• Nie Znaleziono Wyników

The aerodynamic derivatives with respect to sideslip for a delta wing with small dihedral at supersonic speeds Addendum

N/A
N/A
Protected

Academic year: 2021

Share "The aerodynamic derivatives with respect to sideslip for a delta wing with small dihedral at supersonic speeds Addendum"

Copied!
20
0
0

Pełen tekst

(1)

w ^^

TECHNISCHE HOGESCHOOL

VLIEGTUIGBOUWKUNDE "Kanaalstraat 10 — DELFT

imm IT DELFT ^ « M r f I Q S I

- •>•.-r^- b x

KNjyverweg 1 - 2629 NS DELFT

THE COLLEGE OF AERONAUTICS

CRANFIELD

Addendum to Report No. 12

AERODYNAMIC DERIVATIVES WITH RESPECT

SIDESLIP FOR A DELTA WING WITH SMALL

DIHEDRAL AT SUPERSONIC SPEEDS

by

Squadron-Leader J. HUNTER TOD, M.A.. D.C.Ae.. A.F.R.Ae.S.,

and

A. ROBINSON, M.Sc, Ph.D., A.F.R.Ae.S.

This Report must not be reproduced without the permission of the Principal of the College of Aeronautics

(2)
(3)

VLIEGTUIGBOUWKUNDE KanaolJüaat 10 - DELFT

22 Mri1951

ADIiENDini TO REPORT N0« 12 December. 1950 T H E C O L L E G E O F A E R O H A U T .1 C. S C R A N F I E L D The Aerodynamic D e r i v a t i v e s w i t h r e s p e c t t o S i d e s l i p f o r a D e l t a Y/'ing w i t h Small D i h e d r a l a t S u p e r s o n i c Speeds b y

-Squadron Leader J . H . Hunter-Tod, M.A,, D«C.Ae,, A , F , R , A e , S . ,

and

A. Robinson, l i . S c , P h . D . , A . F . R . A e . S ,

SmS/IARY

The axis of a delta wing under sideslip is not aligned with that of the apex Hach cone. In calculating the forces by first order methods this fact may be ignored when the wing is at

zero incidence, but when it is at incidence first order effects

are introduced due to the distortion of the existing flow. In . the original paper the latter were ignojredj the corresponding forces are derived in the present addendum.

Neglecting leading edge suction the terms in the three sideslip derivatives dependent on incidence are discontin-uous in changing from the qxiasi-subsonic to the definitely super-sonic condition, generally involving a marked decrease in the numerical value and for the rolling derivative always a change of sign.

The leading edge suction due to incidence drops rapidly to zero as an edge approaches the apex Hach cone with the res-ult that the suction contributions to the derivatives become indefinitely large in the limiting case though the actual forces are small.

(4)
(5)

1. Re stilts

To the non-diiiiensional d e r i v a t i v e s quoted i n the

orig-i n a l College of Aeronautorig-ics Report No. 12 must be added the

f o l l o m n g q u a n t i t i e s »

-(a) For the leading edges inside the apex Llach cone

(i)

t

= - ^

^ 3 E'

2, 2 2 ijjoS ^ ^^ Tc g 111 sec "y

3E'2X7f

( i i ) n = _ ^ cot Y - -iLSDL.^ecx.

^ 3 E ' , ^ , 2

/. . .\ 2a5 K a^i sec y tan Y

( i l l ) y,, = - -r-rr - " - " " ^ —

2 E ' 2 y i - > 2

(The terms in a are due to leading edge suction)

(b) For the leading edges outside the apex iïach cone

/.\ 0

2a cot Y

(l) X = ~ y I

-/. .N 8a5 cot Y_ I 2

-IN, ÏI^

/Tg

( l i j n = -rVr . ^ sec Y sec A- -Ö J/\ ~

( i i i ) y = ^ ^ ' " T 7 2 • J s e c Y sec ; \ - —J^ " ^

P

In Fig. 5 the contributions to 't , n and y from

o ^ V V V

a . n

v'

the pressiore d i s t r i b u t i o n are p l o t t e d against luach nunbers for

d i f f e r e n t aspect r a t i o s . In F i g . 6 the contributions to n

and y from the leading edge suction arc s i m l a r l y p l o t t e d .

