• Nie Znaleziono Wyników

Monolithic integration of a smart temperature sensor on a modular silicon-based organ-on-a-chip device

N/A
N/A
Protected

Academic year: 2021

Share "Monolithic integration of a smart temperature sensor on a modular silicon-based organ-on-a-chip device"

Copied!
8
0
0

Pełen tekst

(1)

Delft University of Technology

Monolithic integration of a smart temperature sensor on a modular silicon-based

organ-on-a-chip device

Martins Da Ponte, Rolando; Gaio, Nikolas; van Zeijl, Henk; Vollebregt, Sten; Dijkstra, Paul; Dekker, Ronald;

Serdijn, Wouter; Giagka, Vasiliki

DOI

10.1016/j.sna.2020.112439

Publication date

2021

Document Version

Final published version

Published in

Sensors and Actuators A: Physical: an international journal devoted to research and development of

physical and chemical transducers

Citation (APA)

Martins Da Ponte, R., Gaio, N., van Zeijl, H., Vollebregt, S., Dijkstra, P., Dekker, R., Serdijn, W., & Giagka,

V. (2021). Monolithic integration of a smart temperature sensor on a modular silicon-based organ-on-a-chip

device. Sensors and Actuators A: Physical: an international journal devoted to research and development of

physical and chemical transducers, 317, 1 - 7. [112439]. https://doi.org/10.1016/j.sna.2020.112439

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

A:

Physical

j o u r n a l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

Monolithic

integration

of

a

smart

temperature

sensor

on

a

modular

silicon-based

organ-on-a-chip

device

Ronaldo

Martins

da

Ponte

a,∗

,

Nikolas

Gaio

b

,

Henk

van

Zeijl

a

,

Sten

Vollebregt

a

,

Paul

Dijkstra

c

,

Ronald

Dekker

a,d

,

Wouter

A.

Serdijn

a

,

Vasiliki

Giagka

a,e

aFacultyofElectricalEngineering,MathematicsandComputerScience,DepartmentofMicroelectronics,TUDelft,Mekelweg4,2628CD,TheNetherlands

bBIONDSolutionsB.V.,TUDelft,Mekelweg4,2628CD,TheNetherlands

cPhilipsInnovationServices,MMD,Eindhoven5616LZ,TheNetherlands

dPhilipsResearch,Eindhoven5656AE,TheNetherlands

eDepartmentofSystemIntegrationandInterconnectionTechnologies,FraunhoferInstituteforReliabilityandMicrointegration,IZMGustav-Meyer-Allee

25,13355Berlin,Germany

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received23July2020

Receivedinrevisedform

18September2020

Accepted13November2020

Availableonline21November2020

Keywords: Organs-on-a-chip

Smarttemperaturesensor

Time-modedomainsignalprocessing

MEMS

CMOSmonolithicintegration

MEMS-electronicsco-fabrication

a

b

s

t

r

a

c

t

Oneofthemanyapplicationsoforgan-on-a-chip(OOC)technologyisthestudyofbiologicalprocessesin humaninducedpluripotentstemcells(iPSCs)duringpharmacologicaldrugscreening.Itisofparamount importancetoconstructOOCsequippedwithhighlycompactinsitusensorsthatcanaccuratelymonitor, inrealtime,theextracellularfluidenvironmentandanticipateanyvitalphysiologicalchangesofthe culture.Inthispaper,wereporttheco-fabricationofaCMOSsmartsensoronthesamesubstrateas oursilicon-basedOOCforreal-timeinsitutemperaturemeasurementofthecellculture.Theproposed CMOScircuitisdevelopedtoprovidethefirstmonolithicallyintegratedinsitusmarttemperature-sensing systemonamicromachinedsilicon-basedOOCdevice.Measurementresultsonwaferrevealaresolution oflessthan±0.2◦Candanonlinearityerroroflessthan0.05%acrossatemperaturerangefrom30to

40◦C.Thesensor’stimeresponseismorethan10timesfasterthanthetimeconstantofthe convection-coolingmechanismfoundforamediumcontaining0.4mlofPBSsolution.Allinall,thisworkisthe firststeptowardsrealizingOOCswithseamlessintegratedCMOS-basedsensorscapabletomeasure,in realtime,multiplephysicalquantitiesfoundincellcultureexperiments.Itisexpectedthattheuseof commercialfoundryCMOSprocessesmayenableOOCswithverylargescaleofmulti-sensingintegration andactuationinaclosed-loopsystemmanner.

©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Organ-on-a-chip(OOC)isanemergenttechnologyinwhicha microfluidicperfusionplatformforculturinghumaniPSCsisused tomimicaminituarizedversionofanexplicitorgananatomyand physiology.Thistechnologyhasbeendevelopedtosubstitute tradi-tionalinvitroandanimalmodelsthatareofteninaccuratetopredict thehumanphysiology[1,2].StudiesindicatethatOOCscanplaya transformativeroleinthedrugdevelopmentcyclebybridgingthe gapbetweenpreclinicalstudiesandhumantrials,whilereducing thepharmaceuticalR&Dcoststo10–26%[3].

∗ Correspondingauthor.

E-mailaddress:r.martinsdaponte@tudelft.nl(R.M.daPonte).

URL:http://www.bioelectronics.tudelft.nl(R.M.daPonte).

For the construction of these OOC systems, various micro-and nano-fabrication technologies have been used, including soft lithography on elastomeric materials. The simplicity, fast turnaroundtime,andrelativelylowcostofthistechniqueaffords quickexperimentationofnewdesigns.Examplesofsuchdesigns includeOOCsfortheheart[4],theliver[5],thekidney[6],the lung[7],andtumours[8,29].Ontheotherhand,shortcomingsof suchmethodsincludelimiteddevicethroughputwhichisacrucial featureforhigh-volumemanufacturing.

