• Nie Znaleziono Wyników

Badanie solomierzy (pdf)

N/A
N/A
Protected

Academic year: 2021

Share "Badanie solomierzy (pdf)"

Copied!
12
0
0

Pełen tekst

(1)

P O L I T E C H N I K A Ł Ó D Z K A

I N S T Y T U T E L E K T R O E N E R G E T Y K I

ZAKŁAD ELEKTROWNI

LABORATORIUM POMIARÓW W ELEKTROWNIACH

B

ADANIE

SOLOMIERZY

(2)

I. Wprowadzenie teoretyczne

Woda, obok paliwa, jest najważniejszym surowcem w elektrowni. Wymiana ciepła zachodzi na metalowych ściankach rur umieszczonych w kotle i przebiega prawidłowo tylko wtedy, gdy woda i wytworzona z niej para spełnia określone wymagania. Ponieważ woda oddając ciepło bezpośrednio styka się z powierzchnią metalu może pozostawić na nim zanieczyszczenia, które wpływają degradująco (np. kamień kotłowy).

Aby zapewnić bezpieczną eksploatację urządzeń energetycznych woda musi spełniać następujące warunki:

- nie powinna zawierać zanieczyszczeń tworzących osady na wewnętrznych powierzchniach urządzeń energetycznych,

- nie powinna zawierać składników działających korodująco na metale i tworzywa, z którymi styka się w obiegu,

- musi umożliwiać wytwarzanie pary o czystości nie powodującej zasolenia przegrzewaczy kotłowych, armatury i części przepływowej turbin.

Aby zagwarantować prawidłową pracę urządzeń energetycznych nie wystarczy wprowadzić do obiegu wodę odpowiednio uzdatnioną. Ilość wody krążącej w obiegu musi spełniać należyte parametry. Wiąże się to z systematycznym przeprowadzaniem pomiarów i analiz całej wody krążącej w obiegu. W przypadku stwierdzenia odchyleń danych parametrów od norm należy je niezwłocznie korygować.

Zanieczyszczona woda sprzyja powstawaniu osadów i kamienia kotłowego, który utrudnia wymianę ciepła, niszczy ścianki powierzchni metalowych na skutek korozji oraz sprzyja wzrostowi zasolenia pary. Jeden rodzaj zanieczyszczenia może być przyczyną kilku negatywnych oddziaływań na dane urządzenie energetyczne. Takim zanieczyszczeniem mogą być np. zanieczyszczenia koloidalne, które jednocześnie tworzą osady oraz zwiększają skłonność wody kotłowej do pienienia, co dalej może być przyczyną wzrostu zasolenia pary. Wpływ zanieczyszczeń na pracę urządzeń energetycznych mają także warunki termodynamiczne danego obiegu: temperatura i ciśnienie.

Stwierdzono, że podgrzanie wody do temperatury niższej od temperatury wrzenia odpowiadającej danemu ciśnieniu sprzyja tworzeniu się osadów twardych. Natomiast w wodzie wrzącej sole mają tendencję do wypadania w postaci mułu lub miękkiego osadu. Czynnikiem, który sprzyja powstawaniu tego typu osadów jest ruch wody. Z powyższego stwierdzenia wynika, że najtwardsze osady powstają w podgrzewaczach wody, wymiennikach ciepła i skraplaczach. Miękkie osady natomiast powstają przeważnie w parowniku.

Niezależnie od składu chemicznego i struktury, każdy osad jest przyczyną utrudnionej wymiany ciepła, ponieważ jego przewodność cieplna jest zawsze mniejsza od przewodności cieplnej metali.

Istnieje szereg zanieczyszczeń mechanicznych koloidalnych, roztworów soli, które zawarte w wodzie działają niszcząco na urządzenia energetyczne.

(3)

Każde zanieczyszczenie lub osad znajdujący się w wodzie ma inny wpływ na pracę urządzeń energetycznych, co zostało przedstawione w tabeli poniżej:

Zanieczyszczenia Wpływ na pracę urządzeń energetycznych 1. Mechaniczne:

a. zawiesina b. koloidowe

Powstają osady zmniejszające przekrój czynny rurociągów, zamulają armaturę, zwiększają straty wody.

