• Nie Znaleziono Wyników

Ideals of three dimensional Artin-Schelter regular algebras

N/A
N/A
Protected

Academic year: 2021

Share "Ideals of three dimensional Artin-Schelter regular algebras"

Copied!
68
0
0

Pełen tekst

(1)

Ideals of three dimensional

Artin-Schelter regular algebras

Koen De Naeghel

Thesis Supervisor: Michel Van den Bergh February 17, 2006

(2)

Polynomial ring

Put k = C. Commutative polynomial ring S = k[x, y, z] = khx, y, zi/(f1, f2, f3)      f1 : xy − yx = 0 f2 : yz − zy = 0 f3 : zx − xz = 0

(3)

Polynomial ring

Put k = C. Commutative polynomial ring S = k[x, y, z] = khx, y, zi/(f1, f2, f3)      f1 : xy − yx = 0 f2 : yz − zy = 0 f3 : zx − xz = 0

Noncommutative polynomial rings How to define them?

(4)

Polynomial ring

Put k = C. Commutative polynomial ring S = k[x, y, z] = khx, y, zi/(f1, f2, f3)      f1 : xy − yx = 0 f2 : yz − zy = 0 f3 : zx − xz = 0

Noncommutative polynomial rings

Artin-Schelter (1986) defined class of algebras. • A is quadratic: A = khx, y, zi/(g1, g2, g3) Generic:      g1 : ayz + bzy + cx2 = 0 g2 : azx + bxz + cy2 = 0 g3 : axy + byx + cz2 = 0

(5)

Polynomial ring

Put k = C. Commutative polynomial ring S = k[x, y, z] = khx, y, zi/(f1, f2, f3)      f1 : xy − yx = 0 f2 : yz − zy = 0 f3 : zx − xz = 0

Noncommutative polynomial rings

Artin-Schelter (1986) defined class of algebras. • A is quadratic: A = khx, y, zi/(g1, g2, g3) Generic:      g1 : ayz + bzy + cx2 = 0 g2 : azx + bxz + cy2 = 0 g3 : axy + byx + cz2 = 0 • A is cubic: A = khx, yi/(g1, g2) Generic: ( g1 : ay2x + byxy + axy2 + cx3 = 0 g2 : ax2y + bxyx + ayx2 + cy3 = 0

(6)

Projective plane

Consider the projective plane P2.

(7)

Projective plane

Consider the projective plane P2.

Homogeneous coordinate ring S = k[x, y, z]

What has S = k[x, y, z] to do with P2?

For any homogeneous polynomial f ∈ k[x, y, z] {p ∈ P2 | f (p) = 0}

is a curve on P2.

Example:

(8)

Projective plane

Consider the projective plane P2.

Homogeneous coordinate ring S = k[x, y, z] Sd = {homogeneous polynomials degree d}

(9)

Projective plane

Consider the projective plane P2.

Homogeneous coordinate ring S = k[x, y, z] Sd = {homogeneous polynomials degree d}

S = k ⊕ S1 ⊕ S2 ⊕ . . . graded k-algebra P2 is completely determined by S.

Theorem of Serre (1955)

(10)

Projective plane

Consider the projective plane P2.

Homogeneous coordinate ring S = k[x, y, z] Sd = {homogeneous polynomials degree d}

S = k ⊕ S1 ⊕ S2 ⊕ . . . graded k-algebra P2 is completely determined by S.

Theorem of Serre (1955)

Qcoh P2 ' GrMod S/ Tors S

What is GrMod S?

An object of GrMod S is

(11)

Projective plane

Consider the projective plane P2.

Homogeneous coordinate ring S = k[x, y, z] Sd = {homogeneous polynomials degree d}

S = k ⊕ S1 ⊕ S2 ⊕ . . . graded k-algebra P2 is completely determined by S.

Theorem of Serre (1955)

Qcoh P2 ' GrMod S/ Tors S

What is Tors S?

Generated by modules M ∈ GrMod S for which ∀m ∈ M : mS≥d = 0 for some d

Typical:

(12)

Projective plane

Consider the projective plane P2.

Homogeneous coordinate ring S = k[x, y, z] Sd = {homogeneous polynomials degree d}

S = k ⊕ S1 ⊕ S2 ⊕ . . . graded k-algebra P2 is completely determined by S.