To overcome this, MEMS (Microelectromechanical Systems) technologybasedonsiliconwaferlevelprocessingprovestobea veryefficientoptionformicromachininghigh-aspectratio struc-tureswithsubmicrometerresolution, andover a widerange of materials[9].Althoughdependentonhighlyspecializedand expen-siveequipment,thehighinitialcostsarecounteractedwhenlarge productionvolumeisanticipated.Additionally,MEMSprocesses often are compatible with CMOS(complementary metal oxide

https://doi.org/10.1016/j.sna.2020.112439

(3)

R.M.daPonte,N.Gaio,H.vanZeijletal. SensorsandActuatorsA317(2021)112439

semiconductor) technologywhichallows monolithicintegration of dedicated interface electronics for thermal, optical, pH,and label-freesensingnecessarytodesigncompactcellculturesystems

[10].Furthermore,theinsitureal-timeanalysisofferedbythese microelectronicsystemscouldrevealnewinsightsintointra-and inter-cellularsignallingpathways.

Currently, theaforementionedanalysisassumesthatthepH, temperature (∼37◦C), humidity (∼95% RH) and gaseous

atmo-sphere (CO2/O2 levels) around the cell culture medium are

regulatedbyincubators.Theseparametersshouldbekeptconstant sincetheyplayapivotalroleintheoptimalgrowthandmaximum productivityofthecellculture[11].However,variationsdooccur, whichcausestressinthecellsthatcanrespondinvariousways rangingfromtheactivationofsurvivalpathwaystotheinitiation ofsenescence.

Especially,recurrenttemperaturevariationsinthecellculture should be carefully monitoredas they may severelyaffect the experiments.Causesforsuchvariationscanbeduetodeviations betweentheincubator’stemperaturesetpointandthe tempera-tureofthecells,thefrequencyanddurationoftheincubator’sdoor opening,andthedurationthecellsareoutsidetheincubatorfor inspection[12].Aboveall,timespentoutsidetheincubator rep-resentsalarger,morevariable,factorthatislikelytoimpactcell health. Adropoftheculturetemperaturetoroomtemperature resultsinaconsiderabledecreaseincellgrowthalong withthe accumulationofcellsintheG1phase[13,14].Infact,therateat which thetemperatureofthecellculturedecreasesoutsidethe incubatorisunknowntolifescienceresearchers.Thishas moti-vated us toconstruct a real-time CMOStemperature sensor to monitortheinsitutemperatureoftheculturethroughoutthe cell-divisioncycle.

Avarietyofelectricalcellculturetemperaturesensing meth-odshasbeenpresentedinpreviousliterature:commercialT-type thermocouples madeof copperand constantan wires[15],NTC (negativetemperaturecoefficient)thermistors[16]orcommercial PT-100RTDs(resistancethermometerdetectors)[17].Acommon drawbackoftheaforementionedsolutionsmanifestsitselfwhen interfacingthesensor’soutputwithreadoutsystemsthatare out-sidetheculturingenvironment.Inthisscenario,withthesensor remotefromreadoutelectronics,varioussourcesoferrors(noise, interference,distortion,crosstalk,etc.)maybeintroducedoverthe channelandimpairthemeasurement.Moreover,suchcommercial sensorsarenotverycompactforOOCapplications.

Non-electrical temperature sensing methods have also been reported, such asliquid crystal displays[18], fluorescent poly-mericthermometers[19],andoptoacousticmethods[20].These solutions,however,arenotverycompactbecausetheydependon expensiveandbulkyinstrumentationlaboratoryequipment[21]

toopticallymapthetemperatureoftheculture.Moreover,these systemshavepoorresolution(∼1◦C),donoteasilyallowthe

inte-grationofclosed-loopsystemsanddonotofferthehighthroughput ofsilicon-basedmicrosystems.

Totackletheseshortcomings,wehavefabricatedasmart tem-perature sensoronthesamesiliconsubstrateusedtoconstruct ourcustommicromachinedorgan-on-a-chipdevice.Asa conse-quence,thesystemismademorecompactandtherobustnessto varioussourcesoferrorsisenhanced.Toaccomplishthis,weused asimple,robust,andcustomin-houseintegratedcircuit(IC) tech-nology[22].We havepreviouslyusedthistechnologytodesign andcharacterizeasuitabletemperaturesensor[23].Inthispaper, wearepresentingacomplete,seamlesslyintegratedinsitusmart temperature-sensingsystemonanOOC.Tothebestoftheauthors’ knowledgethisisthefirsttimesuchintegrationisperformedusing acustom-designedsensingandconditioningcircuitfabricatedon thesamesiliconsubstrateasthatoftheOOC.

Fig.1. ArtisticimpressionoftheCytostrechsystem.

Asopposed toaSystem-in-Package(SiP) approach,in which anoutsourcedASIC(Application-specificIntegratedCircuit)is het-erogenously integrated ontheOOC device,our solutionavoids theuseofchipmountingtechnology(e.g.wireanddiebonding) thatusuallyrequiresextrapackagingprotectionoftheassembled components.Incontrast,ourseamlessintegrationminimizesthe extraprocessingstepsandprecludespotentialmechanicalstresses causedbymismatchesinthethermalexpansioncoefficientofthe variousdissimilarcomponentsandmaterialstobeusedinaSiP sce-nario.Finally,theholisticCMOS-MEMSco-designapproachoffers thepossibilitytoconformandbetteraccomodatetheinclusionof CMOSelectronicsovervariousMEMStopologies.

2. Materialsandmethods

Our OOC platform, presented here as Cytostretch [24], is modular, customizable, silicon-based and microfabricated with cleanroom-compatibleprocesses.Themaincomponentsofthe sys-temaredepictedinFig.1,wheretheCytostretchchipsarebonded toa PCBthatincludesa mouldedmulti-wellplatefor culturing thecells.Thechipsincludeapneumatically-activated freestand-ingdog-bone-shapedPDMSmembranetoaccommodatethecell culture(module1)whiledeliveringmechanicalstimulitothecells invariousin-vitrostudies,additionalfeatures,suchas through-membranemicro-poresforbiologicalsignalexchange(module2), on-membranegroovesforcellalignment(module3),in-membrane titaniumnitride(TiN)microelectrodesformonitoringactivityfrom electricallyactivecells(module4),andtitanium(Ti)straingauges tomeasurethedeformationofthePDMSmembraneduring infla-tion(module5).More detailsonthesespecificmodulescanbe foundin[25].Thesmarttemperaturesensorpresentedinthispaper isthesixthmoduleofthisOOCplatform.Thismodulewas accom-plishedthankstothemonolithicintegrationofthissmartsensor onthebacksideofourOOCdevice.Thetemperatureofthecellsis sensedasaresultoftheheattransferredfromtheculturemedium tothecrystallinesiliconthroughthermalconductionmechanisms associatedwithelasticvibrationsofthelattice(i.e.phonons trans-port).

