• Nie Znaleziono Wyników

Zastosowanie metod symulacyjnych w badaniu wybranych procesów magazynowych w magazynie wysokoregałowym Simulation methods application in the research on selected warehouse processes in high-bay warehouse

N/A
N/A
Protected

Academic year: 2021

Share "Zastosowanie metod symulacyjnych w badaniu wybranych procesów magazynowych w magazynie wysokoregałowym Simulation methods application in the research on selected warehouse processes in high-bay warehouse"

Copied!
12
0
0

Pełen tekst

(1)PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 111. Transport. 2016. Mariusz Kostrzewski _   "  G   Y

(2) . ZASTOSOWANIE METOD SYMULACYJNYCH W BADANIU WYBRANYCH PROCESÓW MAGAZYNOWYCH W MAGAZYNIE &>'=*=9=&>% \

(3)  dostarczono: marzec 2016. Streszczenie: {        !         "  badaniu procesów magazynowych, w !          '   !  dotyczy to analizy wyników symulacji procesu komis   ' Q        " !%     

(4)   wierszu zlecenia na komisjonowanie. W pracy       

(5)   [        

(6) 

(7)  

(8) 

(9)    !  %   

(10) 

(11)        

(12) 

(13)   $G !  % 

(14) [    

(15) !' _

(16)           !   procesu komisjonowania. #     

(17)      badaniu procesu komisjonowania w    "' #    

(18)     celu porównania jego           !

(19)   !       

(20)  %  ' '# 

(21)   Q      G    G

(22)         . €^ &'?( W           logistyce? Autorzy [51, s. 35], [56., s. 333] !%  

(23)     G    

(24)     " 

(25) G 'F planowanie, sterowanie procesem, szkolenia oraz badania i rozwój. W artykule rozpatrzeniu podlega ostatnia grupa. Modelowanie szeroko pojmowanych procesów transportowych obejmuje swym          

(26)   !  "'  .     

(27)   !  "  

(28)  

(29)    )%   liczbie     unkowych, np. paletowych) czy usytuowanie obszarów funkcjonalnych magazynów, w  ! &  "  %  "  

(30) 

(31)    !    )   

(32) 

(33)  &  – tutaj  %      

(34) [    

(35)   !  "   informacyjnej). Ponadto w      

(36)   !  "

(37) 

(38)    % [   ! 

(39)  "    "  $".

(40) 302. Mariusz Kostrzewski.  !   "     '       "  u z nich. A    % [

(41)  

(42)        

(43) [ odbioru ! ) ! 

(44) 

(45)  !G ! "  [    ‹         %[  

(46) 

(47)    !

(48) 

(49)  & ji   

(50) 

(51)     !-' ˆ %

(52) rocesy magazynowe to 

(53)   $" operacji  " z  ! w  obiektu logistycznego typu magazyn, !%    ich  [ podstawowych rodzajów: proces kontroli i

(54)   dunku, proces wprowadzenia  do strefy   G proces   G proces wprowadzenia  ze strefy    do strefy komisjonowania, proces komisjonowania (z    operacji kompletacji, sortowania i pakowania), proces wydania/  itd. {        !     !  " w efekcie wykorzystania uprzednio opracowanego modelu symulacyjnego. Model 

(55)      

(56)          ) 

(57)  wcho     G 'F  

(58)   -    &           ' Q        " !%      pozycji w wierszu zlecenia, co zostanie poddane omówieniu w   

(59) ' _   komisjo     %      % "

(60)   ! $    z  &G % %     ! 

(61) !  "  % "

(62)   !G €/ƒ' (   oszty procesu komisjonowania odniesione w      " kosztów

(63) "  

(64)   ‚‚˜  €/ƒG  % ‚˜  €/G /;ƒ' ^ &    €‚-;ƒ Ê      !

(65)   ! 

(66) " w     '   F  Ê       "     i     "istorii wraz z 

(67)        !  " " 

(68)       G ! 

(69)    ' ( 

(70)  €‚G ' :ƒ   &    ‹ 

(71)       G "    pewnym   G 

(72)        

(73)  !   G  [ &  G !   %  

(74)            ' Y   "  &    G %              '     

(75)  

(76)   "  % $G               '   G

(77)   %    " & !

(78)     %    

(79)   [         

(80) 

(81) 

(82) 

(83)    !  %   

(84) 

(85)        

(86) 

(87)   $G !  %

(88) [ iki uzyskane z

(89) ! )  !  