Theorem of Serre (1955)

Qcoh P2 ' GrMod S/ Tors S

Noncommutative projective plane

Model of noncommutative projective plane P2q

(13)

Projective plane

Consider the projective plane P2.

Homogeneous coordinate ring S = k[x, y, z] Sd = {homogeneous polynomials degree d}

S = k ⊕ S1 ⊕ S2 ⊕ . . . graded k-algebra P2 is completely determined by S.

Theorem of Serre (1955)

Qcoh P2 ' GrMod S/ Tors S

Noncommutative projective plane

Model of noncommutative projective plane P2q

Artin-Zhang (1994)

• Replace S by noncommutative k-algebra A • Define Qcoh P2q := GrMod A/ Tors A

(14)

Artin-The points on P Point p ∈ P2

p

(15)

The points on P

Point p ∈ P2 ↔ two linear forms l1, l2 ∈ S1

p

x

l1

(16)

The points on P

Point p ∈ P2 ↔ two linear forms l1, l2 ∈ S1

p x l1 l2 represented by 0 → S(−2) −l2 l1 ! · −−−−−→ S(−1)2  l1 l2· −−−−−−→ S → P → 0 where • P = P0 ⊕ P1 ⊕ P2 ⊕ . . . ∈ GrMod S

(17)

The points on P

Correspondence is reversible

point p on P2 ↔ S-module P = P0S, hP(t) = 1 1 − t

(18)

The points on P

Correspondence is reversible

point p on P2 ↔ S-module P = P0S, hP(t) = 1 1 − t

The points on P2q: by definition

“point” p on P2q := right A-module P = P0A, hP(t) = 1 1 − t

(19)

The points on P

Correspondence is reversible

point p on P2 ↔ S-module P = P0S, hP(t) = 1 1 − t

The points on P2q: by definition

“point” p on P2q := right A-module P = P0A, hP(t) = 1 1 − t

Artin, Tate and Van den Bergh (1990):

• There is divisor E ⊂ P2 of deg 3 such that (closed) point p on E ↔ “point” on P2q

• A, P2q determined by the “points” on P2q

Generic: E is smooth elliptic curve

(20)

The points on P versus graded S-ideals Point p ∈ P2 ↔ two linear forms l1, l2 ∈ S1

p x l1 l2 0 → S(−2) −l2 l1 ! · −−−−−→ S(−1)2  l1 l2· −−−−−−→ S → P → 0

(21)

The points on P versus graded S-ideals Point p ∈ P2 ↔ two linear forms l1, l2 ∈ S1

p x l1 l2 0 → S(−2) −l2 l1 ! · −−−−−→ S(−1)2  l1 l2· −−−−−−→ S → P → 0 & % I

(22)

The points on P versus graded S-ideals Point p ∈ P2 ↔ two linear forms l1, l2 ∈ S1

p x l1 l2 0 → S(−2) −l2 l1 ! · −−−−−→ S(−1)2  l1 l2· −−−−−−→ S → P → 0 & % I

I = l1S + l2S ideal polynomials vanishing at p. In general: any graded ideal I, I  S(d) is (up to Tors S) the ideal of polynomials vanishing at some points.

(23)

The points on P versus graded S-ideals Point p ∈ P2 ↔ two linear forms l1, l2 ∈ S1

p x l1 l2 0 → S(−2) −l2 l1 ! · −−−−−→ S(−1)2  l1 l2· −−−−−−→ S → P → 0 & % I

I = l1S + l2S ideal polynomials vanishing at p. In general: any graded ideal I, I  S(d) is (up to Tors S) the ideal of polynomials vanishing at some points.

If I ⊂ S graded S-ideal: - put J = ωπI

- Either J ∼= S(d) or pd J = 1.

