• Nie Znaleziono Wyników

Bootstrap Distribution of OLS-Estimators for Linear Regression Models

N/A
N/A
Protected

Academic year: 2021

Share "Bootstrap Distribution of OLS-Estimators for Linear Regression Models"

Copied!
17
0
0

Pełen tekst

(1)

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 152, 2000

K r y s t y n a P r u s k a *

B O O T S T R A P D IS T R IB U T IO N O F O L S -E S T IM A T O R S F O R L IN E A R R E G R E S S IO N M O D E L S

Abstract. The bootstraps methods can be widely applied in statistical research. In the paper the bootstraps OLS-estimators for linear models are considered. The results of simulation experiments for linear models with errors which have normal, Student and uniform distribution are presented. The estimates and the histograms for OLS-estimators are determined.

1. INTRODUCTION

T h e b o o tstrap m ethods give possibility o f an ap p ro x im atio n o f u n kn ow n d istrib u tio n o f the ra n d o m variable. They can be used in the estim atio n o f p aram eters and fu nction form o f distrib u tio n and in verification o f statistical hypotheses. In the p ap e r th e application o f b o o ts tra p m eth o d s is presented for ap p ro x im a tio n o f O L S -estim ator d istrib u tio n in the case o f linear m odels and small sam ple.

W hen ra n d o m e rro r o f m odel is norm ally d istribu ted and o th er classical assu m p tio n are fulfilled, tho se estim ators have norm al d istrib u tio n , to o . It is im portan t to know distribution o f OLS-estim ators in the case o f non-norm al e rro rs, because then we ca n co n stru c t confidence in terv als fo r m o d el p aram eters and verify the hypotheses ab o u t them . T h e b o o tstra p m eth o d s can be used fo r it. In the p ap e r the m odels w ith errors, which have n o rm al, S tu d en t o r uniform d istrib u tio n , are considered.

(2)

2. BOOTSTRAP ESTIMATION OF LINEAR MODEL PARAMETERS ON THE BASIS OF OLS-ESTIMATION

O L S -m cthod is very often used in statistical and econom etrical inves­ tig atio n s bu t it is difficult to determ ine the d istrib u tio n o f O L S -estim ato rs fo r sm all sam ple and n o n -n o rm al errors in linear m odels. T h e b o o tstra p m eth o d s give such possibility.

L et a m odel be given, w hich is o f the form:

y i = g ( x i, (i) + Et fo r f - 1 ... я (1) where

y, - value o f explained variable У,

x, - vector o f values o f explanatory variables (determ ined values), fi - vector o f m odel p aram eters,

Et - value o f ran d o m erro r, g - linear function.

W e assum e th a t ( y ^ x x), ..., (ул, x n) are obtained as a result o f indepen dent draw ing.

Let ß be O L S -estim ator o f p aram eter [i, i.e. /) is vector for which the function:

G(ß) =

Ż

LVi - 9(x„ ft)]2 (2)

ł= x has its m inim um .

T h e constru ctio n o f b o o tstra p d istrib u tio n fo r O L S -estim ato r will be presented now (see E f r o n 1979).

W e assum e th a t

ii = y i - e ( X i , ß) for i = l , n (3) T h e follow ing distrib u tio n

P (E B = Éi) = - for i = 1, n (4)

П

is called the p ro b ab ility d istrib u tio n from sam ple for i = 1, n. W e generate n values from d istrib u tio n (4). L et e j, ... e* be them . T hen we calculate values y*u y* in accordance w ith th e form ula:

(3)

N ext we determ ine O L S -cstim ate for ß on the basis o f the follow ing m odel:

Уi

=

9(x„ ß)

+ e, for i = l ... n (6) w here £, is value o f u n know n ran d o m errors.