(90)         -'. 2. (=8_(='?(=&6) #         ! !G      %                 

(91)   ' ^ yczy to na

(92)       "    ! procesów logistycznych. Jak 

(93)  

(94) % G   "

(95) %        ' _  

(96) 

(97)    przypadku wykorzystania metod symulacyjnych w  "  " pr

(98) !   !  "

(99)       [44, s. 273], zatem.

(100) Zastosowanie metod symulacyjnych w badaniu wybranych procesów magazynowych …. 303. w 

(101)       

(102) ' _       %

(103)     '   symulacji –       

(104)  €<G DG ‡ƒG  !"  !. rodzaje symulacji, zalety i wady stosowania metod i modeli symulacyjnych itd.        

(105)    %      analizowania modeli symulacyjnych, a   

(106)     $     ' Z punktu widzenia logi 

(107)    

(108)    "   

(109)    G !" 

(110)     

(111)    " implementacji graficznych [43, s. 87], a     

(112)      $  " €/ƒ' !   

(113) 

(114)  !  

(115)   " !% [  %F Dosimis-3 (np. w [9-12, 19, 23, 24, 29, 31-34, 50]), Arena (np. w [36]), Automod (np. w [14]), Promodel (np. w [27]), Quest, Witness (np. w [8]), Mosys, Taylor, Enterprise Dynamics, FlexSim (np. w [22]), OL09 (np. w [42, 45, 46]), a wreszcie Plant Simulation (np. w [18, 30, 37, 41-44, 47, 48]). Plant Simulation znajduje coraz szersze zastosowanie w badaniach naukowych i

(116)   "G !  logistyce i produkcji. Pierwsze prace autora

(117)      2007 r. [41, 42]. Plant Simulation     

(118) 

(119)      " $'  pracy [43, ss. 87-88ƒ !      modelowania procesu komisjonowania wraz z opisem &  

(120)    ' &    

(121)               ! procesów wskazano w [40, s. 3139], [49, s. 348] na podstawie [25, 28], [30, s. 63]. [35, s. 114], [52]. #    G 

(122)     &  G  %   "  !   

(123) " stan systemu w   "    G  %

(124)   [    

(125) G [48, 66], [65, ss. 46-48]: dynamiczne, statyczne, stochastyczne, deterministyczne. W przypadku modeli dynamicznych czynnik czasu ma istotne znaczenie. Stan systemu        

(126)      ' ( 

(127)  €‚‡ƒ 

(128) 

(129)              !  G

(130)   G 

(131)  

(132) ' 

(133)    $      "G 

(134) 

(135)     " 

(136)     

(137)     mulacji, w    czym zegar symulacji nie jest

(138)  ' 

(139) 

(140)      "" %    

(141)   nim      G    

(142)   " 

(143)   !' {      "  

(144)    $  procesa" "        ' %    

(145)              ! 

(146)            "G  !

(147)     "'    "     " z    

(148)       ' „ "  ! 

(149)   &   G |  %    "    &  "' Rozpatrywany w pracy model symulacyjny jest modelem typu stochastycznego.. 3. OBLICZENIE CZASÓW CYKLI KOMISJONOWANIA 

(150)  G

(151)            G

(152)    

(153)         ' B       

(154)     "    stosowanych w

(155)  %  G €>:, 21]. ^  

(156) 

(157)  

(158)      

(159) ametry i ograniczenia: 1. czasy jednostkowe pobrane z norm Method Time Measurement:.

(160) 304. Mariusz Kostrzewski. a.     [ 

(161) 

(162)       A = 0,0475 [min], b. czas pobrania pustej palety t01 = 0,4674 [min], c. czas         

(163)      

(164)     t02 = 0,4534 [min], d. czas przekazywania informacji tpro = 0,0852 [min], e. czas przekazywania informacji tro = 0,1180 [min], f.     )

(165)   -     tpl = 0,1164 [min], 2.  [  rytarza roboczego L = 90 [m], 3.

(166)  [   

(167)  F1 = 0,0079 [min/m], 4. liczba wierszy w zleceniu na komisjonowanie w = 4, 5.  

(168)    wierszu zlecenia – zmienna od 1 do 10, p  {1, 10}, p  N, 6. problem rozpatrywany jest w 

(169)          ' ^    "

(170)  !   $      

(171)   !       