(24)

S-ideals of projective dimension one Let I ⊂ S graded ideal, pd I = 1

0 → ⊕iS(−i)bi −−→ ⊕

(25)

S-ideals of projective dimension one Let I ⊂ S graded ideal, pd I = 1

0 → ⊕iS(−i)bi −−→ ⊕

iS(−i)ai → I → 0

Hilbert-Burch (1890)

I is generated by the maximal minors of M (whose zero’s determine configuration of points)

(26)

S-ideals of projective dimension one Let I ⊂ S graded ideal, pd I = 1

0 → ⊕iS(−i)bi −−→ ⊕

iS(−i)ai → I → 0

Hilbert-Burch (1890)

I is generated by the maximal minors of M (whose zero’s determine configuration of points) Known:

Given ai, bi there is such an ideal I (up to shift) if and only if deg⊕S(−i)bi → ⊕ iS(−i)ai  =          × × . . . × × × × × × × × × . . . × × × ×          ×0 s > 0

(27)

S-ideals of projective dimension one Let I ⊂ S graded ideal, pd I = 1

0 → ⊕iS(−i)bi −−→ ⊕

iS(−i)ai → I → 0

Hilbert-Burch (1890)

I is generated by the maximal minors of M (whose zero’s determine configuration of points) Known:

Given ai, bi there is such an ideal I (up to shift) if and only if deg⊕S(−i)bi → ⊕ iS(−i)ai  =           × × . . . × × × × × × × × × . . . × × × × ×           ×0 s > 0 if and only if hI(t) = 1 (1 − t)3 − s(t) 1 − t

(28)

A Castelnuovo polynomial is of the form

s(t) = 1 + 2t + 3t2 +· · · + utu−1+ sutu +· · · + svtv

u ≥ su ≥ . . . ≥ sv ≥ 0 for some integers u, v ≥ 0.

(29)

A Castelnuovo polynomial is of the form

s(t) = 1 + 2t + 3t2 +· · · + utu−1+ sutu +· · · + svtv

u ≥ su ≥ . . . ≥ sv ≥ 0 for some integers u, v ≥ 0.

Visualized in form of a stair

Example:

(30)

The “points” on Pq versus right A-ideals “point” on P2q

p

E

(31)

The “points” on Pq versus right A-ideals “point” on P2q ↔ two linear forms l1, l2 ∈ A1

intersecting at E p l1 x l2 E

(32)

The “points” on Pq versus right A-ideals “point” on P2q ↔ two linear forms l1, l2 ∈ A1

intersecting at E p l1 x l2 E 0 → A(−2) w1 w2 ! · −−−−−→ A(−1)2  l1 l2· −−−−−−→ A → P → 0 & % I

(33)

The “points” on Pq versus right A-ideals “point” on P2q ↔ two linear forms l1, l2 ∈ A1

intersecting at E p l1 x l2 E v1 x v2 0 → A(−2) w1 w2 ! · −−−−−→ A(−1)2  l1 l2· −−−−−−→ A → P → 0 & % I If v1, v2 ∈ A1 not intersecting at E 0 → A(−2) v1 v2 ! · −−−−→ A(−1)2 → I0 → 0

(34)

Right A-ideals of projective dimension one

Let I ⊂ A graded right ideal, pd I = 1 0 → ⊕iA(−i)bi −−→ ⊕

(35)

Right A-ideals of projective dimension one

Let I ⊂ A graded right ideal, pd I = 1 0 → ⊕iA(−i)bi −−→ ⊕

iA(−i)ai → I → 0

Given ai, bi there is such I (up to shift) if and only if (Theorem 6)

deg⊕S(−i)bi → ⊕ iS(−i)ai  =           × × . . . × × × × × × × × × . . . × × × × ×           ×0 s > 0

(36)

Right A-ideals of projective dimension one

Let I ⊂ A graded right ideal, pd I = 1 0 → ⊕iA(−i)bi −−→ ⊕

iA(−i)ai → I → 0

Given ai, bi there is such I (up to shift) if and only if (Theorem 6)

deg⊕S(−i)bi → ⊕ iS(−i)ai  =           × × . . . × × × × × × × × × . . . × × × × ×           ×0 s > 0

if and only if (Theorem 4)

(37)

Right A-ideals of projective dimension one

Let I ⊂ A graded right ideal, pd I = 1 0 → ⊕iA(−i)bi −−→ ⊕

iA(−i)ai → I → 0

Given ai, bi there is such I (up to shift) if and only if (Theorem 6)

deg⊕S(−i)bi → ⊕ iS(−i)ai  =           × × . . . × × × × × × × × × . . . × × × × ×           ×0 s > 0

if and only if (Theorem 4)

hI(t) = 1

(1 − t)3 −

s(t) 1 − t

for some Castelnuovo polynomial s(t).

