( x ) is a distribution function in the probability space

(*, s f, P).

But two years later Stanisław Heilpem considered also the g-probability and

analysed inquiringly its properties.

In 1982 Ph. Smets came back to his considerations with the g-probability but

in this case he presented the axiomatic grounds o f its correctness and concor­

dance with the axiomatics o f Kolmogoroff.

III. THE GENERALIZED PROBABILITY OF THE BIFUZZY

EVENT

Definition. Let X be any set and S f a cr -Algebra o f its bifuzzy sets in X.

Then by g-probability o f the bifuzzy event A e S t we call a non-negative func­

tion Р determined on A with the values on [0,1], as follows:

P(A) = Jg C M * )-

M )P ( d x ),

(7)

where g is a monotonic, non-decreasing function with conditions. g(0,0) - 0,

£(1,1) = 1 and P i s a probabilistic measure on X.

Similarly as it was done by Ph. Smets, we show that the function (7) fulfils

the KolmogorofPs axioms.

(4)

The fulfilment o f this condition is evident in view o f the postulated condi­

tions for f.i(x) and v(x).

Axiom 2: P ( X ) = \.

It suffices to notice that

jjx

(

x

) = 1 and vx ( x ) = 0 and to take (7).

Axiom 3:

Let

A

q

X

and

B

q

X

and

A n B = {<0},

then

P ( A <J B ) = P ( A ) + P ( B )

(the events A and В are bifuzzy ones and being excluded.).

We assume that:

(*) = H

a

( * ) л M

b

W ' thc °Peration minimum,

(8)

И

a

u /i(x ) = /*a(x ) v / /jv(x ) ' the °P eration maximum.

(9)

Proof. The bifuzzy events A and В arc excluded by assumption therefore the

sets A and В are disjoint. It means that Vx e X the membership function

/■1Аглв(х ) ~ 0, i.e. /.

ia

(

x

)

a

jUB(x ) = 0, whereas the non-membership function

v ^ g i * ) has the value 1 for the product of the bifuzzy events A and B. If we

assume that the element x <£ A then we form the set X A = { x : /.iA(x) = 0 and

vA (x) = 1}. But if we take x £ B then we set up the set X B = { x : f.iB (x) = 0

and vfi(x) = l}. Let us notice that in account of V x G X A Г \ Х B it will be

/JA^ B(x) = 0

and

at

the

same

time

уж л Д * ) = 1*

Then

als0

g ( / W * ) > vA ,* (* )) = 0 - Next

there is / / ^ ( x ) = f i B( x) and

\ / x e X B there is M

a

^

b

(x ) = M

a

(x ) and similarly for vAuB( x ) (it is evident

regarding (9)).

Therefore

P ( A ) = J g(M A( x ) , v A( x ) ) P { d x ) =

J

g (/J A( x ) , v A( x ) )P (d x ) =

X X H

=

*ЛиВ( х ) ) Р № ) ,

(/.iA( x ) > 0 only if /uB( x ) = 0 , i.e. if x e X B).

Similarly

(5)

Therefore

P ( A

k j

B) = \ j + J \ ё ( / лАив(х )‘>

= P ( A ) + P (B ).

IV. T H E G E N ER A LIZED CO ND ITIO N A L PR O B A B ILITY O F TH E

BIFUZZY EVENT

If there are given two bifuzzy events A and В defined on X then we present

the g-probability o f the event A under the given event В traditionally , i.e.

Р ( А \ В ) - П *

п ^ g )- .

0 0 )

assuming the foregoing conditions on g and P ( B ) > 0 .

Proof. It is sufficient to notice that the probability P ( B) fulfils the axioms

° f Kolmogoroff, as it was shown above and in the domain o f bifuzzy sets, we

have

A n B = {(//л (л) л M

b

W . v/< W v

vb

W ) ' x : x e

R E F E R E N C E S

A tanassov K. (1 9 8 3 ), In tu itio n is tic fu z z y sets, ITKR's S cien tific S e ssio n , S ofia, June 1983. D ep o sed in Central S ei. Techn. Library o f B ulg. A cad, o f S ei. 1697 /8 4 (in B ulg).

A tanassov K ., S toeva S. (1 9 8 5 ), Intuitionistic fu zzy sets, Proc. o f the P olish Sym posium on Interval & F u zzy M athem atics, A ugust 2 6 - 2 9 , 1983. W ydaw n. P olitech n ik i P o­ znańskiej, eds. J. A lbrycht and H. W iśniew ski, Poznań, pp. 2 3 - 2 6 .