(172)     [

(173)   p (liczba pozycji w wierszu). \     $    zestawione w kolumnie 2 tab. 1. Otrzymane wyniki

(174) %          wykorzystaniem oprogramowania Plant Simulation modelu procesu komisjonowania w korytarzu roboczym w  &   '. 4. BUDOWA MODELU SYMULACYJNEGO Symulacyjny     %    

(175)      wytycznymi specyfikacji i        $  " )^+š@-' @ ^+š@       €ƒ' ‰        

(176)    ! G ! .      

(177)  % F. M DEVS gdzie: X – S – Y – G int –. X , S ,Y,G int ,G ext ,O ,t. (1).  !  "  [G zbiór zmiennych stanów,  !  " [G &

(178)      G int : S o S ,. G ext – &

(179)      G ext : Q u X o S gdzie Q   ! !   G Q ^ s ,e

(180) | s  S ,0 d e d t s

(181) ` , przy czym e  G ! 

(182)    

(183)     )

(184)   -G – &   O : S o Y , O t –

(185) 

(186)  &  t : S o R  ..    

(187)  !  

(188)   "G !    wymienionego modelu DEVS w        ' ˆ     % Plant Simulation 10.1. Dla potrzeby

(189) 

(190)     $    Plant Simulation 10.1.,   €>-‡G >ƒ' { ' /'       &  

(191)       .

(192) Zastosowanie metod symulacyjnych w badaniu wybranych procesów magazynowych …. 305.   G

(193)  %  ! 

(194) 

(195)      )    %[G %   €‚Dƒ     

(196)   !  " 

(197) "      G    

(198)    G    % 

(199) 

(200)   uproszczenia w    G     

(201)    ' /'ž  kolei autor [57]   G %  ramach przeprowadzania procesów komisjonowania „wyra|nym trendem jest coraz czstsze korzystanie z wózków wielofunkcyjnych, potrzebujcych stosunkowo w        ' Y %         ' #    

(202)               $ a komisjonowanie (na

(203)     " $     /::  / :::   $- liczbie wierszy    w = ‡ %      

(204) 

(205) 

(206) "              )

(207)    p = /®/:-'          e w wyniku inicjacji procedury Genarate orders. Procedura wprowadza do tabeli OrdersG        G  

(208)   %   4 wierszy w %        $' _           

(209)    

(210)   go zlecenia             G

(211)  % %     .            ! 

(212)   ' ˆ         dyskretny, w !   

(213) 

(214)   $

(215) 

(216)     n !%ych liczb rzeczywistych k1, …, kn, przy czym k1, …, kn       

(217)    €/G 10].. Rys. 1. Wizualizacja symulacyjnego modelu procesu komisjonowania, fragment ›! F

(218)     wykorzystaniem Plant Simulation 10.1.. Na podstawie zapisów wygenerowanych do tabeli Orders   

(219)    w   "     !     ! ! )

(220)   G " w

(221)        G   "   !     - 

(222)  zbiorczego dla jednos   "

(223)   "  

(224)   "' _  "  ‹    !       

(225) 

(226)    "  

(227)     . od elementów PlaceBuffer przedstawione na wizualizacji fragmentu formatki modelu symulacyjnego (rys. 1). Ich zadan      

(228)            G  !     

(229) 

(230)      [   

(231)        zleceniu   !  tej lokacji. Z  

(232)

(233)  

(234)           o nazwie TransferStation' _    &

(235)             G.

(236) 306. Mariusz Kostrzewski.

(237)           "

(238)   "          

(239)     

(240)   ' Obiekt SingleOrder   G  !  %   

(241)   jest jedno, kolejne z cyklu zlecenie na komisjonowanie. Tabela OrderPickingTimes zawiera czasy procesu komisjonowania odpowiednie do         ' @  

(242)   $    

(243) 

(244)   $G !     

(245)      '  dalszej    [   

(246)        

(247) !    / 000 w ramach eksperymentu nr 1 oraz próba o    /::  " 

(248)    >' %

(249) !       

