• Nie Znaleziono Wyników

Glivenko-Cantelli theorem and kernel estimators Slides International Seminar on Stability Problems for Stochastic Models Nahariya (Israel) Oct 22 - 26, 2007

N/A
N/A
Protected

Academic year: 2021

Share "Glivenko-Cantelli theorem and kernel estimators Slides International Seminar on Stability Problems for Stochastic Models Nahariya (Israel) Oct 22 - 26, 2007"

Copied!
13
0
0

Pełen tekst

(1)

.

GLIVENKO-CANTELLI THEOREM AND KERNEL ESTIMATORS

Ryszard Zieli´nski

Institute of Mathematics Polish Acad. Sc., Warszawa, Poland R.Zielinski@impan.gov.pl

Presented to

International Seminar on Stability Problems for Stochastic Models Nahariya (Israel) Oct 22 - 26, 2007

(2)

.

Summary

Standard kernel estimators do not converge to the true dis-tribution uniformly. A consequence is that no inequality like Dvoretzky-Kiefer-Wolfowitz one can be constructed, and as a result it is impossible to answer the question how many obser-vations are needed to guarantee a prescribed level of accuracy of the estimator. A remedy is to adapt the bandwidth to the sample at hand.

(3)

.

Dvoretzky-Kiefer-Wolfowitz inequality (Massart 1990) P {sup x∈R|Fn(x) − F (x)| ≥ } ≤ 2e −2n2 Glivenko-Cantelli theorem (∀)(∀η)(∃N)(∀n ≥ N)(∀F ∈ F) P {sup x∈R|Fn (x)−F (x)| ≥ } ≤ η where Fn(x) = 1 n n X j=1 1(−∞,x](Xj)

(4)

Standard kernel density estimator b fn(x) = 1 n n X j=1 1 hn k x − Xj hn ‘

Kernel distribution estimator b Fn(x) = 1 n n X j=1 K x − Xj hn ‘ , K(x) = Z x −∞ k(t)dt

Glivenko-Cantelli theorem does not hold:

(∃)(∃η)(∀N)(∃n ≥ N)(∃F ∈ F) P {sup

x∈R| b

Fn(x)−F (x)|≥}≥η

It is enough to demonstrate that

(∃)(∃η)(∀n)(∃F ∈ F) P { bFn(0) > F (0) + } ≥ η

Concerning the kernel K, only the following assumptions are relevant:

1) 0 < K(0) < 1 and

2)K−1(t) < 0 for some t ∈ (0, F (0)).

Concerning the sequence (hn, n = 1, 2, . . .) we assume that

(5)

Proof that

(∃)(∃η)(∀n)(∃F ∈ F) P { bFn(0) > F (0) + } ≥ η

Recall the assumption that K−1(t) < 0 for some t ∈ (0, F (0)). Take  ∈ (0, t) and η ∈ (t − , 1). Given , η, and n, take F such that F (0) = t −  and F€ − hnK−1(t)

 > η1/n. Then P{Xj < −hnK−1(t)} and P {K ’ −Xj hn “ > t} > η1/n Due to the fact that

n \ j=1 n K ’ −Xhj n “ > to n 1 n n X j=1 K ’ −Xhj n “ > to we have Pn 1 n n X j=1 K ’ −Xj hn “ > to= Pn 1 n n X j=1 K ’ −Xj hn “ > F (0)+o> η | {z } b Fn(0) QED

(6)

RANDOM BANDWIDTH

X1:n ≤ X2:n ≤ . . . ≤ Xn:n - order statistics

Define

Hn = min{Xj:n − Xj−1:n, j = 2, 3, . . . , n}

Define the kernel estimator e Fn(x) = 1 n n X j=1 K x − Xj Hn ‘

where for K we assume:

K(t) =            0, for t ≤ −1 2 1 2, for t = 0 1, for t ≥ 1 2 K(t) continuous and increasing in (−12, 1 2)

(7)

For a fixed k and j = 1, 2, . . . , n we have K Xk:n − Xj:n Hn ‘ = =              0, for Xk:n−Xj:n Hn ≤− 1 2 ⇔ Xj:n> Xk:n+ 1 2Hn ⇔ j >k 1 2, for t = 0 1, for j < k It follows that e Fn(Xk:n) = 1 n n X j=1 K Xk:n − Xj:n Hn ‘ = k − 1 n + 1 2n = Fn(Xk−1:n) + 1 2n = Fn(Xk:n) − 1 2n

Hence, for k = 1, 2, . . . , n, we have | eFn(Xk:n)−Fn(Xk:n)| ≤

1 2n.