2, P r e s s u r a D i s t r i b u t i o n due t o Incidence and S i d e s l i p For the

Leading Edges lyin/^ within the Apex iiach Cone

Consider the l i n e a r

transformation»-x' = xche - j3yshe

y' = - I she + ych9 > (l)

(6)
(7)

p 2 2 2 2

The cone x - ( 3 y - p z = 0 and the operator ^2 ^2

— ~ + .—^ j are unaltered by the transformation dy dz^

Tirhile a d e l t a wing of s e m i - v e r t e x angle Y ' i n "the priincd space w i t h i t s a x i s c o i n c i d e n t w i t h t h e x ' - a x i s c o r r e s p o n d s t o a d e l t a wing of s e m i - v e r t e x a n g l e Y i n t h e unprimed space w i t h i t s a x i s yawed t h r o u g h an a n g l e (i> v/ith r e s p e c t t o t h e x - e i x i s , w h e r e ;

-t a n Y ' _ t a n Y

and (2)

2 2 2 2 2 2 2 |

1+P t a n Y ' "I+P 'tan Y-l''i s e c Y s i n [1/

Q ^ 1 l o g s i n (u+Y+ M^) s i n ( u - ^ + U^) s m d i + Y - U ^ s i n d a - ^ f - I x )

where c o t |i = p

I t w i l l be n o t e d t h a t t h e transforiTiation i s r e a l i f |i > Y +ify'

L e t 0 = 0 ( x ' , y ' , z ' ) be the induced velocitj?' p o t e n t i a l f o r t h e d e l t a wing of angle Y ' unyawed b u t a t i n c i d e n c e a . Under t h e t r a n s f o r m a t i o n 0 becomes a f u n c t i o n of (x, y , z) which i s c l e a r l y t h e induced p o t e n t i a l f o r a vying of a n ^ l e Y a t i n c i d e n c e a yawed t h r o u g h an angle U^ w i t h t h e f r e e s t r e a m a l o n g t h e x - a x i s . Now a t t h e a e r o f o i l I -0 ^ j ^ v j k l ^ t a j i Y ' - y ' ^ (3) E ' ( p t a n Y ' ) To f i n d t h e p o t e n t i a l f o r t h e yawed v/ing r e f e r r e d t o body axes we s u b s t i t u t e from ( l ) and (2) i n t o (3) and malce t h e

f u r t h e r o r t h o g o n a l t r a n s f o r m a t i o n s -X = -X COS

i^ - y sin U^

y = X s i n \j^ + y cos Lfy and o b t a i n : -- 2 2 -- 2 ^ _ , Vcc / X t a n Y - y E ' (p t a n Y ' ) V 1 - sec Y s i n ^ ( s i n l / ' + p cosU/thö) / For s m a l l . . .

(8)
(9)

For small angle-,, of yaw it vd.ll be seen from (2) that Y ' = Y + 0(lX/ ) 3-nd that, provided the leading edges both

remain inside the apex Mach cone, for uV sufficiently sraall,

6 =

0{[y).

Hence the potential at the aerofoil referred to axes fixed in it remains unaltered by a small yav/.

For a small sideslip v the excess pressure distribu-tion referred to a:ces f.l-,-od in the v/ing is

dx dy j

SO that there aie additional forces due to a sideslip correspond-ing to the pressure

discribution;-_

Sjy^li'^

__-i-__-. ^., (4)

•^ /'-2, 2 -^2

\/ -x tan

'c-y

3. Suction Forces at the Leadinp; Edj-es When Lying vrLthin the Apex Mach Cone

At page 10 of "'he original paper it was quoted that if the total induced veloci'Ly ab the leading edge v/as of the form

(C/y^ + bounded tovïr'J,), vhere 'ii is the distaace in from the leading edge that tho auction force was TcpC cos Y v "1 - A per unit length,

Nov/ coh Y \/l " i\ = \/l - H sin Y is the compress-ibility or Glauert facto:." for the flov; normal to the leading edge of which the Iie-ch n'-uuoer is U sin "f. Tor a jz::: ''.' thic

should be M sin (YI- VV) at the leading edge x tan Y - y=o and M sin (Y-y) a-t the ct"xr one.