G en eratin g values e{, ..., e*, calculating y \ , y* and d eterm ining estim ates o f ß for m odel (6) are repeated N times (for exam ple N = 1000). F inally, we o b tain N O L S -estim atcs for the m odel p aram eter. We d en o te them by /?}, ..., ß*N. W e m ay determ ine the histogram o f th eir d istrib u tio n , w hich can be called b o o tstra p d istrib u tio n o f O L S -estim ato r o f ß. T h e m ean o f N values o f O L S -estim ates for the m odel (6) is called b o o tstra p estim ate o f p aram eter ß.

It can be show n th a t (see E f r o n , 1979; E f r o n , T i b s h i r a n i 1993 p. 111-112):

E (fi') = ß (7)

and

cov(/}*) = ff2(X 'X )_1 (8)

w here /?* denotes b o o tstra p estim ato r o f ß determ ined on the basis O LS- -estim ation, ft is O L S-estim ate o f ß, X' = (x lt x„) and

° 2 = l Í l y , - g ( x it ß)}2 (9) z i= i

T h e b o o tstra p distrib u tio n s o f O L S -estim ators arc the ap p ro x im a tio n o f O LS-estim ator distribution. They can be applied for construction o f confidence intervals and fo r verification o f hypotheses a b o u t m odel p aram eters.

T h e presented considerations m ay be developed for the non-linear m odels.

3. BOOTSTRAP DISTRIBUTION OF OLS-ESTIMATORS

FOR LINEAR MODEL WITH NORMAL, STUDENT AND UNIFORM ERRORS

In this section the b o o tstrap distributions o f O LS-estim ators are presented o n the sim ulation exam ples. In this way we can investigate som e p ro p erties o f O L S -estim ators and b o o tstra p O L S-estim ators.

W e consider the follow ing m odel:

У, = л 0 + сс1х и + а 2х 21 + а 2х ъ, + Е, (10) for t = 1, ..., n.

(4)

T h e experim ents were conducted for n = 20, a0 = 1, a j = 3, a 2 = 2, a 3 = 1. T h e values x u , х 1я were generated from n orm al d istrib u tio n N (5\ 1), x 21, x2„ - from d istrib u tio n N ( 3; 2) and x 31, .... x 3n - from d istrib u tio n N ( 10; 3). T h en three groups o f experim ents were co n stitu ted .

In the first g roup the values o f ran do m e rro r were generated from no rm al d istrib u tio n . T hese experim ents are denoted by N 1, ЛП0. In the second g ro u p ran d o m e rro r has S tudent distrib utio n. T h e experim ents have the follow ing d en o tatio n s S I, S5. In the third g ro up the values o f e rro r w ere generated from uniform d istrib u tio n . These experim ents are deno ted by 171, ..., t/10. T he assumed values o f standard deviation o f error distribution are given in T ab . 1. T h e e rro r expectation is equal to zero.

T a b l e 1 Standard deviation of distributions in simulation

experiments

Experiment number Standard deviation

N1, SI, U1 1.732 N2, S2, U2 1.414 N3, S3, U3 1.291 N4, S4, U4 1.225 N5, S5, U5 1.183 N6, U6 0.100 N7, U7 0.300 N8, U8 0.500 N9, U9 1.000 N10, U10 2.000 S o u r c e : Author’s assumptions.

In experim ents S I, S5 we have the S tu den t d istrib u tio n w ith 3, 4, 5, 6, 7 d.f. correspondingly.

O n the basis o f such d a ta the values y t , y„ were determ ined in each experim ent according w ith form ula (10).

N ext the O L S -estim ation and b o o tstra p O L S -estim ation were carried o u t according w ith the procedure presented in Section 2. In b o o tstra p m ethod the repetition num ber is equal to 1000. T he results o f all experim ents are presented in T ab . 2-4.