(250)    

(251)      DataFit.. 5. WALIDACJA MODELU SYMULACYJNEGO _ 

(252) 

(253)   

(254) 

(255)     

(256)  !     symulacyjnym         '       G    

(257)          

(258)     – w         $ – 

(259)   &  G €>G ' ;/<ƒ' W przypadku opracowanego modelu walidacja % 

(260)                        %  "G €>:, 21]. Tablica 1 ( 0    uogólnionych wyników w ramach przeprowadzania walidacji modelu p. Wyliczony t ckom [min]. 1 1 2 3 4 5 6 7 8 9 10. 2 7,6031 11,6031 15,6031 19,6031 23,6031 27,6031 31,6031 35,6031 39,6031 43,6031. &  7 7   z próby t ckom [min] 3 7,898439337 11,729403000 15,915816900 19,738881680 23,719924330 26,658312960 31,839987520 35,189118640 39,746780570 43,719924330. Odchylenie standardowe z próby t ckom [min]. 0: !  kolumnami 2 i 3 [%]. 4. 5 0,001029865 0,001029865 0,001029865 0,001029865 0,001029865 0,001029865 0,001029865 0,001029865 0,001029865 0,001029865. 3,74 1,08 1,96 0,69 0,49 -3,54 0,74 -1,18 0,36 0,27.     

(261)

(262)  

(263)              "   "

(264)   p i

(265) !  "     "  " $  " z        poprzednim rozdziale. # %

(266) [G %   

(267) ! 

(268)   DG>˜ ) 

(269)  

(270)     !%       – tab. 1., kolumna 5, wiersz 1.). Zastosowana tu forma walidacji to walidacja zdarzeniowa (ang. event validity): zdarzenia generowane w      porównywane ze zdarzeniami "   modelu analitycznym, [32, s. 719]..

(271) Zastosowanie metod symulacyjnych w badaniu wybranych procesów magazynowych …. 307. 6. EKSPERYMENTOWANIE NA MODELU SYMULACYJNYM WRAZ Z 64)3<&>6)*`& Na zwalidowanym modelu symulacyjnym badanego procesu komisjonowania w pierwszej    

(272) 

(273)    

(274)   

(275) !    / :::   $' { ' >'    "     !        obliczonych w 

(276)   ' {   "    /:: 

(277)    "  modelu     !          "  eksperymencie )   "   -G    "   " 

(278)  '  tab. 2.   

(279)  

(280)     

(281)    DataFit, a na rys. 3. wyniki i

(282)     !    G   !    

(283)     

(284) !

(285)  %        "  !

(286) 

(287)   $:    G !  G       G      G    ' Tablica 2 (  

(288)   +   DataFit, (eksperymenty nr 1, 2) Parametr 1   [ próby  [     [   [    Moda Odchylenie standardowe Wariancja Kwartyl dolny Mediana Kwartyl górny @  [ 

(289) !    

(290) !   . &  7 Ž

(291) + ! € 2 1000 1272,45 1471,39 1377,92 1373,46 12,51 156,43 1371,71 1376,43 1386,68 1,53 18,74 0,01. &  7 Ž

(292) + ! ›š£ 3 100 1087,15 1366,07 1310,36 1356,83 55,17 3043,27 1263,61 1344,12 1353,62 -1,16 1,13 0,04. „   

(293)          

(294)           !%  "

(295)  ! p i w  %

(296) [       ' { DataFit         ! 

(297) . 

(298)   " "' _          

(299)     ! "  ' ' \     

(300)  

(301)      ngerencji %  '          F „" -G     Smirnowa, Andersona-^ '  %[G %  " " &. 

(302)    /G  %   

(303) 

(304) ! % G  przypadku której testy     ogorowa-Smirnowa, Andersona-^       ' Wobec tego w 

(305)    >      [

(306) !  /::   $'  " 

(307)    >

(308) 

(309)    /:: "  $      ' 

(310)   ' ‡'-‚'

(311) % iki uruchomienia nr 4 w ramach eksperymentu nr 2. Na rys. 4.    "     

(312)  " !'  tab. 5. podano

(313)  

(314)     

(315)    DataFit, a na rys. 5..

(316) 308. Mariusz Kostrzewski. wyniki i

(317)    !    

(318) "  

(319) !   [ opisana jednym z   "  !

(320) 

(321)   $' W ' '

(322)    

(323)  !G !"    %

(324) [       

(325)   !%  G  !        

(326) y opracowywaniu prób.. Rys. 2. Histogram uzyskanych wyników (eksperyment nr 1) ›! F

(327)    G Plant Simulation 10.1.. Rys. 3. Wyniki i

(328)     !    G ) 

(329)    /›! F

(330)        Plant Simulation 10.1.. Rys. 4. Histogram uzyskanych wyników (eksperyment nr 2 / uruchomienie nr 4) ›! F

(331)        Plant Simulation 10.1.. { DataFit       !    