Now "GJie ^.'c'lue of C wa.s found to be

2 V o f /I

v — > ,/-o X tan Y sec Y

'A, I V

SO that the resaltir." auction i^

r „ ^2 f —

7c , j 7a 2 V 6 ( /, -,,2 . 2 - 2J;i v .

•r p X tan V sec Y < ^ ' •: —;:;—. ^ 1 - -la s m Y + ""y— s m Y cos Y v/here Ux has been icplaoed by v/V, yielding an additional term

(10)
(11)

- 2, 2 2

7t p V Ya'1,1 X tan Y (c)

2 E'^yi - )f

vdth opposite sign at the other edge.

The tv/o resiolts (4) and (5) combine to give the additions to the sideslip derivatives quoted in Section 1,

4, The Pressure^ Distribution due to Incidence and Sideslip for the Leading Edp-es Outside the Apex i.Iach Cone.

Though the method of Section 2 can be employed to deduce the potential from that corresponding to an iinyavrad vn.ng, the pressure distribution in the definitely supersonic case is more readily derived directly. The potential in this ca.se is no longer independent of the yav/.

Consider the v/ing to be yav/ed through an angle

Ü y = v/V and the free stream direction to be that of the x-axis. If the yaw is such that both leading edges lie outside the apex Mach cone, the potential may be regarded as the result of a

distribution of sources of strength Va/7r.i the difference, 0., between the potentials in the yawed and unyav/ed cases can be

regarded as due to a narrov; wedge of sources of strength

+ Va/7C betvrcen the lines y - x tan Y = 0 and y - x tan(Y + U/^= 0 of strength - Ya/r^ between the lines y + x tan Y = 0 and y + X tan(Y - Y ) = *-*• -^^^ ^ small yav/ this distribution on neglecting terms of order u ^ is equivalent to a lino of strength Yald^-i^/Ti along the leading edge y . ^ 0 , and a line of strength - Yaiiz-i/r. along the leading edge y < 0 v/here T, is the distance from the apex.

At points inside the apex Hach cone the change in potential due to the sideslip

isj-1 - 2 = — V a sec Y X d X

o o

x > 0 ^(x-x

n ^ r V / 2 2 2 x > 0 ^(x-x^) - p (y-x^tan Y ) 1 - 2 + — V a sec Y X d X o o

x>0^^^~^o^^ "

P^(y+x^tan Y ) ^

o

where the limits of integration of either integral are such that the integrands are real.

(12)

i

e'

(13)

Putting x^ (^-1)= - (x-pAy) - (?\2^-Py) sin 6^ in the first integral and

2 f / o

i n the second i n t e g r a l V/G o b t a i n :

-X ( A - 1 ) = - (x+P?\y) + (Ax+Py) s i n 6,

*<i =

va sec Y

U - P/\y + i)\ x-py) s i n e J dö^

nV2

X + pAy - (?\x+Py) sin O

2 "^^2

'02

v/here 6-. and 0„„ are the values of 6. and 6^ a t the

apex, ;

ö0^

Hence the change in pressure p. = - pV " T — due to sideslip is:-Pi = p V Va sec Y x(>s2-i)^/2 (\%/2 (l+)\sin 6) do - (l->\sin e) de •'02 p. V Va sec Y j .i. -1

. ( A ^ - 1 ) ^ / ^

2y tan Y N A A ^ - I ) (x^-P^y^)

x^ tanV(2A^-l) y^

^A^'

2 „2 2N 2y tan Y > / ( ? V - 1 ) (x -P y ) 2 2 2 X tan Y - y.

where the inverse tangent takes the value zero at y = 0 e.nd

+_ % at X = + Py respectively.

