• Nie Znaleziono Wyników

Summary of model tests on impact forces on Hanstholm breakwaters

N/A
N/A
Protected

Academic year: 2021

Share "Summary of model tests on impact forces on Hanstholm breakwaters"

Copied!
15
0
0

Pełen tekst

(1)

W a t e r l o o p k u n d i g L a b o r a t o r i u m

R a a m

61 - DELPT . H A N S T H O L M HARBOUR C O N S T R U C T I O N C O M M I T T E E M I N I S T R Y OF P U B L I C WORKS Slotsholmsgade 10 . Copenhagen K . S U M M A R Y • • OF • M O D E L TESTS ON W A V E I M P A C T FORCES ON H A N S T H O L M B R E A K W A T E R S September 26th 1960. W A T E R L O O P K U N D I Q L A B O R A T O R I U M " D E VOORST" N . O. P. H O L L A N D

(2)

I n a l e t t e r of May 7, 1 960 the H a n s t h o l m H a r b o u r C o n s t r u c t i o n B o a r d requested the W a t e r l o o p k u n d i g L a b o r a t o r i u m "De V o o r s t " to p e r f o r m a m o d e l i n v e s t i g a t i o n of the wave f o r c e s on the b r e a k w a t e r s of the H a n s t h o l m H a r b o u r .

T h i s task was accepted by the W a t e r l o o p k u n d i g L a b o r a t o r i u m i n a l e t t e r of May 28 , 1960.

Because of the shortage of e n g i n e e r s i n "De V o o r s t " i t was a g r e e d that M r . Hans P. Steenfos, a r e s e a r c h engineer f r o m the C o a s t a l E n g i n e e r i n g L a b o r a t o r y i n Copenhagen should be placed at the d i s p o s a l of the W a t e r l o o p k u n d i g L a b o r a t o r i u m to r u n these t e s t s .

The t e s t s w e r e c a r r i e d out i n the w i n d f l u m e at "De V o o r s t " f r o m June 30th to September 1st, 1960.

T h i s r e p o r t contains a s u m m a r y of the t e s t r e s u l t s as w e l l as a n u m b e r o f p r e l i m i n a r y c o n c l u s i o n s .

1 T E S T C O N D I T I O N S

1 . 1 S C A L E

The l i n e a r scale i n a l l the t e s t s was 1:40. I n a c c o r d a n c e w i t h the P r o u d e m o d e l l a w the t i m e s and the v e l o c i t i e s w e r e r e p r o d u c e d at the scale 1: I n the i n t e r p r e t a t i o n of the r e s u l t s i t was assumed that a l l p r e s s u r e s f o l l o w the l i n e a r scale 1:40, Thus the scale! of

f o r c e s w i l l be 1:40^..

1 . 2 W A V E C O N D I T I O N S

The t e s t s w e r e r u n w i t h two d i f f e r e n t sets of wave c o n d i t i o n s : ïï" H , . , = H „ , / H „ „ . T

sign 85 o / o 90 o/o

W 1 • 1,4 m 2, 2 m ^ 2,7 m 5,0 sec W 2 3,0 m 4 , 7 m 5,0 m 6, 6 sec

These t e s t c o n d i t i o n s w e r e intended to s i m u l a t e the f o l l o w i n g p r o t o t y p e c o n d i t i o n s s p e c i f i e d by the Coastal E n g i n e e r i n g L a b o r a t o r y of Copenhagen:

W i n d . . . .

W P 1 15 m / S Q C 1 , 4 m 2 , 2 m 2, 7 m 8 sec

(3)

Since i t i ë e s p e c i a l l y inaportant to o b t a i n a c o r r e c t r e p r o d u c t i o n of the c o m p o s i t i o n o f the h i g h e s t waves w i t h i n the wave s p e c t r u m , PI , was chosen as the s i g n i f i c a n t v a l u e to be r e p r o d u c e d c o r r e c t l y

yu oj o t o s c a l e .