(5)

Experiment number (standard deviation o f random error)

Parameter True value of parameter OLS-estimate of parameter (standard error) Bootstrap OLS-estimate of parameter Standard deviation of bootstrap distribution of parameter Value o f x2 test statistic “o 1 5.689 (3.103) 5.570 2.664 4.649 N1 “ i 3 2.857 (0.406) 2.874 0.350 6.083 (1.732) « 2 2 1.538 (0.176) 1.536 0.155 4.039 “ 3 1 0.795 (0.148) 0.799 0.130 1.142 * 0 1 4.829 (2.534) 4.731 2.175 4.649 N 2 * 1 3 2.883 (0.331) 2.897 0.286 6.083 (1.414) “ 2 2 1.623 (0.144) 1.622 0.128 3.978 “ 3 1 0.833 (0.121) 0.836 0.107 1.142 “ o 1 4.495 (2.313) 4.406 1.986 4.649 N3 “ l 3 (0.303)2.893 2.906 0.261 6.241 (1.291) B o o ts tra p D is tri bu tio n of OL S-Estimators fo r L in ea r R eg re ss io n M o d e ls

(6)

Experiment number (standard deviation of random error)

Parameter True value of parameter OLS-estimate of parameter (standard error) Bootstrap OLS-estimate of parameter Standard deviation of bootstrap distribution of parameter Value of x1 test statistic N3 (1.291) *2 2 1.655 (0.131) 1.654 0.115 3.978 “ 3 1 (0.110)0.847 0.850 0.097 1.142 “o 1 (2.194)4.316 4.231 1.884 4.649 N4 «1 3 (0.287)2.897 2.911 0.247 6.083 (1.225) “ 2 2 1.673 (0.125) 1.672 0.109 4.039 “ 3 1 (0.105)0.855 0.858 0.092 0.765 “o 1 (2.120)4.203 4.122 1.820 4.649 N5 «1 3 (0.277)2.902 2.914 0.239 6.241 (1.183) “2 2 (0.120)1.684 1.683 0.106 3.978 *3 1 (0.101)0.861 0.863 0.089 0.0765 K ry sty n a P ru sk a

(7)

N6 (0.1) “o “ i *2 *3 1 3 2 1 1.271 (0.179) 2.992 (0.023) 1.973 (0.010) 0.988 (0.009) 1.264 2.993 1.973 0.988 0.154 0.200 0.009 0.008 4.649 6.241 4.039 0.765 “o 1 1.812 (0.537) 1.792 0.461 4.649 N 7 “l 3 (0.070)2.975 2.978 0.061 6.241 (0.3) *2 2 1.919 (0.031) 1.920 0.027 3.978 “3 1 0.965 (0.026) 0.965 0.023 0.765 “o 1 2.354 (0.896) 2.319 0.769 4.042 N8 *1 3 2.959 (0.117) 2.964 0.101 6.241 (0.5) «2 2 1.867 (0.051) 1.867 0.045 3.978 “3 1 0.941 (0.043) 0.942 0.038 0.7653 U) B o o ts tra p D is tri bu tio n of OL S-Estimators fo r L in ea r R eg re ss io n M o d e ls

(8)

u> о

Experiment number (standard deviation o f random error)

Parameter True value of parameter OLS-estimate of parameter (standard error) Bootstrap OLS-estimate of parameter Standard deviation of bootstrap distribution of parameter Value o f у2 . test statistic «0 1 (1.792)3.707 3.638 1.538 4.649 N9 “ i 3 2.917 (0.234) 2.927 0.202 6.083 (1.0) «2 2 (0.102)1.733 1.732 0.089 4.039 “ 3 1 (0.085)0.882 0.884 0.075 0.765 “o 1 (3.583)6.415 6.276 3.076 4.649 N10 “ l 3 (0.469)2.835 1855 0.404 6.241 (2.0) “2 2 1.466 (0.204) 1.465 0.179 4.039 *3 1 (0.171)0.763 0.768 0.151 0.765 K ry sty n a Pru ska

(9)

Experiment number (standard deviation o f random error)