(332)  " w rozpatrywanym mode ' _          

(333)     ! "  ' ' \   G 

(334)

(335)   G   

(336)  

(337)         %  '.

(338) Zastosowanie metod symulacyjnych w badaniu wybranych procesów magazynowych …. 309. Rys. 5. Wyniki i

(339)     !    G ) 

(340)    > / uruchomienie nr 4) ›! F

(341)        Plant Simulation 10.1.. Tablica 3 &

(342) 0.  7  

(343) #0 .  7. Teoretyczny 

(344) # prawdo+    1 Y! Normalny Log. normalny   Jednorodny. Chi-kwadrat Liczba Liczba prób prób nie opisanych opisanych 

(345) #! 

(346) #! 2 3 0 100 2 98 2 98 0 100 0 100. * #! . -Smirnowa Liczba Liczba prób prób nie opisanych opisanych 

(347) #! 

(348) #! 4 5 0 100 2 98 2 98 0 100 0 100. Andersona-Darlinga Liczba Liczba prób prób nie opisanych opisanych 

(349) #! 

(350) #! 6 7 0 100 54 46 54 46 0 100 0 100.  "    !    !   F   [  G €‚<ƒ' W

(351) 

(352)  

(353)    / 

(354)    dodatnio- G a w przypadku czwartego uruchomienia eksperymentu nr 2   ujemno- ' Q   

(355) !       [F  przypadku eksperymentu nr 1: SESKE1 = 0,018257, natomiast w przypadku eksperymentu nr 2 / uruchomienia 4: SESKE2 = 0,057758. _  G %  

(356) !      

(357)     :   

(358)     "  !     

(359)

(360)  G €/‚G ‚‚ƒ'  przypadku. 

(361)    /             

(362)  leptokurtycznego, o danych "      !     

(363) !G     K = 18,71 (kwestia ta wymaga dalszych analiz). W

(364) 

(365)  

(366)    >  !     

(367) 

(368)    '. 7. WNIOSKI Liczba obserwacji w przypadku rozpatrywanego problemu pozwala na wykluczenie 2  !    F     -Smirnowa i Andersona-^ ' @ 

(369)    . 

(370) !      ' ^    % %[G %          Smirnowa przewidziany jest dl      '    " &!

(371)    ‹    

(372)        !    ' *  .

(373) 310. Mariusz Kostrzewski.   ! %      „" -kwadrat, przy wykorzystaniu którego  %   realizowanie badania. Test w przypadku eksperymentu n > G % %    "

(374)     "  !

(375) 

(376)   $ 

(377)      

(378)     

(379)     " "  badaniach. Tylko dla 2 prób  

(380) 

(381)  % [  !   !    2    logarytmiczno-normalnego (tab. -' Q 

(382)  G %

(383) 

(384)    /:: eksperymentów     %

(385)  [   '     

(386)      :G:‚' ˆ     %

(387)   [G %

(388) ! % ) 

(389)    /-    [

(390)      G   % 

(391)  [  "   $' _          ' >'G !  % [

(392)    G % "   dla pojedynczej próby o    / :::

(393)         ' _     ' \ %   %

(394)   

(395)  

(396)    .

(397)  !"  $  ! 

(398)     [        )-' _    

(399)   

(400)    %  [

(401)  !

(402)   mu na zmiany w   "  

(403)  "        !      )

(404)         

(405) 'F      "G !!   "G

(406)    ! 