(38)

Hilbert scheme of points on P

Classify all possible configurations of n points on P2. Can be done by parameterspace.

Formally: parameter space for subschemes of P2 of dimension zero and degree n.

(39)

Hilbert scheme of points on P

Classify all possible configurations of n points on P2. Can be done by parameterspace.

Formally: parameter space for subschemes of P2 of dimension zero and degree n.

moduli problem

Hilbn(P2) : Noeth /k → Sets

R 7→ Hilbn(P2)(R) Hilbn(P2)(R) ={N ⊂ P2

R | N is R-flat and ∀x ∈ Spec R

(40)

Hilbert scheme of points on P

Classify all possible configurations of n points on P2. Can be done by parameterspace.

Formally: parameter space for subschemes of P2 of dimension zero and degree n.

moduli problem

Hilbn(P2) : Noeth /k → Sets

R 7→ Hilbn(P2)(R) Hilbn(P2)(R) ={N ⊂ P2

R | N is R-flat and ∀x ∈ Spec R

(41)

Hilbert scheme of points on Pq

Initial problem: P2q has few zero-dimensional noncommutative subschemes

(42)

Hilbert scheme of points on Pq

Initial problem: P2q has few zero-dimensional noncommutative subschemes

(43)

Hilbert scheme of points on Pq

Initial problem: P2q has few zero-dimensional noncommutative subschemes

Solution: consider ideal sheaves instead moduli problem

Hilbn(P2q) : Noeth /k → Sets

R 7→ Hilbn(P2q)(R)

Hilbn(P2q)(R) ={I ∈ cohP2

q,R | I is R-flat and ∀x ∈ Spec R

Ix ∈ cohP2q,k(x) torsion free, pd 1, normalized, rk 1}/ Pic R

(44)

Hilbert scheme of points on Pq

Initial problem: P2q has few zero-dimensional noncommutative subschemes

Solution: consider ideal sheaves instead moduli problem

Hilbn(P2q) : Noeth /k → Sets

R 7→ Hilbn(P2q)(R)

Hilbn(P2q)(R) ={I ∈ cohP2

q,R | I is R-flat and ∀x ∈ Spec R

Ix ∈ cohP2q,k(x) torsion free, pd 1, normalized, rk 1}/ Pic R

In case A = S: agrees with Hilbn(P2).

(45)

- A graded (right) ideal I is reflexive if Ext1(P, I) = 0 for all point modules P - If I is reflexive then pd I ≤ 1.

(46)

- A graded (right) ideal I is reflexive if Ext1(P, I) = 0 for all point modules P - If I is reflexive then pd I ≤ 1.

(47)

- A graded (right) ideal I is reflexive if Ext1(P, I) = 0 for all point modules P - If I is reflexive then pd I ≤ 1.

reflexive graded S-ideals: S(d)

reflexive graded right A-ideals In case A is generic: Theorems 1,2

R(A) = {reflexive graded right A-ideals}/iso,shift l

a n

Dn where Dn is smooth affine variety of dim 2n

points Dn are given by stable representations

kn X > Y > Z k n with rank    cX aZ bY bZ cY aX aY bX cZ    ≤ 2n+1

(48)

Picture in case A is generic:

Hilbn(P2q)

Dn

• Hilbn(P2q) parameterizes

{graded right A-ideals I, pd I = 1 hI(t) is 1

(1 − t)3 −

s(t)

1 − t up to shift}/iso, shift • Dn parameterizes

(49)

For any graded right ideal J with pd J = 1 0 → J →J1 → P1(d1) → 0

0 → J1 →J2 → P2(d2) → 0 ...

0 → Jr−1 →Jr → Pr(dr) → 0

where Jr is reflexive. Note 0 ≤ r ≤ n.

· J · · J1 . . . Jr−1 ` n Hilbn(P2q) · Jr ` n Dn

(50)

For any graded right ideal J with pd J = 1 0 → J →J1 → P1(d1) → 0

0 → J1 →J2 → P2(d2) → 0 ...