2.1. Thesmarttemperaturesensingmodule

Thesmartsensingmodulewasdesignedtodetecttheinsitu temperatureofthecultureandconvertitintoaperiodicdigital elec-tronicsignal,whichcarriesthetemperatureinformationencoded inthetimedomain.Torealizethis,thesystemconsistsoftwomain blocks:aproportionaltoabsolutetemperature(PTAT)current gen-erator(employingNPNbipolartransistorstosensethetemperature information)andarelaxationoscillator(Fig.2).

Thecircuitoperationcanbeunderstoodfromthesystem dia-gramof Fig.2.During start-up,theoutputofthecomparatoris settoalogic“0”whichturnstheCMOSswitches( ¯)onforthe comparisonphase.Asaresult,aPTATcurrentisintegratedinthe capacitoranditsvoltage(Vc)isrampedup.WhenVcequalsvoltage

VH,theoutputofthecomparatortogglesandturnstheotherpairof

(4)

Fig.2.MainblocksofthesmartCMOStemperaturesensor:aPTATgeneratorandarelaxationoscillator.

CMOSswitches()on.ThevoltageVcisnowrampeddownviathe

PTATcurrentsinkuntilitreachesVLendingthedischargingcycle.

Oncestarted,thisprocesscontinuesindefinetelytoyieldasignalin whichtheperiodisPTATaccordingtotheequationT=CV/IPTAT,

whereVisthedifferencebetweenthethresholdvoltagesVHand

VL,CisthecapacitanceandIPTATisthePTATcurrentgenerated.

2.1.1. PTATgenerator

ThePTATcurrentgeneratoryieldsacurrentthatisproportional tothevoltagedrop(VBE)acrosstheresistorR.Sincethisvoltageis

thedifferenceoftwobase-emittervoltages,thecurrentproduced, I=VBE/R,isPTAT.Currentmirrorswitha m:1ratioconveythe

copyofthisPTATcurrenttothecapacitor.Thecollectorvoltages areforcedtobeequal,regardlessofvariationsinthepowersupply orinthetemperature,viathenegativefeedbackloopthatincludes theopamp(OperationalAmplifier),thebipolardevices(Q1andQ2)

andtheresistor.TheexpressionofthecurrentacrossresistorRis: IPTAT =

UT

R ln(mn), (1)

whereUTisthethermalvoltage(≈26mVatroomtemperature),m

isthecurrentmirrorratioandnisthebipolaremitterarearatio. Hence,theresponsivityofthisblockismostlydeterminedbythe currentmirrorandemitterarearatios.Inthedesign,valuesof5 and4formandn,respectively,werechosen.Inaddition,a start-upcircuitforthisPTATcellwasimplementedtoensureitscorrect operatingpoint.

2.1.2. Relaxationoscillator

Therelaxationoscillatorisrealizedbyafeedbackcontrol per-formed by the comparator, the PTAT current source and the hysteresiscircuit.Hysteresis isa functionalrequirementforthe relaxationoscillatortoworkproperly.Thehysteresiscircuitwas implementedwithninestackeddiode-connectedbipolardevices biasedwithacopyofthePTATcurrentsoastoproducethevoltages VHandVL,at37◦C,of6and3.5V,respectively.Thehysteresiswas

madeinverselyproportionaltotheabsolutetemperature(CTAT)to increasethecircuitresponsivitywithrespecttotheperiod. 2.2. Microfabricationonsiliconsubstrate

The cofabrication of MEMS and CMOS on a single silicon substrateistypicallyadverseintermsofcosts.Thisproblem exac-erbatesinmoreadvancedCMOStechnologiesduetotheincreased number of masks and processing steps required. For instance, adding high-performance verticalbipolar devices toa standard

0.18␮mCMOStechnologycanaddupto10–20extra photolitho-graphicmasksandincreasethecostsby20–30%[26].

UsingasimplerCMOSprocesswithfewerphotomasksand pro-cessstepsismoreattractive.Ourin-houseCMOSprocesscomprises seven photomasks which yields a more cost-effective solution (Fig.3a–h)whileofferinga holisticCMOS-MEMS co-design.The cofabricationprocedureusesaMEMS-lastprocessingstrategy[27]. Inthisapproach,theMEMSstructuresarefabricatedby deposit-ingandmicromachiningCMOS-compatiblematerialsontopofthe fabricatedCMOSelectronics.

2.3. CMOSfabrication

Adouble-polishedp-typesiliconwaferwith100of crystal-lographicorientationand5cmofresistivityisusedtostartthe alignmentlayer(zerolayer)definition.A2-␮mthicknessofp-type epitaxiallayerwasgrown onthetopof thesilicon waferwith 1.0e16ions/cm3 ofborondopinginordertoobtaina precise

p-dopantconcentrationrequiredtoincludeNPNbipolartransistors intheCMOSprocess.

A20-nmbarrierwasformedusingwetoxidationtoscreen co-implantedparticles.Then-wellandthecollectorareaoftheNPN bipolartransistorarepatternedusingthefirstphotomask(Fig.3a) witha3.1␮mofphotoresistthickness.A5e12-doseofphosporus implantationat150keVofenergyisfollowedby415minof anneal-ingfordopingredistribution.A230-nmofoxideiscreatedasa result.Anoxidestrippingisperformedusingabuffered hydroflu-oricacid(BHF)solutionwith1:7ofselectivity.Anotherdirtbarrier oxidelayerisgrowntoprocessthesubsequentsteps.