(407) '-G  &  ! "  obiekcie logistycznym, tzw. ‹ "    zakresie przebiegu procesu.. Bibliografia 1. Alicke K., Arnold D., Knöss A., Töpfer F.: Optimierung von manuellen Kommissionierbereichen, Logistik für Unternehmen, No. 1-2, VDI-Springer, Düsseldorf 2011. 2. Anon.: Plant Simulation 10 Step-by-Step Help, Product Lifecycle Management Software Inc. 2010. 3. Bangsow S.: Manufacturing Simulation with Plant Simulation and SimTalk Usage and Programming with Examples and Solutions, Springer-Verlag, Berlin Heidelberg 2010. 4. Bangsow S. [red.]: Use Cases of Discrete Event Simulation Appliance and Research, Springer-Verlag, Berlin Heidelberg 2012. 5. Banks J. [red.]: Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice, John Wiley, New York 1998. 6. Banks J., Carson J.S., Nelson B.L., Nicol D.M.: Discrete Event System Simulation, Prentice-Hall 2000. 7. Banks J.: Discrete Event Simulation, Proceedings of the 1999 Winter Simulation Conference, Farrington P.A., Nembhard H.B., Sturrock D.T., Evans G.W. [red.], 1999, ss. 7-13. 8. Briano E., Caballini C., Mosca R., Revetria R., Using WITNESSTM simulation software as a validation tool for an industrial plant layout, Proceedings of the 9th WSEAS ICOSSSE'10, Fujita H., Sasaki J. (red.), Stevens Point, Wisconsin, USA, 2010, ss. 201-206. 9. Bukowski L, Karkula M.: Modelling and simulation of production processes using modular-oriented simulators, [w:] Proceeding of the 15th  ' „ &'  @  @  G ¼ ' >G B_G   >::‡' 10. Bukowski L, Karkula M.: Reliability assurance of integrated building automation system by applying the redundancies, Proc. of 3rd Inter. Congress on Intelligent Buildings Systems, OW TEXT, Kraków 2004. 11. Bukowski L, Karkula M.: &* $ *% "% informacji w zautomatyzowanych centrach dystrybucyjnych, [w:] Systemy logistyczne. Teoria i praktyka, OWPW, W-wa 2005. 12. Bukowski L, Karkula M.: The simulation of logistics processes using DOSIMIS-3 simulator, ‰ úû a     ýû û ¼   ¬ ¼

(408)  þ ÿ 

(409)    +¼

(410) ÿ  F    referátu z mezinarodm konference, Srdce Beskyd, VŠB - Technicka univerzita Ostrava., ss. 296-300. 13. Carson J.S.: Modeling and Simulation World Views, Proceedings of the 1993 Winter Simulation Conference, 1993, ss. 18-23. 14. Chen Z., Jiang C.: Simulation of a Flexible Manufacturing System with AutoMod Software, Intelligent Information Management, vol. 3, No. 5, 2011, ss. 186-189..

(411) Zastosowanie metod symulacyjnych w badaniu wybranych procesów magazynowych …. 311. 15. Chudzikiewicz A., Kostrzewski M.: @

(412)   *

(413) "% %*$

(414) *$ % procesie monitorowania stanu zawieszenia pojazdów szynowych oraz toru, Pojazdy Szynowe 1/2013, ss. 10-17. 16. Coyle J.J., Bardi E.J., Langley C.J.: The Management of Business Logistics, 6th ed., West Publishing, St Paul, MN 1996. 17. Coyle J.J., Bardi E.J., Langley C.J.: ‹ 

(415)    *$

(416) >PWE, W-wa 2007. 18. Danilczuk W., Cechowicz R., Gola A.: Analiza konfiguracji linii produkcyjnych na podstawie modeli symulacyjnychG €Fƒ &     G   ‚G € Fƒ Q 'G _   "    $G    >:/‡G ' >‚-42. 19. ‰   ˆ'G _" ˆ'F Modeling of service logistic processes with the usage of the DOSIMIS 3,0® package on the basis of the example of selected tourists attactions in the Limanowa district location, Forum Scientiae Oeconomia, Vol. 3, No. 2/2015, ss. 43-54. 20. ‰   J.: Technologia magazynowania, wybrane zagadnienia, OWPW, W-wa 1995. 21. ‰   ˆ'F 

(417) % %

(418) =

(419) *% systemach logistycznych, OWPW, W-wa 2002. 22. Gelenbe, E., Guennouni H.: FLEXSIM: a flexible manufacturing system simulator, European Journal of Operational Research, vol. 53, issue 2, 1991, ss. 149-165. 23. Grabara J.K., Dima I.C., Kot S., Kwiatkowska J.: Case on in-house logistics modeling and simulation, Research Journal of Applied Sciences, vol. 6 (7-12), Medwell Journals 2011, ss. 416-420. 24. Grabara J.K., Kot S.: New tools of engineering education for logistics training, International Conference on Engineering Education, Norwegia, Oslo 2001, ss. 7-9. 25. Gutenbaum J.: Modelowanie matematyczne systemów,  Q$ @  " _({, W-wa 2003. 26. Haller M., Nemmer M.: Anforderungsgerechte Modellbildung zum projektbegleitenden Einsatz der Materialfluß-Simulation, Fortschritte in der Simulationstechnik, Vieweg, Braunschweig 197. 27. Harrell C.R., Price R.N.: Simulation modeling using PROMODEL technology, Proceedings of the Winter Simulation Conference, 2002, vol.1, ss.192-198. 28. Homburg, C.: Betriebswirtschaftslehre als emprirische Wissenschaft – Bestandsaufnahme und Empfehlungen, Zeitschrift für betriebswirtschaftliche Forschung, vol. 56 (7)/2007, ss. 27-60. 29. Karkula M.: Analiza %*