P r e l i m i n a r y t e s t s have shown that the average v a l u e s of the

i m p a c t p r e s s u r e s a r e independent of the wave p e r i o d i f the s i g n i f i c a n t . wave height i s h e l d constant,. On the o t h e r hand, the wave height

s p e c t r u m has been shown to be of g r e a t i m p o r t a n c e f o r the f r e q u e n c y of the wave i m p a c t s . Consequently, the t e s t s w e r e made w i t h p u r e l y w i n d - g e n e r a t e d waves f o r w h i c h the wave height s p e c t r u m i s

a p p r o x i m a t e l y c o r r e c t , • • I n a l l t e s t s the w a v e s w e r e a p p r o a c h i n g the b r e a k w a t e r at a r i g h t

angle. ' • .

T o get a s u f f i c i e n t a m o u n t o f t e s t data each t e s t c o m p r i s e d 8.bout 2000 w a v e s .

1. 3 O T H E B T E S T CONDITIONS_

Since the sea l e v e l d u r i n g w e s t e r l y s t o r m s at H a n s t h o l m i s about one m e t e r above m e a n sea l e v e l a l l the t e s t s v/ere made w i t h a sea l e v e l of + 1,0 m .

The b o t t o m i n the m o d e l was p l a c e d at - 11 m to a d i s t a n c e o f about 200 m f r o m the b r e a k w a t e r . I n the r e s t of the f l u m e the b o t t o m was placed at - 1 3 m .

I n a l l the t e s t s the t o p of the b r e a k w a t e r s t r u c t u r e was placed at + 4, 0 m .

h 4 TESTS' W I T H ^ T O E I N N E R B R E A K W A T E R .J¬

I n a d d i t i o n t o the m a i n t e s t s w i t h the o u t e r b r e a k w a t e r s some t e s t s w e r e made w i t h the i n n e r b r e a k w a t e r to d e t e r m i n e the i m p a c t p r e s s u r e s o n a p r o p o s e d h o r i z o n t a l l y p r o t r u d i n g wave s c r e e n .

The waves used i n these test.s had a s i g n i f i c a n t wave h e i g h t Hg = 3, 1 m . The waves w e r e a t t a c k i n g the s t r u c t u r e at a r i g h t a n g l e .

The b o t t o m l e v e l at the s t r u c t u r e was at e l e v a t i o n - 7 m and the sea l e v e l at + 1 m .

1. 5 M E A S U R I N G I N S T R U M E N T S A N D RECORDING A P P A R A T U S

The i m p a c t p r e s s u r e s w e r e m e a s u r e d w i t h c a p a c i t y p r e s s u r e c e l l s and the t o t a l f o r c e s on the s t r u c t u r e s w e r e m e a s u r e d w i t h c a p a c i t y f o r c e m e t e r s . The wave h e i g h t s w e r e m e a s u r e d w i t h r e s i s t a n c e gages.

The r e c o r d i n g a p p a r a t u s was a V i s i c o r d c h a n n e l l i g h t b e a m r e c o r d e r w o r k i n g w i t h u l t r a v i o l e t l i g h t .

(4)

1.6 ^ E g T P R O G R A M M E

The t e s t p r o g r a m m e c o m p r i s e d t e s t s w i t h v e r t i c a l w a l l b r e a k -w a t e r s , b r e a k -w a t e r s -w i t h v e r t i c a l -w a l l s c o m b i n e d -w i t h a slope at the top, and b r e a k w a t e r s of c i r c u l a r caissons.

The f i r s t s e r i e s of t e s t s w i t h these s t r u c t u r e s w e r e made w i t h p r e s s u r e c e l l s g i v i n g the v a r i a t i o n of the l o c a l p r e s s u r e s at v a r i o u s h e i g h t s . L a t e r on, the t o t a l h o r i z o n t a l and v e r t i c a l f o r c e s on the s t r u c t u r e s w e r e m e a s u r e d by means of f o r c e m e t e r s .

1. 7 I N T E R P R E T A T I O N OF RESULT^S

I n the t a b l e s below a r e g i v e n the m e a s u r e d m a x i m u m i m p a c t -p r e s s u r e s as w e l l as the s t a t i s t i c a l values of the i m -p a c t - -p r e s s u r e p e r 5000, 1 000 and 1 00 waves.