Thesecondphotomaskisusedtodefinethen-typediffusion areasfortheCMOStransistorsandtheemitterareaforthe bipo-lartransistors(Fig.3b)using5.0e15ions/cm3 doseofarsenicat

40.0keVofenergy.Thethirdphotomaskdefinesthep-type diffu-sionareasfortheCMOSaswellasthebaseareaofthebipolars (Fig.3c)using4.0e14ions/cm3ofboronat20.0keVofenergy.An

optimaldoseimplantationshouldbeinvestigatedhereduetothe trade-offbetweentheintrinsic currentgain of theNPNbipolar devicesandthecurrentdrivecapacityofthePMOSdevices.

Next,athresholdvoltageadjustmentiscarriedoutusinganet doseof20e11ions/cm3at25.0keVinthefourthquadrantofthe

wafer.Subsequently,thedirtbarrieroxideisremovedusinga1:7 BHFsolution,followedby9minofwetoxidationfordopant acti-vationandtocreatethe100-nmofgateoxide.Afterthisstep,the thresholdvoltagesforthenMOSandpMOStransistors,inthefourth quadrant,aresettoabout2.0Vand−2.5V,respectively.

(5)

R.M.daPonte,N.Gaio,H.vanZeijletal. SensorsandActuatorsA317(2021)112439

Fig.3.FabricationstepsinacustomCMOS-MEMStechnologyforthesmartsensordeviceontheCytostretchplatform.Nottoscale.

Inthenextstep(fourthmask),thecontactopeningsare pat-terned and wet-etched with a 1:7 BHF solution (Fig. 3d). The interconnects and the gate material are created by sputtering 200nm of AlSi (1%) and patterning with the fifth photomask (Fig.3e).The1%ofsiliconcomposition inthealuminum avoids spikes in the shallow metal-diffusion interfaces. The process followswithadepositionof2-␮mofSiO2usingPECVD

(plasma-enhancedchemicalvapourdeposition)atthefrontsideofthewafer tocreateatthesametimetheMIM(metal-insulator-metal) capaci-tordielectricsandthestoppingmaskfortheDRIE(deepreactiveion etching)stepthatdefinesthePDMSmembranearea.Tosharethis processstep,acleartrade-offistobemadeintheco-designphase. Ideally,thethinnerthedielectricoftheMIMcapacitorthebigger thecapacitance,thus,thehigherthetotalcapacitanceperarea.This resultsinamorearea-savingsolution.Ontheotherhand,enough oxidethicknessheadroomshouldbeprovidedintheDRIEstepto ensureareliablehardmasklanding.Asaconsequence,duringthe co-designphase,abiggersiliconareahasbeengrantedtotheMIM capacitorgivenaminimumof2-␮mthicknessofSiO2tobeused.

Theviasareopenedusingplasmaetchingafterpatterningthe sixthphotomask(Fig.3f)withphotoresist.Thesecond metalliza-tion(Fig.3g)usesa3.1-␮mthicknessofsputteredAlSi(1%).This stepsimultaneouslypatternsthesecondlevelofinterconnectsof thesmartsensortogetherwiththecontactpadsandthe electri-cal interconnects outside themembrane areaoftheCytostrech (Fig.3h).

2.4. MEMSbulkmicromaching

Followingthe laststep of thesmart sensormicrofabrication (Fig.3h),a5-␮mPECVDSiO2isdepositedonthebacksideofthe

wafertopreparethesubstratefortheDRIEstep.TheCytostretch membraneareaisthenpatternedonthesamebacksidebydry etch-ing(Fig.3j).Subsequently,a15-␮m-thickPDMSlayerisspunonto thefrontofthewaferat3500rpmfor30sandcuredfor1hat90◦C (Fig.3j).Next,300nmofAlSi(1%)issputteredatroomtemperature ontopofthePDMSfilmcreated.TheAlismaskedwith4␮mof pho-toresist(PR)(AZECI3027)anddry-etched(Fig.3k).Thelithography and etchingprocesses usedare optimized tocircumventissues causedbythedifferencebetweentheexpansioncoefficientsofthe PDMSandthePR.Besidesservingasahardmasktolaterexpose theelectricalcontacts,theAllayerreducestheeffectsofthe differ-encesinexpansioncoefficientsbyactingasabufferlayerbetween thePDMSandthePR.

Subsequently, the membrane is released removing the Si and the SiO2 layers from underneath the membrane using

DRIE and BHF,respectively (Fig.3l).Finally, anetchmixture of phosporic/acetic/nitricacid(PES77-19-04)isusedtoremovethe aluminiumonthetopofPDMSandmakethemembranefully trans-parent.ThisdoesnotremovetheSifromtheAlSi(1%),though.

Fig.4. SmarttemperaturesensormonolithicallyintegratedontheCytostretchchip.

3. Experimental

ThemicrofabricateddeviceisshowninFig.4.Thetotalchipsize is7×7mm2andlessthan15%ofthisareawasusedforthesmart

sensor.

Staticanddynamicresponsemeasurementswerecarriedoutto characterizethesensor’sperformance.Theresolutionandlinearity wereextractedbymeansofaseriesofstaticresponse measure-mentsin whichthetemperaturewasmaintainedconstantwith respecttotime.Thedynamicresponsemeasurementwasusedto characterizethesensor’sresponsespeedbyapplyingabrief tem-peraturepulsebymeansofapre-heatedPBSsolution.

3.1. Staticresponse:drymeasurements

The static response measurements were carried out with a microprobestationwhichincludesathermalchucktosweepthe temperatureofthewaferoverthedesiredrange.Acommercial PT-100temperaturesensorwasattachedtothethermalchucktoseta well-calibratedreferenceandthe4-pointprobesmethodwasused tomeasureitsresistancechanges.

Atemperaturesweepfrom25to100◦Cwith5◦Cincrementwas carriedoutinordertomeasuretheresponsivityandthe nonlinear-ityofthetemperature-to-timeconversion.Theresponsivity and themaximumnonlinearityerrorobtainedfromthismeasurement was57.1ns/◦Cand0.26%,respectively(Fig.5).

Atemperature measurement over a shorter range (30–40◦C with1◦Cincrement)wasalsoperformedinordertocharacterize

(6)

Fig.5. Temperature-to-timeconversionofthesmarttemperaturesensor.The

least-squarespolynomialregressionrevealsa57.1ns/◦Cofresponsivity.