At points outside the Mach cone the pressure is con-stant and since it is continuous it must talce the value given by the above expression at the Mach cone, that

is:-p^ = p V Va sec Y / ( A - 1 ) , P y > x

with opposite sign for Py<l- x,

If p i s the excess pressure r e s u l t i n g fra;i i n c i

-dence i n the unyav/ed condition then the t o t a l excess pressure

i s (p + P^). The d i s t r i b u t i o n p being symmetrical about

the zx-plane i s not syriiaetrical vri.th regard t o a yav/ed v/ing

(14)
(15)

and therefore produces contributions to the lateral derivatives, If p , p and p, are the values of p at the

^a' ^e ^t *^o axis, the leading edge (yJ>0) and the trailing edge respectively

then the couples and sideforce acting on the v/ing are to first order;-np px tan Y L = 4 ^ ^ ^ 0 ^ " ^1^^ dx dy + (j/* oc p^c tan Y 2.

v^y ^y

1 ^ 2 - — k/p c' sec Y "tan Y

N = 45

rtc ^x tan Y (U Poy+Pi x) dx dy - iy c 0 U f\c tan Y

U

p^f. y <3-y P^c + T VL* P„c sec Y - 3 ^ Pa°^ + I ^ Y = Lie

rN°

ox tan Y o U p^ dx dy - (p "Y3 tan Y p^t y '^y 2 2 - 2 Ip Pj^c +2- *>f P Q C sec Y Prom Ref,2 p = ^0 2pV a tan Y ^ -1 —L: L. tan

"A^

./SI:

The above expressions, together vdth the values of PQ> P^ given, lead to tlie rosvilts quoted in Section 1.

(16)
(17)

F?EPOWT Ne 12

• 10 MAC H N o 3

1

1

, \

n ^

\ \

M

t I

<8

I

i

u

o

L

Q

I

O

21

0

h

1 0

0

1*

5

y

0

2

< 0

Z

I

i

I

z

!: >

3

tf)

4

u

i

1

u

J

0

Z

u

M

J

Ü

2

FIG-5

(18)
(19)

A O O E M C M J M - ^ If <

.<i

< tl < - —

10

n

<?

< ^ " ^ - - > . ^ " - ^ . — . - - - ^ "v^ - ^ " ^ ^ 0

2

V \ \ \ »

H

9

I

I

T

_ ^ It < n — H

4

II < '

19

II

<?

4

^

^v

^ = ^ ^ » O v _ _. ^^^ ^

i

f

I

k

"SN

w

(M

T

II)

I

Z

Q

3

U

O

8

z

•i

e

2

£

I-(D

E

I-2

O

5

5

Si

O

2

«f

(O

I

E

u

D

ld

Z

I

i

i

o

z

Of

8

riG-e

(20)

Cytaty

Powiązane dokumenty

Direct participation in urban management evolve to be a basic civic right, but it is seldom correlated with responsibilities and con- sequences of common, especially

odnosi się to głównie do kazań pogrzebowo-żałobnych z cza- sów niewoli narodowej, obliczonych także na promowanie ściśle określonych osób lub grup społecznych, które –

Piaskowskiego, zawarte w Nauce artyleryi opisy odlewania kul i bomb armatnich w formach piaskowych oparte są na oryginalnych doświadcze­ niach i obserwacjach,

Pia skow ski.. Miejsca nawęglone uległy zaciem nieniu. Ryc.. stal) części łupki

Analiza II rzędu z uwzględnieniem imperfekcji zgodnie z normą [1] Zgodnie z postanowieniem normy [1], w modelu obliczeniowym wspornikowego słupa przyjęto imperfekcje w

Na pytanie, dlaczego zatem nie zgłaszają takich zachowań nierównego traktowania chociażby u Rzecznika Praw Studenckich lub nie kierują sprawy do Rzecznika Praw Konsumenta,

Okazuje się jednak, iż niektóre z powyższych sformułowań nadzwyczaj trafnie opisują interesujące zjawisko, od pewnego czasu wyraźnie obecne we współczesnej polskiej

Zachowały się dw a tomy korespondencji prowadzonej między Orzeszkową a Meyetem (z la ta 1878—1909), stanowiące najobszerniejsze źródło wiadomości o Leopoldizie