(420) *$ $ "%

(421) %*$    *

(422)    * $*

(423) *, Logistyka 4/2010, ss. 1-11 (CD). 30. Karkula M.: Modelowanie i symulacja procesów logistycznych, Wydawnictwa AGH, Kraków 2013. 31. Karkula M.: Selected aspects of simulation modelling of internal transport processes performed at logistics facilities, Archives of Transport, vol. 30, issue 2/2014, ss. 43-56. 32. Karkula M.: Weryfikacja i walidacja dynamicznych modeli symulacyjnych procesów logistycznych, Logistyka 2/2012, ss. 717-726. 33. Karkula M., Bukowski L.: Computational intelligence methods - joint use in discrete event simulation model of logistics processes, Proceedings of the 2012 Winter Simulation Conference, Laroque C., Himmelspach J., Pasupathy R., Rose O., Uhrmacher A.M. [red.], ss. 1285-1296. 34. Karkula M., Jurczyk K., Bukowski L.: Nondeterministic factors in simulation models of logistics processes, Carpathian Logistics Congress 2012, Ostrava, Jesenik, Republika Czeska, ss. 1-6. 35. Kemme N.: Design and Operation of Automated Container Storage System. Physica-Verlag, a Springer Company, Springer-Verlag, Berlin Heidelberg 2013. 36. Kelton W.D., Sadowski R.P., Sturrock D.T.: Simulation with Arena, Fourth Edition, McGraw-Hill International Edition, 2007. 37.   @'G  _'F Modelowanie i symulacja procesów produkcyjnych w oparciu o oprogramowanie Tecnomatics Plant SimulationG €Fƒ %  

(424)   ' _  ' #    ' @G Patalas-#   ˆ'G ˆ  ˆ'G   @'G € 'ƒG    X! >:/‚G ' /D -30. 38.   $ 'F Logistyczne systemy transportu bliskiego i magazynowania, tom 1, V #G _ $ /DD<' 39.   $ 'F Logistyczne systemy transportu bliskiego i magazynowania, tom 2, V #G _ $ /DD<' 40. Kostrzewski M.: Analytic way of research on dynamics in a logistics process – mathematical model, Logistyka 3/2014, ss. 3138-3148. 41. Kostrzewski M.: •%*  projekt magazynu, Euro Logistics, nr. 2 (39) / 2007, ss. 38-39. 42. Kostrzewski M.: Optimization of warehouse project with using a simulation tool, [w:] Engineering Sciences, Proceeding of 6th    „ &   & _"^ @ G #  G  >::;G ' -68. 43. Kostrzewski M.: Porównanie metod projektowania magazynu - projektowanie wg procedury analitycznej  * <*$

(425) =  * $*

(426) , Prace Naukowe Politechniki Warszawskiej. Transport, Modelowanie Procesów Transportowych i Logistycznych cz. II, vol. 70, W-wa 2009, ss. 85-96..

(427) 312. Mariusz Kostrzewski. 44. Kostrzewski M.: &* $*

(428)   

(429)   *

(430)   *%  "% % magazynie, Prace Naukowe Politechniki Warszawskiej. Transport, vol. 97, W-wa 2013, ss. 271-278. 45. Kostrzewski M.: Symulacyjne badanie geometrii magazynu przy wykorzystaniu pakietu komputerowego OL09, Prace Naukowe Politechniki Warszawskiej. Transport, vol. 77, W-wa 2011, ss. 59-73. 46. Kostrzewski M.: Symulacyjne badania geometrii magazynu, Logistyka, nr 4/2010, _ $ >:/:G ' /-8. 47. Kostrzewski M.: Simulation method in research on material-flow in a warehouse, Logistics and Transport, nr 1(21)/2014, ss. 21-32. 48. Kostrzewski M.: Simulation research of order-picking processes in high-bay warehouses, Logistics and Transport, nr 4(20)/2013, ss. 5-12. 49. Kostrzewski M., Kostrzewski A.: Klasyfikacja metod stosowanych w realizacji projektów naukowych podejmowanych w ramach dyscypliny naukowej transport (...), GM&L, 5/2015, PWE, ss. 346-355. 50.  $ 'G  $-ˆ $ +'G {  #'G Symulacja logistycznego systemu produkcji z wykorzystaniem pakietu Dosimis-3. Cz. 2, Logistyka No. 2/2012, ss. 7-9. 51. Kuhn A.: Simulation im Aufwind - Möglichkeiten und Probleme für ein neues Instrumentarium, Zeitschrift für Logistik, nr 8 (10)/1987, ss. 33-37. 52. Law A.M., Kelton W.D.: Simulation modelling and analysis, Boston, MA: McGraw Hill 2000. 53. V $ ˆ'F Modelowanie systemów i procesów transportowych, OWPW, W-wa 1999. 54. Lipiec-Zajchowska M.: Metody symulacji komputerowej w prognozowaniu makroekonomicznym, PWE, W-wa 1990. 55. # $ V'F –