Parameter True value of parameter OLS-estimate of parameter (standard error) Bootstrap OLS-estimate of parameter Standard deviation of bootstrap distribution of parameter Value o f x2 test statistic “o 1 4.271 (1.674) 4.300 1.484 10.749 SI (1.732) “ i “2 3 2 2.555 (0.219) 2.101 (0.095) 2.549 2.103 0.193 0.081 17.037 8.627 *3 1 0.867 (0.080) 0.867 0.070 4.148 »0 1 2.621 (3.612) 1587 3.175 6.921 S2 (1.414) “2 3 2 2.903 (0.473) 1.825 (0.205) 2.907 1.828 0.401 0.191 7.246 14.599 “ 3 1 0.910 (0.172) 0.910 0.152 2.626 “o 1 1.081 (2.556) 1.042 2.326 4.516 S3 (1.291) “ l 3 2.962 (0.334) 2.964 0.301 24.712 B o o ts tra p D is tr ib u ti o n of OL S-Estimators fo r L in ea r R eg re ss io n M o d e ls

(10)

Experiment number (standard deviation of random error)

Parameter True value of parameter OLS-estimate of parameter (standard error) Bootstrap OLS-estimate of parameter Standard deviation of bootstrap distribution of parameter Value of x2 test statistic S3 (1.291) Я2 2 1.890 1.891 0.137 7.268 (0.145) a 3 1 1.032 1.033 0.113 16.325 (0.122) “o 1 1.909 1.913 1.782 2.141 (1.998) S4 2.881 “ l 3 2.884 0.232 2.545 (0.260) (1.225) 1.969 »2 2 (0.113) 1.965 0.099 7.467 0.982 “ 3 1 (0.095) 0.982 0.087 3.907 - 3.377 “o 1 (1.084) -3 .4 0 8 0.931 1.656 S5 3.470 “ l 3 3.470 0.126 16.117 (0.142) (1.183) 2.229 “ 2 2 2.230 0.054 7.522 (0.062) a 3 1 1.161 1.163 0.044 5.869 (0.052) ! ^ í 00 K ry sty na P rus ka

(11)

Experiment number (standard deviation of random error)

Parameter True value of parameter OLS-estimate of parameter (standard error) Bootstrap OLS-estimate of parameter Standard deviation of bootstrap distribution of parameter Value of x2 test statistic *0 1 (2.944)3.054 3.115 2.754 4.673 U1 <*i 3 2.793 (0.385) 2.792 0.363 12.626 (1.732) “ 2 2 1.789 (0.167) 1.780 0.149 5.510 * 3 1 1.062 (0.140) 1.061 0.127 3.086 “ o 1 2.677 (2.403) 2.727 2.248 6.045 U2 “ i 3 (0.314)2.831 2.830 0.296 13.644 (1.414) “ 2 2 1.828 (0.137) 1.821 0.122 5.510 “ 3 1 1.050 (0.114) 1.050 0.104 3.086 “ o 1 2.531 (2.194) 2.577 Z053 4.673 U3 “ l 3 2.846 (0.287) 2.845 0.270 13.644 (1.291) B o o ts tra p D is tri b u tio n of OLS-Estimators fo r L in ea r R eg re ss io n M o d e ls

(12)

-t-о

Experiment number (standard deviation of random error)

Parameter True value of parameter OLS-estimate of parameter (standard error) Bootstrap OLS-estimate of parameter Standard deviation of bootstrap distribution of parameter ---Value of x2 test statistic U3 (1.291) «2 2 1.843 (0.125) 1.836 0.111 5.095 “ j 1 (0.105)1.046 1.046 0.097 2.702 *0 1 2.453 (2.082) 2.496 1.948 6.045 U4 “ i 3 2.854 (0.272) 2.853 0.257 13.644 (1.225) “ 2 2 1.851 (0.118) 1.845 0.106 5.510 *Э 1 1.044 (0.099) 1.043 0.090 3.086 “о 1 2.403 (2.011) 2.445 1.881 6.045 U5 “ l 3 2.859 (0.263) 2.858 0.248 13.644 (1.183) »2 2 1.856 (0.114) 1.850 0.102 5.510 1 1.042 (0.096) 1.042 0.087 3.086 K ry sty na P ru sk a