The s t a t i s t i c a l values are obtained by d r a w i n g a smooth c u r v e t h r o u g h the data p l o t t e d on s e m i l o g a r i t h m i c p a p e r . Since the l e n g t h of the m e a s u r i n g s e r i e s i s a l w a y s about 2000 w a v e s , ' t h e value o f the m a x i m u m p r e s s u r e m e a s u r e d n o r m a l l y w i l l be somewhat d i f f e r e n t f r o m the s t a t i s t i c a l value p e r 2000 w a v e s .

(5)

2 T E S T S W I T H P R E S S U R E C E L L S 2 . 1 I M P A C T PRESSURES ON B R E A K W A T E R S NO 1 , 2 . 3 A N D 4 . ( B r e a k w a t e r s w i t h a v e r t i c a l f a c e and a v e r t i c a l + a sipping f a c e , c f . F i g . s 1 and 2 ) . W A V E S : W 1 , Hp, = 2 . 2 m . M o d e l No C e l l at l e v e l Ï 5 T A T I S T I C A L V A L U E S OF I M P A C T P R E S S U R E " i M o d e l No C e l l at l e v e l M a x .

pressure

measured

Der 5 0 0 0 waves

t / m ^

per 2 0 0 0 waves

t / m '

per 1 0 0 0

waves

t / m ^

p e r 1 0 0 w a v e s

t / m '

+ 2 . 5 7 . 2 1 0 . 1 8 . 8 7 . 7 4 . 4

. i

l A ' - 0 . 5 - 3 . 0 - 8 . 0 3. 2 2 . 4 2 , 0

-3 . 2 2 . 9 \ + 1 . 5 1 5 . 7 I 5 . b 1 4 . 0 1 2 . 9 6 I B ' - 0 . 5 - 3 . 0 - 8 . 0 2 . 8 2 . 4 0 3 . 5 3 . 2 2 . 9 2 . 1 + 2 . 5 7 . 2 1 9 . 2 7 . 2 3 . 4 3 A - 0 . 5 2 . 4

-

3 . 8 3 . 5 2 . 4 - 3 . 0 4 . 0 ( 2 1 . 3 ) ( 2 3 . 0 ) - ( 2 1 . 0 ) - ( 1 9 . 8 ) - ( 1 5 . 4 ) - 8 . 0 0 ( 6 . 4 )

-

-

-

+ 2 . 5 1 3 . 7 1 4 . 3 1 3 . 6 1 3 . 2 1 1 . 3 3 B - 0 . 5 3. 2 ( 9 . 6 ) 4 . 5 4 . 2 • 3. 7 2 . 0 - 3 . 0 4 . 0 ( 2 2 . 8 ) ( 2 2 . 0 ) ( 1 8 . 0 ) ( 1 0 . 5 ) - 8 . 0 1 . 2 ( 4 . 8 )

-

-

-

-+ 2 . 5 3 . 2 0 4 A - 0 . 5 6 . 0 ( 5 . 6 )

•-

3 . 9 2 . 8 • 0 - 3 . 0 4 . 0 ( 1 3 . 3 ) ( 1 3 . 2 ) ( 1 1 . 4 ) ( 1 0 . 3 ) ( 6 . 6 ) - 8 . 0 1 . 2 ( 1 . 2 )

-

-

-

+ 2 . 5 1 6 . 1 1 8 . 0 1 5 . 8 1 4 . 9 8. 6 4 B - 0 . 5 4 . 0 ( 6 . 0 ) 4 . 4 3 . 5 3 . 2 1 . 4 - 3 . 0 3 . 2 ( 1 2 . 4. ( 1 3 . 8 ) ( 1 2 . 2 ) ( 1 1 . 9 ) ( 8 . 5 ) - 8 . 0 1 . 6 ( 3 . 6^

-

-

-

(6)