Fig.6.CytostrechchipsmountedonaPCBcontainingwellsforcellculture

experi-ments.

thesensor’slinearitywithinatemperaturespanthatisclosertothe cellcultureapplication.Asimplelinearregressionofthedataover thistemperaturerangerevealsa99.988%fitwiththelinearmodel. Hence,a0.05%ofmaximumnonlinearityerrorwasfoundoverthis range.

Thejitterisameasureofthedeviationoftheperiodicsignalfrom itstrueperiodicityanditaffectstheresolutionthatthesensorcan achieve.Thetotalrootmeansquare(rms)jitterwasmeasuredat 37◦Cformorethan50,000samplesand isequalto2.78ns.The sensor’sresolution(R)iscalculatedastheratioofthejitterfor3 andtheresponsivity,andequals:

R=357.1×2.78ns/nsC =0.15◦C(3), (2) 3.2. Dynamicresponse:wetmeasurements

To measurethesensor’sdynamic response,thewafers were dicedandfourdifferentdicewereassembledonasemi-flexible PCBcontainingfourdifferentwellsintendedforcellculture exper-imentation(Fig.6).

The measurementswereinitiatedwiththeambient temper-ature at 28◦C (±0.5◦C) and after approximately 15s the wells

werefilledwith0.4mlofPBS(Phosphate-bufferedsaline)solution pre-heated toatemperatureof32◦C.Here,three differenttime constantsareinvolvedintheheattransferexchange(Fig.7):(1) thetimeconstantassociatedwiththeconvection-cooling mecha-nismsbetweenthemediumandtheambienttemperature(1),(2)

associatedwiththethermalconductionhappeningattheinterface betweenthemediumbulkandthesiliconcrystallattice(2),(3)

andassociatedwiththeintrinsicdelaybetweenthesiliconlattice andthesensoritself(3).

Fig.7.Different timeconstants involvedontheheat transferof thesystem.

Timeconstant1happensbetweenthemediumandtheambienttemperature,2

betweenthemediumandthesiliconlatticeand,3,betweenthesiliconandthe

sensor.

Fig.8. Dynamicresponseofthesensortoabrieftemperaturepulse.

TheresultofthismeasurementisplottedinFig.8forten dif-ferentmeasurements(darkgreenlines)takenatdifferenttimes withinaday.Thepinklineonthiscurveindicatesthemeanvalue calculatedforthese10samples,whereastheshadedlightgreen regionsencompassesthe±3confidencelevelaroundthemean.

Anexponentialcurveisalsofittedonthedatatoindicatethe tendencyofthesamples.Fromthiscurve,thetimeconstant associ-atedwiththeheatlossbetweenthemediumandtheambient(1)

hasbeenextractedanditisroughly50seconds.Thecumulative timeconstant(2+3)associatedwiththermalconductioninthe

siliconandthesensor’sresponsehasalsobeenderivedfromthe slopeinthecurvearoundt=15s,anditisonaverage1.5s.

Theratioofthethermalresistancesduetoconductionbetween themediumandthesiliconsurfacecomparedtothethermal resis-tanceduetotheheatlossmechanismsgiveanindicationoftheBiot number.Thisdimensionlessquantitywascalculatedtobeabout 0.03anditimpliesthattheheatconductioninsidethebodyismuch fasterthantheheatconvectionawayfromitssurface,and temper-aturegradientsarenegligibleinsideofit.HavingaBiotnumber smallerthan0.1labelsasubstanceas“thermallythin”,and tem-peraturecanbeassumedtobeconstantthroughoutthematerial’s volume.

4. Resultsanddiscussion

The results presented in the previous section demonstrate thecapabilityofmonolithicallyintegratingCMOSfunctionalityin silicon-basedOOCdevicesforreal-timeinsitutemperature mea-surementsofthecellculture.Ourin-houseCMOStechnologyhas beenusedasaresearchtoolfortheproofofconcept.Thishasbeen thefirststeptorealize OOCswithintegrated CMOS

(7)

functional-R.M.daPonte,N.Gaio,H.vanZeijletal. SensorsandActuatorsA317(2021)112439

ityformulti-sensingmanyotherdifferentphysicalquantities(pH, glucose,glutamate,growthfactors,etc.)inthecellculture.Asthe numberofsensorsintheplatformincreases,morecorrelationscan beperformedforstoichiometricoptimizationsoftheculture.

Previousliteraturehasextensivelyusedcommercialsensorsfor thispurpose,whicharenotcompact,notscalableanddonotallow forhighdensitymulti-sensingintegration.

We expectthattheuseofmoreadvanced CMOS technologi-calnodescanenableverylargescaleofmulti-sensingintegration and actuationina closed-loopsystem.Tothat end,thesensors shallyieldthenecessaryaccuracyandrespondfastenoughforthe application.

Forinstance,theresultsobtainedwiththedynamicresponse measurementsindicatethatthesensor’sresponse(≈1.5s)ismuch fasterthanthetimeittakestoelapseonetimeconstant(≈50s)of theconvection-coolingmechanism.Inthiscase,thesensorcould beincorporatedinaclosed-loopconfigurationwithlocalheaters tokeeptheinsitutemperatureascloseaspossibletoitsreference forthemaximumtimewhenoutsidetheincubator.

In addition,thecurveobtainedfromthecoolingmechanism indicatesthattherateofheatlossinthemediumwherethecells areculturedtendstofollowanexponentialdecayanditis pro-portionaltothetemperaturedifferencebetweenthemediumand itssurroundings.Suchresultisalsoarelevantinformationtothe biologistsduringthetimethecultureisoutsidetheincubatorfor inspection.

Withrespecttotheresultsfoundinthestaticmeasurements, thesensor’sresolution(0.15◦Candlinearitysuggestthatthesensor canpotentiallymonitortemperatureincrementsoftheculturethat couldgiveanindicationofthemetabolicgrowthrateasaresultof theheatdissipatedduetoenthalpychanges[28].