(8)

For k = 1, 2, . . . , n, we have | eFn(Xk:n) − Fn(Xk:n)| ≤

1 2n.

Kernel estimator eFn(x) is continuous and increasing, empirical

distribution function Fn(x) is a step function, and in

conse-quence | eFn(x) − Fn(x)| ≤

1

2n for all x ∈ (−∞, ∞). By the triangle inequality

| eFn(x) − F (x)| ≤ |Fn(x) − F (x)| + 1 2n we obtain P{sup x∈R| e Fn(x) − F (x)| ≥ } ≤ P {sup x∈R|Fn(x) − F (x)| + 1 2n ≥ } and Dvoretzky-Kiefer-Wolfowitz inequality takes on the form:

P {sup x∈R| e Fn(x) − F (x)| ≥ } ≤ 2e−2n(−1/2n) 2 , n > 1 which enables us to calculate N = N (, η) that guarantees the prescribed accuracy of the kernel estimator eFn(x).

(9)

.

COMMENT.

The smallest N = N (, η) that guarantees the prescribed

accuracy is somewhat greater for kernel estimator eFn than that

for crude empirical step function Fn.

For example, N (0.1, 0.1) = 150 for Fn and = 160 for eFn;

(10)

.

COMMENT

Another disadvantage of kernel smoothing has been discovered by Hjort and Walker (2001):

”kernel density estimator with optimal bandwidth lies outside any confidence interval, around the empirical distribution func-tion, with probability tending to 1 as the sample size increases”.

(11)

.

Perhaps a reason is that smoothing adds to observations something which is rather arbitrarily chosen

(12)

. A GENERALIZATION. Inequality P {sup x∈R| e Fn(x) − F (x)| ≥ } ≤ 2e−2n(−1/2n) 2 , n > 1 holds for every smoothed nondecreasing distribution function that satisfies | eFn(Xk:n) − Fn(Xk:n)| ≤

1

(13)

REFERENCES

Hjort, N.L., and Walker, S.G. (2001). A note on kernel density estimators with optimal bandwidths. Statistics & Probability Letters 54, 153-159

Massart, P. (1990). The tight constant in the Dvoretzky– Kiefer–Wolfowitz inequality. Annals of Probability, 18: 1269– 1283

Wegman, E.J. (2006). Kernel estimators. In Encyclopedia of statistical sciences. Second Edition, Vol. 6, Wiley–Interscience

Cytaty

Powiązane dokumenty

Zde­ rzenie ty ch postaw jest 'interesujące, ale budzi obaw y, czy zostanie odczytane zgodnie z inten cją autorki, poniew aż istnieje uzasadnione podejrzenie, że

Celem tego artyku³u jest przedstawienie w jaki sposób spadek liczby urodzeñ, starzenie siê spo³eczeñstw oraz wzrost migracji wp³ywa na zmiany na poziomie globalnym oraz kreuje

He considered equidistributed random variables with continuous distribution function and pointed out that the Glivenko-Cantelli lemma remained open in the discrete case.. It is

Below, in the next three subsections, we give very condensed recipes for calculating the optimal bandwidth using the PLUGIN and two LSCV approaches: the simplified one for

W poniższych rozważaniach zajmiemy się w szczególności wartościami entropii topologicznej oraz zdefiniowanej poniżej wartości entropii ciągowej przestrzeni generowanych

We study the lower bound for the Bergman kernel in terms of volume of sublevel sets of the pluricomplex Green function1. We show that it implies a bound in terms of volume of

Bergman kernel, Bergman metric, pluricomplex Green function, hyperconvex domains.. Partially supported by KBN Grant #2

Pierwszy numer „Rocznika” o objętości 112 stronic ukazał się 7 listopada 2002 roku w nakładzie 300 egzemplarzy, wydrukowany w zakładzie graficznym „Poligrafia Artur