(431)   $ %"$*

(432)

(433)  * % analizie danychG _  +   " G R. 79, nr 9(1)/2003, Wydawnictwo SIGMA-NOT, ss.558-560. 56. Pfohl H-Ch.: ‹ 

(434)    * # 

(435) $  i instrumenty : zastosowanie koncepcji logistyki w  =%$G V #G _ $ /DD<' 57. Ratkiewicz A.: @

(436)   * 

(437) +$ %

(438)  

(439)    % budynku wielkokubaturowym projektowanym z przeznaczeniem na wynajem, Logistyka 2/2014, ss. 2353-2362. 58. Sadowski W.: Statystyka matematyczna, PWE, W-wa 1965, 1969. 59. Takukuwa S., Takizawa H, Kumiko I., Hiraoka S.: Simulation and analysis of non- automated distribution warehouses, [w:] Proceedings of the 2000 Winter Simulation Conf., 2000, ss. 1177–1184. 60. Taylor J.R.: ƒ= 

(440)  *= % , PWN, W-wa 1999. 61. Tompkins J.A., White J.A., Bozer Y.A., Frazelle E.H., Tanchoco J.M.A., Trevino J.: Facilities Planning, John Wiley & Sons, New York 2003. 62. UGS Corp.: Plant Simulation Product Description, UGS Corp, 2006. 63. Zeigler B.P.: Teoria modelowania i symulacji, PWN, W-wa 1984.. SIMULATION METHODS APPLICATION IN THE RESEARCH ON SELECTED WAREHOUSE PROCESSES IN HIGH-BAY WAREHOUSE Summary: This paper aims to discuss the use of simulation methods in the research on warehouse processes, mainly in high-bay warehouse. In particular, it concerns analysis of simulation results of order-picking process. The research was conducted for stochastically varied orders in picking lists. The analysis in the paper leads to determine whether the sample of data could be assigned as theoretical probability distribution. The sample data are durations of order-picking process. A simulation model was developed in order to study the process of picking as stochastic approach. The model was validated in order to compare its performance with classic method of order-picking time calculating in engineering practice. Keywords: high-bay warehouse, simulation model, order-picking process.

(441)

Cytaty

Powiązane dokumenty

Rolników specjalizujących się w hodowli i chowie zwierząt, opartych na paszach z użytków zielonych, coraz powszechniej traktuje się nie tylko jako producentów żywności, ale

Znakomity i znany teolog, autor w ielu poważnych rozpraw, zajął się tym razem opracowaniem dorobku synodu biskupów, który odbył się w Rzymie... Dzieło jego

Ruch turystyczny na Spitsbergenie w latach 2000-2004 (w tys.) Źródło: opracowanie własne na podstawie danych Svalbard Statistics

Istotne jest, żeby pracownicy domów pogrze- bowych przechodzili wstępne szkolenia dotyczące moż- liwości nabycia gruźlicy (a także ryzyka nabycia innych chorób zakaźnych),

To investigate the thermodynamic performance of an absorption heat pump cycle, various properties such as the enthalpy of absorption, heat capacity, and

Shabanimotlagh, M.; Raghunathan, S.; Bera, D.; Chen, Zhao; Chen, Chao; Daeichin, Verya; Pertijs, Michiel; Bosch, Hans; de Jong, Nico; Verweij, Martin.. Publication

Foam cell images numbering 471 were collected from nipple aspirate sam- ples representing three to six cases of each of the four following disease categories based on

The following challenges are identified: (1) the latest solution should account for previously integrated data (sequential approach); (2) due to the nature of a mining operation, it