(13)

U6 (0.1) *0 “ i “ 2 “ 3 1 3 2 1 1.119 (0.170) 2.988 (0.022) 1.988 (0.010) 1.004 (0.008) 1.122 2.989 1.987 1.004 0.159 0.021 0.009 0.007 4.673 13.644 5.510 2.702 U7 (0.3) «0 “ 2 »3 1 3 2 1 1.356 (0.510) 2.964 (0.067) 1.963 (0.029) 1.011 (0.024) 1.366 Z964 1.962 1.011 0.477 0.063 0.026 0.022 4.673 13.644 5.510 3.086 *0 1 1.593 (0.850) 1.611 0.795 --- . 4.673 U8 *1 3 2.940 (0.111) 2.940 0.105 13.644 (0.5) “ 2 2 (0.048)1.939 1.937 0.043 5.095 “ 3 1 1.018 (0.040) 1.018 0.037 3.086 B o o ts tra p D is tri b u tio n of OL S-Estimators fo r L in ea r R eg re ss io n M o d e ls

(14)

Experiment number (standard deviation of random error)

Parameter True value of parameter OLS-estimate of parameter (standard error) Bootstrap OLS-estimate of parameter Standard deviation of bootstrap distribution of parameter Value of x2 test statistic *0 1 2.186 (1.700) 2.221 1.590 -- ■ 6.045 U9 (1.0) 3 2 2.880 (0.222) 1.878 (0.097) 2.880 1.873 0.209 0.086 13.644 5.510 1 1.036 (0.081) 1.035 0.073 3.086 “o 1 (3.399)3.372 3.442 3.180 4.673 U10 (2.0) *1 3 (0.447)2.761 1.756 (0.493) 3.760 0.419 13.644 2 1.747 0.172 5.095 *3 1 1.071 (0.162) 1.071 0.147 2.702

(15)

300 250 if 200 С <D Э 150 LL 100 50 0 -0.769 1.296 3.36 5.425 7.49 9.555 11.619 12.721 «0

Fig. 1. Histogram of bootstrap distribution of OLS-estimator for parameter aB in experiment N , 350 300 250

I

200 f 150 k_ LL 100 50 0 2.108 2.371 2.635 2.898 3.161 3.425 3.688 3.907 «I

Fig. 2. Histogram of bootstrap distribution of OLS-estimator for parameter a l in experiment N , 350 300 250 >. 1 200 3 ľ 150 u. 100 50 0 0.623 1.868 3.114 4.36 5.605 6.851 8.096 10.675 «0

(16)

2.046 2.206 2.366 2.526 2.685 2.845 3.005 3.127 «i

Fig. 4. Histogram of bootstrap distribution of OLS-estimator for parameter a, in experiment S, 350 300 250 -j 200 150 100 50 0 II I ii I ::! ! If Illlill jjj: liiiii! IP! -2.857 -0.722 1.413 3.548 5.683 7.818 9.952 13.324

Fig. 5. Histogram of botstrap distribution of OLS-estimator for parameter a0 in experiment С/, 300 250 200 100 50 -I 0 -ШЙТП1 1.933 2.2 2.467 2.734 3.001 3.268 3.535 3.78 a \

(17)

W e can notice th a t O L S -estim ates and b o o tstra p O L S -estim ates are near b u t th e e v a lu a tio n s o f p a ra m e te rs a 0 are biased w ith large e r ro r fo r a relatively large stan d ard deviation.

F o r each experim ent and for each param eter the histogram s o f distribution of b o o tstra p O L S -estim ator were m ade. T h e g raphs are n u m ero u s and for this reason a few histogram s are presented in the paper. T h e experim ents N 1, S I, U1 and param eters a 0, cil were chosen. W e can see th e h isto g ram s in Fig. 1-6.