A tanassov K. (1 9 8 6 ), I n tu itio n is tic fu z z y sets, F u zzy Sets and S ystem s, 2 0 , 8 7 -9 6 . Gerstenkorn T ., Gerstenkorn J., (2 0 0 7 ), P ro b a b ility o f a f u z z y even t. R e v ie w o f p r o b le m s ,

2 3 rd A nnual C onference on M ultivariate Statistical A n a ly sis, M S A 2 0 0 4 , N ovem b er 8 -1 0 " ’, 2 0 0 4 , U n iversity o f Ł ódź, Poland, A cta U niversitatis L od zien sis, Folia

O econ om ica, 2 0 6 , 3 1 1 -3 1 9 . ,

Gerstenkorn T M ańko J (1 9 9 4 ), F ilo zo fia ro zm y to śc i a m a te m a ty k a lo so w o sc i, S tu d ia P h ilo s o p h ia e C h ris tia n a e (The p h ilo s o p h y o f fu z z in e s s a n d th e m a th e m a tic s o f ra n - d o m n e s s — in P olish ), Studia Philosophiae Christianae 30 (2), 83 7.

Gerstenkorn T ., M ańko J. (1 9 9 5 ), O n p r o b a b ility a n d in d e p e n d e n c e in in tu itio n istic fu z z y se t th e o r y , N o te s on Intuitionistic F u zzy Sets 1, 36—39.

(6)

Gerstenkorn T ., M ańko J. (1 9 9 6 ), F u zzin e ss a n d ra n d o m n e ss: v a rio u s c o n c e p tio n s o f p r o b a b ility . Proc. del III C ongreso Internacionál de la S o cicd a d Internacionál de

G estión у E con om ia F uzzy (SIG E F), 1 0 -1 3 N o v . 1996, B u en os A ires, Argentina. Facultad de C ien cias E con om icas, U niversidad de B u en o s A ires. Editores: Emma Fernandez Loureiro, L uiza L. Lazzari, E m ilio A .M . M achado, R o d o lfo H. Perez, A ntonio T erceno, V ol. I ll, paper 2 .4 5 , 21 pages.

Gerstenkorn T ., M ańko J. (1 9 9 8 a ), B ifu z z y p r o b a b ility o f in tu itio n is tic f u z z y sets, N otes on Intuitionistic F u zzy Sets 4 ( 1 ) , 8 -1 4 .

Gerstenkorn T ., M ańko J. (1 9 9 8 b ), A p r o b le m o f b ifu zzy p r o b a b ility o f b ifu z z y e ven ts, B U S E F A L 7 6 ,4 1 - 4 7 .

G erstenkorn T ., M ańko J. (1 9 9 9 ), R a n d o m n e s s in th e b ifu zzy s e t th e o r y , C A SY S-Intern. J. o f C om puting A nticipatory S ystem s, Ed. b y D aniel M. D u b o is, U niv. o f L ićge, B elgiu m - Third Intern. C onf. on C om puting A nticipatory S y stem s, H E C -L iôge, B elgiu m , A ugust 9 - 1 4 , 1999, Partial Proc., V ol. 7, pp. 8 9 -9 7 .

Gerstenkorn T ., M ańko J. (2 0 0 0 ), R e m a r k s on th e c la s s ic a l p r o b a b ility o f b ifu z z y events, C A SY S-Intern. J. o f C om puting A nticipatory S ystem s. Ed. b y D an iel M. D ubois, U niv. o f L ieg e, B elg iu m - Fourth Intern. C onf. on C om puting A nticipatory S y s­ tem s, H E C -L iege, B elg iu m , A ugust 7 - 1 2 , 2 0 0 0 , Partial Proc., V o l. 8, pp. 1 9 0 -1 9 6 . G erstenkorn T ., M ańko J. (2 0 0 1 ), O n a h e sita n c y m a rg in a n d a p r o b a b ility o f in tu itio n is­

tic f u z z y e v e n ts, N o tes on Intuitionistic F uzzy Sets 7 ( 1 ) 4 - 9 .

Gerstenkorn T ., M ańko J. (2 0 0 5 ), P r o b a b ilitie s o f in tu itio n istic f u z z y se ts , First W arsaw International Sem inar on Intelligent S ystem s, M ay 2 1 , 2 0 0 4 , W arsaw -P olan d , S y s­ tem s R esearch Institute, Institute o f Com puter S cien ce - P olish A cad em y o f S c i­ en ces, Poland, Issu es in Intelligent System s-P aradigm s. Eds.: O. H ryniew icz, J. K acprzyk, J. K oronacki, S. T. Wierzchoń, Akademicka O ficyna W ydaw nicza EXIT, W arszawa 2005. In series: Problems o f present science - T heory and A pplications - Informatics (Problem y współczesnej nauki - Teoria i zastosow ania - Informatyka), pp. 6 3 -6 8 .