-W A V E 3 : -W2, H s = 4 . 7 m M o d e l No C e l l at L e v e l Max. p r e s s u r e m e a s u r e d t / m ' S T A T I S T I C A L V A L U E S OF I M P A C T PRESSURE M o d e l No C e l l at L e v e l Max. p r e s s u r e m e a s u r e d t / m ' p e r 5000 w a v e s per 2000 waves p e r 1000 waves per 100 w a v e s C e l l at L e v e l Max. p r e s s u r e m e a s u r e d t / m ' t / m ' t / m ' t / m ' t / m ' +2. 5 16. 7 19. 0 16. 7 15. 1 9. 3 1A - 0 . 5 - 3 . 0 - 8 , 0 4. 4 3. 2 2. 8

-

4. 0 - 3. 6 2. 0 +2. 5 21 24 2 1 . 2 19. 5 13. 3. I B - 0 , 5 - 3 . 0 - 8 . 0 10. 0 6.4 1.6

-

10.0 8. 5 4. 0 +2. 5 8.8 ' 9. 6 9. 2 8. 9 6. 8 3A - 0 . 5 3. 2. 4. 3 4. 0 3. 5 1.9 - 3 . 0 2.8 ( 1 7 . 7 ) - ( 1 9 . 5 ) (17.5) ( 1 6 . 6 ) ( 1 1 . 5 ) - 8 . 0 1.2 ( 4 . 0 )

-

-

-

-+2. 5 14. 5 14.8 14. 3 13. 4 10. 9 SB - 0 . 5 4. 0 4. 3 3. 9 3. 5 2. 2 - 3 . 0 4. 8 ( 1 1 . 3) - ( 1 6 . 0 ) ( l i . O ) ( 1 3 . 0 ) ( 6 . 4 ) - 0 . 8 2.8

- •

-

-

-+2. 5 12. 9 14. 8. 12. 8 8 . 2 4. 3 4A - 0 . 5 7 . 2 , (3. 3) 8. 6 7. 4 5.9 1. 3 - 3 . 0 4. 8 ( 1 1 . 2 ) - ( 1 3 . 6 ) ( 1 2 . 5 ) ( 1 1 . 3 ) ( 7 . 4 ) - 8 . 0 •1..6 (f2-:.. 0))

-

-

-

-. +2-. 5 19. 6 21.9 20. 7 19. 8 16. 7 4 B - 0 . 5 8.0 , ( 4 . 0 )

-

7. 5 6 . 4 3. 9 - 3 . 0 3. 2 (17. 3) ( 1 9 . 0 ) (17.1) (15, 6) ( 1 0 , 6 ) - 8 . 0 0.8 ( 3 . 6 )

-

-

-N B The f i g u r e s i n p a r e n t h e s e s a r e r e l a t e d to the i m p a c t s o c c u r r i n g when the w a t e r r u n n i n g back f r o m the s l o p i n g face of the s t r u c t u r e h i t s the w a t e r s u r f a c e , when t h i s i s j u s t r i s i n g due to the a p p r o a c h of the next w a v e . These i m p a c t s can be d i s t i n g u i s h e d f r o m the n o r m a l ones by the m o m e n t of o c c u r r e n c e . These i m p a c t s o c c u r o n l y on the l o w e r c e l l s i n a n a r r o w zone a r o u n d - 3 . 0 m .

The r i s i n g t i m e s o f the i m p a c t p r e s s u r e s i n the above m e n t i o n e d t e s t s are i n the p r o t o t y p e about 0. 05 sec, but the r i s i n g t i m e s v a r y f r o m 0, 15 sec to 0. 015 f r o m the s m a l l peaks to the highest ones.

The r i s i n g t i m e s o f the i m p a c t s i n the p a r e n t h e s e s a r e somewhat l o w e r , about 0, 03 sec i n the p r o t o t y p e ( v a r y i n g f r o m 0, 1 sec to 0. 01 sec).