It is important to notice that the sensor’s circuit design is not optimizedforbestperformance. Therefore,circuit improve-mentscanbemadetoachievebetterresolutionorresponsitivity, ifneeded. Regardingthemicrofabricationchallenges,care must be takenwhen processing materialssuch asPDMS. After etch-ing,residuesmaystill remainatthesurface whichcanhamper furthersystem-levelintegrationprocessessuchaswirebonding. Non-selectiveover-etching,ontheotherhand,mightpartiallyor completely remove thematerialsbeneath. Hence,process opti-mizationduringtheetchingphasesisofparamountimportance forthereliabilityandreproducibilityoftheendproduct.

5. Conclusions

Cellculturesaremaintainedatanappropriatetemperatureand gasmixtureinsideacellincubator.Becausetheinsituculture condi-tionsmayvary,especiallywhenthecultureisoutsidetheincubator, itisadvantageoustoconstructOOCsthatareequippedwith sen-sorsthatcanaccuratelymeasureinreal-timetheinsituconditions ofthecells.

In thiswork,weinvestigatedthemonolithic integrationofa CMOSsmarttemperaturesensorinourMEMSOOCdevice.By com-biningCMOSandMEMStechnologymonolithically,itispossible to create OOCsto accommodatethecells over differentMEMS structureswhileintegratinghigh-densityCMOSelectronicsforvery compactsystemsthatcanmeasureinsituphysicalquantitiesinthe culturemedium.

TheCMOS-MEMScofabricationmethodusedhereyielded,for thefirsttime,anOOCdevicewithintegratedCMOSsensing func-tionalityforareal-timeinsitutemperaturemeasurementofthecell culture.Ourin-houseCMOStechnologyhasbeenusedasaresearch toolfortheproofofconcept.

Moreover,asaresultofsharingcommonprocessstepsandby minimizingthenumberofCMOSmasksused,amorecost-effective

andscalablesolutionisobtained.Inordertomeetspecific require-mentsofboth technologies,aholisticco-designphase hasbeen followedsothetrade-offsbetweencircuitperformanceand micro-machingreliabilityaretakenintoconsideration.

Measurementresultsofoursmarttemperaturesensorindicate thattemperatureincrementsof0.2◦Ccanbeaccuratelymonitored. Thiscouldpotentiallybeusedtogiveanindicationofthemetabolic growthratewhenthecultureisinsidetheincubator.Thesensor’s timeresponsefoundwasapproximately1.5swhichismuchfaster thanthetimeittakesforthetemperatureofa0.4mlmediumto dropby1◦C.

ThisworkisthefirststeptowardsconstructingOOCswith inte-gratedCMOSelectronicsformulti-sensingrelevantinformationin thecellculture(O2,CO2,pH,glucose,glutamate,growfactors,etc.).

Itis expectedthattheuseofmore advancedCMOSnodesmay enablepowerfulOOCswithaverylargedegreeofmulti-sensing integrationandactuationinaclosed-loopsystemmanner.

Authors’contribution

RonaldoMartinsdaPonte:maininvestigator,writing–original draftpreparation,conceptualization,methodology,measurements, formalanalysis,datacuration,visualization,fundingacquisition. NikolasGaio:conceptualization,resources,methodologysupport, reviewing original draft.Henk vanZeijl: methodology support, resources, reviewing original draft. Sten Vollebregt: methodol-ogysupport,resources,measurementsupport,reviewingoriginal draft.PaulDijkstra:resources.RonaldDekker:conceptualization, resources, project administration. Wouter A. Serdjin: concep-tualization, supervision, resources, funding acquisition, project administration,reviewingoriginaldraft.VasilikiGiagka: concep-tualization, supervision, resources, funding acquisition, project administration,reviewingoriginaldraft.

Conflictsofinterest

Therearenoconflictstodeclare.

Acknowledgments

ThisworkwassupportedbytheNationalCouncilforScientific andTechnologicalDevelopment(CNPq),Brazil.Partofthework thatisdiscussedinthisarticlewasalsoconductedunderthe ECSEL-02-2014programInForMed,grantnumber:2014-2-662155.The authorswouldliketothankMassimoMastrangelifromTUDelft andVirgilioValente,nowinRyersonUniversity,forthesupportand fruitfuldiscussionsaboutOOCs.NielsRijkersofPhilips,Eindhoven, forhishelponthemicrosystemintegrationoftheCytostretch sam-ples.LoekSteenwegofEKLoptimizedtheparametersfordicingthe wafers.WilliamQuirós-SolanoandBrunoMoranafromTUDelft suppliedtheOOCwellsforintegrationandthefour-terminal sens-inggearformeasurement,respectively.LukaszPakulahelpedwith thesetupconfigurationforautomaticmeasurements.

References

[1]A.Balijepalli,V.Sivaramakrishan,Organs-on-chips:researchandcommercial perspectives,DrugDiscov.Today22(2)(2017)397–403,ISSN1359-6446.

[2]E.Dehne,T.Hasenberg,U.Marx,Theascendanceofmicrophysiological systemstosolvethedrugtestingdilemma,FutureSci.OA3(3)(2017)FSO185.

[3]N.Franzen,W.H.vanHarten,V.P.Retèl,P.Loskill,J.vandenEijnden-vanRaaij, M.IJzerman,Impactoforgan-on-a-chiptechnologyonpharmaceuticalr&d costs,DrugDiscov.Today24(9)(2019)1720–1724,ISSN1359-6446.

[4]E.Jastrzebska,E.Tomecka,I.Jesion,Heart-on-a-chipbasedonstemcell biology,Biosens.Bioelectron.75(2016)67–81.

[5]S.S.Bale,L.Vernetti,N.Senutovitch,R.Jindal,M.Hegde,A.Gough,W.J. McCarty,A.Bakan,A.Bhushan,T.Y.Shun,I.Golberg,R.DeBiasio,O.B.Usta,D.L.

(8)

Taylor,M.L.Yarmush,Invitroplatformsforevaluatinglivertoxicity,Exp.Biol. Med.239(9)(2014)1180–1191.

[6]S.Cho,A.Islas-Robles,A.Nicolini,T.Monks,J.-Y.Yoon,Insitu,dual-mode monitoringoforgan-on-a-chipwithsmartphone-basedfluorescence microscope,Biosens.Bioelectron.86(2016)697–705.