G erstenkorn T ., M ańko J. (2 0 0 6 a ), P ro b a b ility o f in tu itio n istic f u z z y e v e n ts w ith h e lp o f m o d a l o p era to rs, C ybernetics and S ystem s 2 0 0 6 - Proc. o f the E ighteenth European M eeting on C ybernetics and System R esearch (E M C SR 2 0 0 6 ), U n iversity o f V i­ enna, A pril 1 8 -2 1 , 2 0 0 6 . Ed. b y Robert Trappl, M edical U niv. o f V ienna and A u s­ trian S o c ie ty for C ybernetic Studies, V ol. I: M athem atical M ethods in C ybernetics and S ystem s T heory, pp. 5 2 -5 6 .

G erstenkorn T ., M ańko J. (2 0 0 6 b ), U tility a n d h e lp fu ln e s s o f p r o b a b ility o f th e fu z z y e v e n ts in s o m e e c o n o m ic p r o b le m s , C A SY S-Intern. J. o f C om puting A nticipatory System s, V o l. 18, p. 1 8 7 -1 9 5 . Ed. b y D aniel M. D u b ois, p ublished b y C H A O S 2 0 0 6 as Proc. o f C A S Y S ’0 5 , T he Seventh Intern. C onf. on C om puting A nticipatory S y s­ tem s, L ieg e, B elg iu m , A u gu st 8 - 1 3 , 2005.

H eilp em S. (1 9 8 0 ), W ybrane zagadnienia z teorii zb iorów rozm ytych (S elected problem s in fu zzy set theory -in P o lish ), M atem atyka Stosow ana 16, 2 7 - 3 8 .

Sm ets Ph. (1 9 7 8 ), P r o b a b ility o f a fu z z y even t: a n a x io m a tic a p p ro a c h , C olloque International sur la T heorie et les A pplications d es S o u s-E n sem b les F lou s, M arseille 1978, 1, 1 -3 .

Sm ets Ph. (1 9 8 2 ), P r o b a b ility o f a fu z z y even t: an a x io m a tic a p p ro a c h , F u zzy S ets and S y stem s 7, 1 5 3 -1 6 4 .

(7)

Zadeh L.A. (1965), Fuzzy sets, Inform. Control 8, 338-353.

Zadeh L.A. (1968), Probability measure o f fuzzy events, J. Math. Anal. Appl. 23,421-427.

Tadeusz Gerstenkorn, Joanna Gerstenkorn

UW AGI O U O G Ó LN IO N Y M PR A W D O PO D O B IEŃ STW IE ZD A R ZEN IA D W O IST O R O Z M Y T E G O

Niniejsza prezentacja jest kontynuacją pracy pt. Probability o f fu zzy event. Review

o f problems (Prawdopodobieństwo zdarzenia rozmytego. Przegląd zagadnień), przed­

stawionej na WAS'05 Acta Univ. Lodz., Folia Oeconomica 2007.

W 1978 r. Philippe Smets zaproponował tzw. ^-prawdopodobieństwo zdarzenia rozmytego jako pewne uogólnienie prawdopodobieństwa tegoż zdarzenia podanego Przez Lotfi Zadeha w 1968 r.

W 1980 r. Stanisław Heilpem także rozważał g-prawdopodobieństwo i analizował jego własności.

W 1982 r. Ph. Smets ponownie i szeroko rozpatrywał ^-prawdopodobieństwo i do­ wodził jego aksjomatycznych własności.

W przedstawianym opracowaniu pragniemy rozpatrzyć g-prawdopodobieństwo zda­ rzenia dwoistorozmytego (intuicjonistycznego) i jego własności jako zgodne z aksjoma- tyką Kołmogorowa.

Cytaty

Powiązane dokumenty

5 children drank coffee and fruit juice only.. Find the probability that both children drank all three

Mathematics: analysis and approaches and mathematics: applications and interpretation 1 Example 26: Student work.. Example 26: Probability in

Nakładem Naukowego Wydawnictwa Piotrkowskiego ukazała się w końcu 2003 roku monografia miasta Wielunia, obejmująca lata od drugiego rozbioru Polski (1793) do wyzwolenia spod

By Sharpe decomposition theorem (***) it suffices to establish the representation of the characteristic function for operator- stable measures without a Gaussian

Mr Smith buys one randomly chosen lottery ticket every day (we assume that tickets from the two lotteries are equally numerous on all days); the choices on different days

Oleszkiewicz, Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa,

PRZYKADY AKTYWIZACJI OBSZARÓW PRZEZ EVENT MARKETING Przykadów imprez, które aktywizuj obszar, mona poda wiele.. W niniejszym opra- cowaniu ograniczono si zaledwie do

Because of the random variation of the main parameters affecting the shape and area under the statical stability curve, thn characteristics of the latter should be treated as