F o r each experim ent th e hypothesis, which says th a t the b o o tstra p d istrib u tio n o f O L S -estim ator is no rm al, was verified. T h e x 2 test was applied an d values o f test statistic are given in T ab . 2 -4 . In experim ents N 1 -N 1 0 the results are obvious. We know , th a t O L S -estim ato rs fo r linear m odels with norm al erro rs are norm ally distrib uted . In o th e r experim ents the verified hypothesis is rejected in 15 cases o u t o f 100 cases fo r significance level 0.05. It is consistent with p roperties o f estim ato rs o b tain ed by pseu do m axim um likelihood m ethod which are asym ptotically n o rm ally d istrib u ted (see G o u r i e r o u x , M o n f o r t , T r o g n i o n , 1984). W e can tre a t O LS- -estim ators in experim ent S1-S5 and U 1 -U 1 0 as estim ators o b tain ed by this m eth o d . In o u r experim ents the sam ple is sm all (its size is eq ual to 20), b u t we can observe th a t d istrib u tio n o f O L S -estim ators fo r o u r m odel o ften has approxim ately no rm al d istrib ution.

4. FINAL REMARKS

Ih e aim o f the p aper is to show wide possibilities o f b o o tstra p m eth o d s on th e exam ple o f estim ation o f linear m odel. T hey enab le d eterm ining estim ates of unknow n param eters and approxim atio n o f unknow n probability d istrib u tio n . They can also find app lication in estim ation pro ced u res and in verification o f statistical hypotheses, especially in those cases, w hen d eterm ining the d istrib u tio n o f estim ators and test statistics is difficult.

REFERENCES

E f r o n B. (1979), Bootstrap Methods: Another Look at the Jackknife, “The Annals of Statistics”, 7, 1-26.

E f r o n B., 1 i b s h i r a n i R. (1993), An Introduction to the Bootstrap, Chapman and Hall New York.

G o u r i e r o u x G., M o n f o r t A., T r o g n i o n A. (1984), Pseudo Maximum Likelihood Methods: Theory, “Econometrica” , 52, 681-700.

P r u s k a К. (1996), Metody regresji przełącznikowej i ich zastosowanie, Wydawnictwo Uniwer­ sytetu Łódzkiego, Łódź.

Cytaty

Powiązane dokumenty

Koncepcja polityki oświatowej dla Poznania oparta była nie tylko na analizie różnych dokumentów stanowią- cych o oświacie, ale także między innymi danych demografi cznych,

Nie ulega wątpliwości, że księżna była postacią bardzo barwną i na trwałe zapisała się w historii konfederacji barskiej, zwłaszcza w odniesieniu do wydarzeń

Ponieważ wszystkie badane próbki mają taki sam kształt i położenie widma emisji, różnice w czasie jej zaniku nie mogą być wiązane z różnicami w najbliższym otoczeniu jo-

Pierwsze próby wprowadzania języka niemieckiego do szkół elementarnych na Mazurach i. południowej Warmii na początku

Jakkolwiek przeciwnicy zjawili się w Pradze w określonym czasie i udali się już do zwierzyńca dla popróbowania sił i szczęścia w walce, do pojedynku jednak nie doszło ze względu

Tomasz Kubalica , dr, adiunkt w Zakładzie Historii Filozofii No- wożytnej i Współczesnej Instytutu Filozofii Uniwersytetu Śląskiego.... Akademii Pomorskiej w Słupsku, kierownik

Mądrości Bożej należy widzieć raczej Chrystusa niż Bogurodzicę, która może być je dynie łączona z pojawiającym się na kartach Prz 9, 1–6 obra- zem „domu Sofii”.

of differences in spatial diversification of economic potential in the statistical central region (NTS 1) and to refer the results of the research to the concept of