[7]D.Huh,B.D.Matthews,A.Mammoto,M.Montoya-Zavala,H.Y.Hsin,D.E. Ingber,Reconstitutingorgan-levellungfunctionsonachip,Science328 (5986)(2010)1662–1668.

[8]D.Wlodkowic,J.Cooper,Tumorsonchips:oncologymeetsmicrofluidics, Curr.Opin.Chem.Biol.14(5)(2010)556–567.

[9]E.Verpoorte,N.F.DeRooij,Microfluidicsmeetsmems,Proc.IEEE91(6) (2003)930–953.

[10]B.Senevirathna,S.Lu,M.Dandin,J.Basile,E.Smela,P.Abshire,High resolutionmonitoringofchemotherapeuticagentpotencyincancercells usingacmoscapacitancebiosensor,Biosens.Bioelectron.(2019)142.

[11]S.Miyamoto,A.Ohashi,J.Kimura,T.Akaike,Developmentofccd-baseddirect observationequipmentforbiologicalsamples,Biosens.Bioelectron.11(1–2) (1996)81–90.

[12]D.KattipparambilRajan,J.Verho,J.Kreutzer,H.Välimäki,H.Ihalainen,J. Lekkala,M.Patrikoski,S.Miettinen,Monitoringph,temperatureand humidityinlong-termstemcellcultureinco2incubator.,2017IEEE InternationalSymposiumonMedicalMeasurementsandApplications (MeMeA)(2017)470–474.

[13]T.Neutelings,C.A.Lambert,B.V.Nusgens,A.C.Colige,Effectsofmildcold shock(25◦c)followedbywarmingupat37◦conthecellularstressresponse, PLOSONE8(2013)7.

[14]S.Becerra,J.Berrios,N.Osses,C.Altamirano,Exploringtheeffectofmild hypothermiaonchocellproductivity,Biochem.Eng.J.60(2012)1–8,ISSN 1369-703X.

[15]Y.G.Shellman,D.Ribble,M.Yi,T.Pacheco,M.Hensley,D.Finch,F.Kreith,R.L. Mahajan,D.A.Norris,Fastresponsetemperaturemeasurementandhighly reproducibleheatingmethodsfor96-wellplates,BioTechniques36(6)(2004) 968–976.

[16]M.Reichen,F.S.Veraitch,N.Szita,Developmentofamultiplexedmicrofluidic platformfortheautomatedcultivationofembryonicstemcells,J.Lab.Autom. 18(6)(2013)519–529.

[17]C.Li,J.Sun,Q.Wang,W.Zhang,N.Gu,Wirelessthermometryforreal-time temperaturerecordingonthousand-celllevel,IEEETrans.Biomed.Eng.66(1) (2019)23–29.

[18]F.Gillot,F.O.Morin,H.F.Arata,R.Guégan,H.Tanaka,H.Fujita,On-chip thermalcalibrationwith8cbliquidcrystalofmicro-thermaldevice,LabChip 7(2007)1600–1602.

[19]J.Qiao,X.Mu,L.Qi,Constructionoffluorescentpolymeric

nano-thermometersforintracellulartemperatureimaging:areview,Biosens. Bioelectron.85(2016)403–413,ISSN0956-5663.

[20]I.V.Larina,K.V.Larin,R.O.Esenaliev,Real-timeoptoacousticmonitoringof temperatureintissues,J.Phys.D:Appl.Phys.38(15)(2005)2633–2639.

[21]S.Lee,S.Kang,Integratedopticalmolecularimagingsystemfor four-dimensionalreal-timedetectioninlivingsinglecells,Biosens. Bioelectron.31(1)(2012)393–398.

[22]H.vanZeijl,L.Nanver,Alow-costbicmosprocesswithmetalgates,MRSProc. 611(2000),C7.2.1.

[23]R.Ponte,V.Giagka,W.A.Serdijn,Designandcustomfabricationofasmart temperaturesensorforanorgan-on-a-chipplatform,2018IEEEBiomedical CircuitsandSystemsConference(BioCAS)(2018)1–4.

[24]S.K.Pakazad,A.Savov,A.vandeStolpe,R.Dekker,Anovelstretchable micro-electrodearray(SMEA)designfordirectionalstretchingofcells,J. Micromechan.Microeng.24(3)(2014)034003.

[25]N.Gaio,B.vanMeer,W.QuirósSolano,L.Bergers,A.vandeStolpe,C. Mummery,P.M.Sarro,R.Dekker,Cytostretch,anorgan-on-chipplatform, Micromachines7(7)(2016).

[26]S.Franssila,IntroductiontoMicrofabrication,JohnWileyandSons,Ltd,2010, pp.271–282(Chapter22)ISBN9781119990413.

[27]A.C.Fischer,F.Forsberg,M.Lapisa,S.J.Bleiker,G.Stemme,N.Roxhed,F. Niklaus,IntegratingMEMSandICs,Microsyst.Nanoeng.1(2015)15005.

[28]Y.H.Guan,R.Kemp,On-lineheatfluxmeasurementsimprovetheculture

mediumforthegrowthandproductivityofgeneticallyengineeredchocells,

Cytotechnology30(8)(1999)107–120,http://dx.doi.org/10.1023/

A:1008038515285.

[29]N.Dhiman,P.Kingshott,H.Sumer,C.Sharma,S.Rath,On-chipanticancer drugscreening–recentprogressinmicrofluidicplatformstoaddress challengesinchemotherapy,Biosens.Bioelectron.137(2019)236–254.

Biographies

RonaldoMartinsdaPontereceivedhisM.Sc.degreefromtheFederalUniversity

ofSantaCatarina,Florianópolis,Brazil,in2015.Heiscurrentlyworkingtoward

hisPh.D.degreeattheSectionBioelectronics,DelftUniversityofTechnology,The

Netherlands.HisresearchinterestsincludetheMEMS-CMOSintegrationfor

opto-geneticbraininterfacesandlab-on-CMOSdevices.HeisaStudentMemberofthe

IEEE.