(7)

2. 2 I M P A C T PRESSURE O N T H E I N N E R B R E A K W A T E R , M O D E L S N O . 8, 9 A N D 10 ( F i g . 4). — — ^ • — W A V E S : H = 1 • 85 m Hg = 3. 1 m Model No C e l l No M a x i m u m p r e s s u r e m e a s u r e d t / m ' S T A T I S T I C A L V A L U E S O F I M P A C T PRESSURE Model No C e l l No M a x i m u m p r e s s u r e m e a s u r e d t / m ' p e r 5000 w a v e s p e r 2000 waves p e r 1000 waves p e r 100 waves p e r 10 w a v e s M a x i m u m p r e s s u r e m e a s u r e d t / m ' t / m ' t / m ' t / m ' t / m ^ t / m ' I 0 0 0 9 0 0 8 I I 52 54 52 • 51 44 22 ; I I I 9. 3 9; 4 8. 7 8. 0 6. 4- 3. 4 I 40 48. 0 42 38 25 12 9 I I 55 51 45 40 25 10 I I I 46 50. 5 45 43. 28 , 15 I I 37 41 36 34.

i

24 11 10 I I I 48 53 48 44

I

32 19

The r i s i n g t i m e s of the above m e n t i o n e d i m p a c t p r e s s u r e s a r e about 0. 04 sec i n the p r o t o t y p e , but r i s i n g t i m e s v a r y f r o m 0. 09 sec to 0. 01 sec.

I t should be n o t i c e d t h a t the above m e n t i o n e d i m p a c t p r e s s u r e s at the f o u r p r e s s u r e c e l l s a r e not n e c e s s a r i l y r e l a t e d to the same wave.

(8)

T E S T S W I T H W A V E I M P A C T S O N B R E A K W A T E R S O F C I R C U L A R C A I S S O N S . M O D E L S N O . 5 , 6 A N D 7 . T O T A L I M P A C T F O R C E S ON C I R C U L A R CAISSONS. ( F i g . 3) D i a m e t e r of the caissons; 1 5 m . W A V E S : W 1 , Hg = 2. 2 m M o d e l M a x . S T A T I S T I C A L V A L U E S OF T O T A L I M P A C T F O R C E ( N o . f o r c e p e r 5000 p e r 2000 p e r 1000 p e r 100 Re sul' tant f o r c d

m e a s u r e d waves waves waves w a v e s L e v e l at I n c l i -t/ c t / C t / C t / C t / C f a c e . n a t i o n 5 640 700 621 578 400 - 1 . 8 0 ° 6 41 5 492 456 433 334 - 1 . 0 • 0 ° 7 640 670 620 547 356 - 1 . 8 0 ° W A V E S : W 2 , H s = 4, 7 m 5 1280 1422 1276 1170 808 - 1 . 8 0 ° 6 1005 1 160 1075 1015 785 - 1 . 5 Q O 7 900

-

1100 990 582 - 2 . 7 O O Note: t / C m e a n s : tons p e r c a i s s o n .

The r i s i n g t i m e s of the m e a s u r e d t o t a l i m p a c t f o r c e s a r e about 0. 25 sec i n accordance w i t h the r e s u l t s f o r the v e r t i c a l w a l l .

M A X . I M P A C T PRESSURES O N C I R C U L A R CAISSONS:

T o d e r t e r m i n a t e the highest i m p a c t p r e s s u r e s on the c i r c u l a r c a i s s o n s 3 p r e s s u r e c e l l s w e r e placed at e l e v a t i o n + 1 . 0 m . The h o r i -z o n t a l p o s i t i o n s of the p r e s s u r e c e l l s a r e s h o w n , i n F i g . 3. The h i g h e s t i m p a c t p r e s s u r e s m e a s u r e d w e r e : W A V E S : Hg = = 2. 2 m r 1 1 WAVES- Hg = .4. 7 m •Model . M A X . I M P A C T PRESSURE M E A S U R E D No. c e l l c e l l c e l l c e l l c e l l c e l l I I I I I V I I I I I V t / m ^ t / m ^ t / m ' t / m ' t / m 2 t / m ' 5 4. 0 2. 0 ' ' • 10. 0 7. 0

-6 5. 2 4. 4

-

14. 0 7. 0

-7 6 . 0 4. 2 9. 2 6. 0 1 2. 0 5. 2

(9)

V e r t i c a l f o r c e s on the t o p of the s t r u c t u r e s o c c u r w h e n w a t e r f r o m ' the u p - s p l a s h f a l l s down on the h o r i z o n t a l deck of the c a i s s o n s .