0 → Jr−1 →Jr → Pr(dr) → 0

where Jr is reflexive. Note 0 ≤ r ≤ n.

· J · · J1 . . . Jr−1 ` n Hilbn(P2q) · Jr ` n Dn

Let Hilb≥dn (P2q) be the J ∈ Hilbn(P2q) with r ≥ d.

(51)

For any graded right ideal J with pd J = 1 0 → J →J1 → P1(d1) → 0

0 → J1 →J2 → P2(d2) → 0 ...

0 → Jr−1 →Jr → Pr(dr) → 0

where Jr is reflexive. Note 0 ≤ r ≤ n.

· J · · J1 . . . Jr−1 ` n Hilbn(P2q) · Jr ` n Dn

Let Hilb≥dn (P2q) be the J ∈ Hilbn(P2q) with r ≥ d.

Theorem 7

- Hilb≥dn (P2q) projective variety of dimension 2n−d

(52)

Stratification of Hilbn(Pq)

Consider all points of Hilbn(P2) parameterizing ideals of A with same Hilbert series.

Hilbn(P2q)

(53)

Stratification of Hilbn(Pq)

Consider all points of Hilbn(P2) parameterizing ideals of A with same Hilbert series.

Hilbn(P2q)

. . . Hilbh(P2q)

For an appearing Hilbert series h(t) = 1 (1 − t)3 − s(t) 1 − t s(t) is Castelnuovo polynomial, s(1) = n put Hilbh(P2q) = {I ∈ Hilbn(P2q) | hI(t) = h(t)}

(54)

Hilbn(Pq)

. . . Hilbh(P2q)

Chapter 3

Hilbh(P2q) ⊂ Hilbn(P2q) is locally closed subvariety - smooth

- connected

(55)

Hilbn(Pq)

. . . Hilbh(P2q)

Chapter 3

Hilbh(P2q) ⊂ Hilbn(P2q) is locally closed subvariety - smooth

- connected

In case A = S: Proved by Gotzmann (1988)

Formula for dim Hilbh(P2q):

constant term of (t−1− t−2)s(t−1)s(t) + n + 1 ⇒ There is an unique stratum with maximal dimension 2n

(56)

Hilbn(Pq)

. . . Hilbh(P2q)

Chapter 3

Hilbh(P2q) ⊂ Hilbn(P2q) is locally closed subvariety - smooth

- connected

In case A = S: Proved by Gotzmann (1988)

Formula for dim Hilbh(P2q):

(57)

Hilbn(P ) and Hilbn(P2q) analogous strata Hilbn(P2) Hilbn(P2q) Hϕ Hψ Hϕ Hψ • Incidence problem:

(58)

Hilbn(P ) and Hilbn(P2q) analogous strata Hilbn(P2) Hilbn(P2q) Hϕ Hψ Hϕ Hψ • Incidence problem:

for which ϕ, ψ do we have Hϕ ⊂ Hψ ?

(59)

Hilbn(P ) and Hilbn(P2q) analogous strata Hilbn(P2) Hilbn(P2q) Hϕ Hψ Hϕ Hψ • Incidence problem:

for which ϕ, ψ do we have Hϕ ⊂ Hψ ?

General incidence problem for Hilbn(P2): unknown - Guerimand (2002)

solved case ϕ and ψ are “as close as possible” under a technical condition

(60)

“as close as possible” means: writing ϕ(t) = 1 (1 − t)3 − sϕ 1 − t, ψ(t) = 1 (1 − t)3 − sψ 1 − t sψ is obtained from sϕ by minimal movement of one square to the left.

(61)

“as close as possible” means: writing ϕ(t) = 1 (1 − t)3 − sϕ 1 − t, ψ(t) = 1 (1 − t)3 − sψ 1 − t sψ is obtained from sϕ by minimal movement of one square to the left.

Examples:

n = 17: ϕ and ψ as close as possible

(62)

“as close as possible” means: writing ϕ(t) = 1 (1 − t)3 − sϕ 1 − t, ψ(t) = 1 (1 − t)3 − sψ 1 − t sψ is obtained from sϕ by minimal movement of one square to the left.