NikolasGaioreceivedtheM.Sc.(cumlaude)inBiomedicalEngineeringin2015and

thePh.D.degree,in2019fromDelftUniversityofTechnology,Netherlands.Hisareas

ofinterestsincludeOrgan-on-Chip,stretchableelectronicsandmicrofluidicdevices.

HereceivedtheBestStudentPaperAwardatthe2015IEEESensors,thepublicPoster

AwardattheICTOpenConferencein2016,andtheLushPrize(YoungResearcher)

in2018.HeisthefounderandCTOofBIONDSolutionsB.V.

Dr.Ing.H.W.vanZeijl(1958)studiedphysicsattheTechnicalCollegeinRijswijk

wherehereceivedtheengineersdiplomain1980.InthatyearhejoinedtheDelft

UniversityofTechnology(TUD)wherehecooperatedindifferentresearchproject

relatedtoradiationphysics,Lithography,IC-technology,MEMs,packagingand3D

integration.In2005hereceivedaPh.D.degreefromTUD.Hedevelopedseveral

technologycoursesandlectures.CurrentlyheisscientificdirectoroftheChip

Inte-grationTechnologyCentre(CITC)inNijmegen(theNetherlands)andemployedat

TUD.Heisa(co-)authorofmorethan80papersandseveralpatents.

StenVollebregtreceivedhisM.Sc.in’09(cumlaude)andPh.D.in’14fromDelft

UniversityofTechnology.HecurrentlyisanassistantprofessorintheLaboratoryof

ElectronicComponents,TechnologyandMaterialsintheMicroelectronics

Depart-mentoftheDelftUniversityofTechnology.Hisfocusisontheintegrationofnovel

materials,likecarbonnanotubes,grapheneandwide-bandgapsemiconductor,in

microelectronicsandmicrosystemsforsensorapplications.HeisaseniorIEEE

mem-berandhasco-authoredover30journalpublications,4bookchaptersandholds3

patents.

PaulDijkstrareceivedtheM.S.degreeinChemicalengineeringfromEindhoven

Uni-versityofTechnology,Eindhoven,TheNetherlandsin1992.Currentlyheisworking

asPrincipalArchitectMicroAssemblyatPhilipsInnovationServicesinthe

depart-mentMEMS&MicroDevices.Hehas25yearsofexperienceinassemblytechnologies

inthefieldofelectronicpackageinnovationandmicrodeviceassembly.Mainfocus

atthismomentisonthedevelopmentofnewemergingapplicationsinareaslike

photonics,inandonbodydevices,MicrofluidicsandMEMSpackages.

RonaldDekkerreceivedhisM.Sc.inElectricalEngineeringfromtheTechnical

Uni-versityofEindhovenandhisPh.D.fromtheTechnicalUniversityofDelft.Hejoined

PhilipsResearchin1988whereheworkedonthedevelopmentofRFtechnologies

formobilecommunication.Since2000hisfocusshiftedtotheintegrationofcomplex

electronicsensorfunctionalityonthetipofthesmallestminimalinvasive

instru-ments.In2007hewasappointedparttimeprofessorattheTechnicalUniversityof

DelftwithafocusonOrgan-on-Chipandbioelectronicsmedicines.Hepublishedin

leadingjournalsandconferencesandholdsinexcessof70patents.

WouterA.SerdijnisafullprofessorinbioelectronicsatDelftUniversityof

Tech-nology,whereheheadstheSectionBioelectronics,andaMedical-Deltahonorary

professoratbothDelftUniversityofTechnologyandtheErasmusMedical

Cen-ter,Rotterdam.Hisresearchinterestsincludeintegratedbiomedicalcircuitsand

systemsforwearable,injectableandimplantablemedicaldevices,suchascardiac

pacemakers,cochlearimplants,neurostimulators,bioelectronicmedicineand

elec-troceuticals.WouterA.SerdijnisanIEEEFellow,anIEEEDistinguishedLecturerand

amentoroftheIEEE.In2016,hereceivedtheIEEECircuitsandSystemsMeritorious

ServiceAward.Moreinformationcanbefoundat:http://bioelectronics.tudelft.nl/

∼wout.

VasilikiGiagkareceivedtheM.Eng.degreeinelectronicandcomputerengineering

fromtheAristotleUniversityofThessaloniki,Greece,in2009,andthePh.D.degreein

AnalogueandBiomedicalElectronicsandImplantedDevicesfromUniversityCollege

London,U.K.in2014.SheiscurrentlyAssistantProfessorintheBioelectronicsGroup,

DelftUniversityofTechnology,NetherlandsandHeadoftheTechnologiesfor

Bio-electronicsresearchgroup,atFraunhoferIZMInstitute,Berlin,Germany.Heresearch

focusesonthedesignandfabricationofactiveneuralinterfaces.Sheservesonthe

IEEECircuitsandSystemsSocietyBioCASTechnicalCommittee,andasAssociate

Cytaty

Powiązane dokumenty

Wyobrażenia istoty i oddziaływania poezji wpłynęły w sposób decydujący na określenie i stosowanie krytyki lite­ rackiej. Pierwsze porywy romantyzmu nadały ocenom

Le narrateur aperçoit un grand guerrier franc et un vieillard gallo-romain, mais ces personnages d'une autre époque ne lui font plus peur car : « C'est la fête finale, c'est le

Większość referatów była powielona i rozesłana lub rozdana uczestnikom, tak że ich autorzy zagajali tylko dyskusję, która na ogół była bardzo ożywiona i

Jak wiemy, od <r. W rezultacie zespół luźnych dokumentów odpowiadających za­ wartością i numeracją St został ułożony na nowo w innej kolejności i

Kapitał migracyjny w uję- ciu tych autorów składa się z dwóch elementów: (1) zasobów ułatwiających migracje, czyli kapitałów kulturowego i ekonomicznego oraz powiązań z

Za- tem opracowanie katalizatorów o silnych właściwościach me- talicznych (uwodorniających), a jednocześnie odpornych na obecność siarki (co zostało pokazane w cytowanych pracach

[r]

Limiting conditions occurring for the shear layers thinned down to only a laminar sublayer andan interactive (buffer) sublayer are examined on the.basis of an interactive