These f o r c e s a r e not r e a l i m p a c t s , but the r i s i n g t i m e s a r e as s m a l l as about 0, 6-0, 7 sec i n the p r o t o t y p e .

W A V E S : W 1 . Hg = 2. 2 m M o d e l W i d t h o f S T A T I S T I C A L V A L U E S O F V E R T I C A L F O R C E S No, s t r u c t u r e p e r 5000 w a v e s t / m p e r 2000 w a v e s t / m p e r 1000 w a v e s t / m p e r 100 w a v e s t / m p e r 1 0 waves t / m 1A 14. m 13. 7 1 2. 1 11.0 7. 2 W A V E S : W 2 , Hg = = 4. 7 m 1A I B 14 m 14 m 40 • ' 29. 5 39 28. 5 38 28 3 1 , 5 23. 5 17, 7 14. 5 W A V E S : W 2 , Ho = 4. 7 m M o d e l No.. D i a m e t e r of c a i s s o n p e r 5000 waves t / C • p e r 2000 waves t / C p e r 1000 w a v e s t / C p e r t o o w a v e s t / C p e r 1 0 wave s t / C 5 15 m 705 665 630 480 315 Note: t / C m e a n s tons p e r c a i s s o n .

(10)

6 O V E R T O P P I N G

I n a l l the t e s t s the a m o u n t of o v e r t o p p i n g was m e a s u r e d .

W A V E S : W 1 , H ^ = 2 , 2 m ^ W A V E S : W 2 , H.c;=4, 7 m WAVES:.H=r., 8 5 m Hg=3, 1 m M o d e l O v e r t o p p i n g M o d e l O v e r t o p p i n g M o d e l ! O v e r t o p p i ng N o . m ^ / s e c / m No. m ^ / s e c / m No. . m ^ / s e c / m 1A 0,021 1A 0, 395 8 rsjO I B 0, 017 . ' I B 0, 340 9 0,007 , , 3A 0, 045 3A 0, 400 0,014 3B 0,031 3B 0, 305 4A 0,038 4A 0, 360 4 B 0,014 .

j

4B 0, 260 5 0, 049 1 5 0, 450

(11)

C O N C L U S I O N S , S ,

The f o l l o w i n g p r e l i m i n a r y c o n c l u s i o n s m a y be d r a w n f r o m the • r e s u l t s o f the w a v e - i m p a c t t e s t s :

1. A m o n g the s t r u c t u r e s tested i n t h i s i n v e s t i g a t i o n the f o l l o w i n g t h r e e types have the best p r o p e r t i e s With r e g a r d to i m p a c t f o r c e s :

a. The b r e a k w a t e r w i t h a c o m b i n e d v e r t i c a l and 4 5 ° s l o p i n g f a c e , m o d e l N o . 3.

b . C i r c u l a r c a i s s o n s closed 1, 5 o r 3, 0 m i n f r o n t of the centre-l i n e , m o d e centre-l s N o . s 5 and 6.

c. The b r e a k w a t e r w i t h a v e r t i c a l , plane f a c e , m o d e l N o . 1. M o d e l N o . 3 m e n t i o n e d u n d e r a g i v e s i m p a c t f o r c e s ' t h a t a r e o n l y about 50 o / o of the v a l u e s f o r the type m e n t i o n e d u n d e r c, w h e r e a s the t y p e s b give i m p a c t f o r c e s about 80 - 90 o / o of the v a l u e s f o r the type m e n t i o n e d u n d e r c. A f u r t h e r advantage o f the type m e n t i o n e d u n d e r a, i s that the r e s u l t a n t i m p a c t f o r c e has an i n c l i n a t i o n of about 2 5 ° ,

The 1.0 - 1 . 0 m p r o t r u s i o n s tested do not i n f l u e n c e the i m p a c t f o r c e s on the v e r t i c a l w a l l .