Examples:

n = 17: ϕ and ψ as close as possible

sϕ sψ

(63)

Hilbn(P ) and Hilbn(P2q) analogous strata Hilbn(P2) Hilbn(P2q) Hϕ Hψ Hϕ Hψ • Incidence problem:

for which ϕ, ψ do we have Hϕ ⊂ Hψ ?

General incidence problem for Hilbn(P2): unknown - Guerimand (2002)

solved case ϕ and ψ are “as close as possible” under a technical condition

- Theorem 9

(64)

If ϕ, ψ Hilbert series “as close as possible”: We have Hϕ ⊂ Hψ if and only if

6 ? - ≥ 2 ≥ 0 ≥ 1 - 3 6 ? 6 ?≥ 0 - 3 6 ? - ≥ 1 ≥ 2 6≥ 0 6 ≥ 1 6 ?≥ 0 6 ? 6 ? - C ≥ 1 D ≥ 0 ≥ 1 - 2 6 ?≥ 0 6 ? 6 ? C ≥ 1 D ≥ 0 6 ? 6 ? A ≥ 0 B ≥ 1 C > D C > D A < B I II III IV

(65)

• Incidence problem:

for which ϕ, ψ do we have Hϕ ⊂ Hψ ?

(66)

• Incidence problem:

for which ϕ, ψ do we have Hϕ ⊂ Hψ ?

• Same solution for Hilbn(P2q) as for Hilbn(P2)? No for generic A

sϕ sψ

Generic I ∈ Hϕ

0 → A(−4)⊕A(−7) → A(−2)⊕A(−3)⊕A(−6) → I → 0 V = {f : I  F | hF = ϕ − ψ}

(67)

• Incidence problem:

for which ϕ, ψ do we have Hϕ ⊂ Hψ ?

• Same solution for Hilbn(P2q) as for Hilbn(P2)? No for generic A sϕ sψ Generic I ∈ Hϕ 0 → A(−4)⊕A(−7) → A(−2)⊕A(−3)⊕A(−6) → I → 0 V = {f : I  F | hF = ϕ − ψ} - commutative case: V = P2

V → N : f 7→ dimk Ext1A(ker f, ker f ) non-constant hence Hϕ ⊂ Hψ

- smooth elliptic case: V = three points on E V → N : f 7→ dimk Ext1A(ker f, ker f ) constant

(68)

If ϕ, ψ Hilbert series “as close as possible”: We have Hϕ ⊂ Hψ if and only if

6 ? - ≥ 2 ≥ 0 ≥ 1 - 3 6 ? 6 ?≥ 0 - 3 6 ? - ≥ 1 ≥ 2 6 ?≥ 0 ≥ 1 6 ≥ 1 6 6 ? ≥ 1 6 ?≥ 0 6 ? 6 ? - C ≥ 1 D ≥ 0 ≥ 1 - 2 6 ?≥ 0 6 ? 6 ? C ≥ 1 D ≥ 0 6 ? 6 ? A ≥ 0 B ≥ 1 C > D C > D A < B I II III IV

Cytaty

Powiązane dokumenty

Trudności na jakie napotykają w swojej działalności pracodawcy zatrudnia- jący niewielką liczbę pracowników, właściciele firm często rodzinnych, powodują, że często w

Prezentowane w tabeli dane wskazują jednoznacznie na znaczący spadek liczby pojazdów przemieszczających się na drogach wjaz- dowych/wyjazdowych ze Szczecina w analizowanym

We wspomnianych aneksach zawarto kolejne, krótkie fragmenty diariusza. Wydawcy nie podali uzasadnienia tej decyzji, być może wynikała ona ze szcząt- kowego charakteru

of Portuguese philology at the Jagiellonian University in Cracow and seven learners of Portuguese at the Iberian Language School ‘Porto Alegre’ in

Oddzielną kwestią była współpraca z innymi służbami posiadającymi własną sieć agenturalną, szczególnie ze Służbą Bezpieczeństwa. Ze względu na

Applying these results and using similar techniques we obtain that the collection of all L-weakly compact (M- weakly compact) regular operators on E forms a closed two sided ideal in

(They called ideals as deductive systems.) In this paper, we give some characterizations of maximal ideals in

Działalność w ydaw niczą w idział zresztą szerzej niż tylko w ydaw anie samego pisma.. oraz recenzje ze sztuk tea tra ln