2. On the sections w h e r e p e r p e n d i c u l a r w a v e - a t t a c k can be expected the b r e a k w a t e r s should not be p r o v i d e d w i t h a l i p , because the l i p w i l l i n c r e a s e the m a x i m u m i m p a c t s w i t h a f a c t o r of 1. 5 and the f r e q u e n c y of i m p a c t s w i t h a f a c t o r of 8-10.

3. The s t r u c t u r e s tested f o r the i n n e r b r e a k w a t e r ( m o d e l s N o . s 8, 9 and 1 0) a r e not s a t i s f a c t o r y because of f r e q u e n t o c c u r r e n c e o f v e r y h i g h i m p a c t p r e s s u r e s .

Because of the shortage of t i m e , t e s t s w i t h bed p r o t e c t i o n have not been c a r r i e d out.

W A T E R L O O P K U N D I G L A B O R A T O R I U M I r . E . W . B i j k e r

(12)

• M O D E L M O . I A

•«•4

M O D E L NO. 1B

^4 V E R T I C A L W A L L

MODEL NO. 2A

4-4 V E R T I C A L WALL W I T H 0 , 5 ^ 0 . 5 m LIP

M O D E L NO. 2 B '

. +4 V E R T I C A L W A L L W I T H 1 . 0 x 1 . 0 m V E R T I C A L P R O T R U S I O N S V E R T I C A L W A L L ' W I T H 1.0X 1.0 m V E R T I C A L P R O T R U S I O N S AND LIP

OUTER BREAKVi/ATER

CAISSONS WITH .VERTICAL WALLS

1 = 2 5 0

OUTER BREAKVi/ATER

CAISSONS WITH .VERTICAL WALLS

HANSTHOLM

(13)

45

W I T H 0.5x0.5mLIP

MODEL NO. 4A

W I T H 0.5X 0.5m L I P

OUTER B R E A K W A T E R

'ERTICAL CAISSONS-^SLOPING FACE

1'.250

ISTF

(14)

MODEL NO. 5

-15m

MODEL NO. 6 •

MODEL NO. 7

-11 W A V E S . WAVES 0 . 5 m

C E L L H WAS NOT MOUNTED

O U T E R ' B R E A K W A T E R

C I R C U L A R C A I S S O N S

1: 5 0 0

HANSTHOLM

(15)

NNER BREAKWATER

H A N S T H O L M

Cytaty

Powiązane dokumenty

Dla przykładu, doświadczonym naukowcom, uznanym autorytetom epistemicznym w dziedzinie glottodydaktyki udaje się za pośrednictwem swojego dyskursu osadzone- go w GOKNJO

pau- linów na Jasnej Górze (s. Grzegorza Poźniaka są zagadnienia dotyczące tradycji śląskiego budownictwa organowego, czego przykładem jest recenzowana pozycja, zatytułowana:

6 shows the maximum relative L 2 error as a function of the number of model evaluations by testing the model at the random points after each iteration.. On the same figure, we

Specifically, we provide upper and lower bounds for the transition threshold p ∗ in interdependent networks with a regular interconnection matrix B and derive the exact

Segal tw ierdzi: „ L ite ra tu ra polska jest lite ra tu rą dośw iadczenia żydow­ skiego; w łaściw ie jest to najw iększa lite ra tu ra europejska dośw iadczenia

Ja n M arcin Szancer nie tylko w tym w ypadku wzorował się na wcześniej pow stałych tekstach plastycznych; również w innych jego pracach w yraźnie widoczny

Such samples CS-09-0.7 and CS-10-0.7 were strengthened under load equaled 0.7 from N u(C) and the yield in tensile reinforcement occurred firstly in column and then

rzała i bardzo precyzyjna metodologia. W świetle ich badań, sposób teologi- zowania syryjskiego Diakona został dokładnie opracowany i doceniony, a jed- nocześnie ukazał nam