Podwyższają skłonność wody kotłowej do pienienia, zwiększają zasolenie produkowanej pary.

Skoagulowane, tworzą zawiesinę. Związane przez tworzący się kamień kotłowy obniżają jego przewodnictwo cieplne. 2. Roztwory cząsteczkowe:

a. sole wapniowe i magnezowe

b. krzemionka

c. sole żelaza i manganu

d. alkalia: wodorowęglan sodowy, NaHCO3

węglan sodowy, Na2CO3 wodorotlenek sodowy, NaOH e. inne sole sodowe: siarczan

sodowy Na2SO4, chlorek sodowy NaCl

f. siarczany

Wytrącają się na powierzchniach ogrzewalnych w postaci kamienia lub w masie wody w postaci mułu tworząc kamień wtórny.

Może tworzyć z solami wapnia kamień kotłowy. W kotłach wysokociśnieniowych, pow. 4MPa, powoduje wzrost zasolenia pary i tworzy osady na łopatkach turbin.

W wymianie sodowej blokują kationit. W obiegach wytrącają się w postaci mułu dając osady wtórne. Są przyczyną korozji. Na skutek rozpadu termicznego wydziela się CO2 powodując korozję elementów obiegu.

Na skutek hydrolizy wydziela się CO2 i podwyższa alkaliczność środowiska.

Jest przyczyną korozji, zwiększa skłonność wody do pienienia. Zwiększają straty wody kotłowej, powodują wzrost zasolenia pary, zwiększają skłonność wody do pienienia.

W obecności soli wapnia i magnezu tworzą kamień kotłowy. Działają korodująco na beton.

4. Rozpuszczone gazy: tlen O2, dwutlenek węgla CO2, amoniak NH3, siarkowodór H2S.

Wszystkie wymienione gazy powodują korozję elementów obiegu. Najbardziej niebezpieczną korozję powoduje tlen.

5. Biologiczne

Mikroorganizmy najbardziej sprzyjające warunki znajdują w obiegu chłodzącym. Powodują zarastanie rurek

kondensatorowych, zwiększają straty ciepła i obniżają moc turbiny.

6. Związki organiczne

Zmniejszają zdolność wymienną jonitów, obniżają pH wody zdemineralizowanej. Zwiększają skłonność wody kotłowej do pienienia. Ich produkty rozkładu termicznego – CO2 i amoniak są przyczyną korozji.

(4)

Wody naturalne nie nadają się do celów energetycznych bez uprzedniego ich oczyszczenia i przygotowania. Należy także pamiętać, że pod wpływem temperatury i ciśnienia zachodzą złożone zjawiska fizykochemiczne, które zmieniają właściwości wody. Dlatego należy kontrolować na bieżąco jakość wody w całym obiegu i korygować jej właściwości celem zapewnienia bezpiecznej i bezawaryjnej pracy urządzeń energetycznych. Aby taką pracę urządzeń zapewnić, należałoby spełnić wymagania dla wody określone przez producenta. Niestety ustalenie jednoznacznych parametrów dla całego obiegu - wszystkich urządzeń energetycznych takich jak kotły, wymienniki ciepła, turbiny - jest niemożliwe ze względu na różnorodne zmienne czynniki. Takimi czynnikami są różne wykonania urządzeń, użycie innych materiałów przez każdego konstruktora, a co za tym idzie rożne wymagania, co do jakości wody. Mimo, iż wymagania dla wody są tak różnorodne i należałoby każde urządzenie traktować indywidualnie, wieloletnie doświadczenia ruchowe pozwoliły uporządkować generalne zależności, które są wykorzystywane podczas przygotowywania wody w elektrowni.

Najważniejsze czynniki decydujące o jakości wody to:

• odczyn pH - w znacznym stopniu wpływa na działanie korozyjne wody. Najmniej korozyjna woda utrzymuje się przy pH równym 9.5, dlatego zaleca się utrzymywanie pH wody powyżej 7.8.

• zawartość zawiesin - woda zasilająca powinna być klarowna i bezbarwna. Zawiesiny i substancję koloidalne mogą osadzać się na najbardziej obciążalnych powierzchniach kotła, ponadto sprzyjają wzrostowi pianotwórczości wody kotłowej.

• zawartość tlenu - ma największy wpływ na korozyjność urządzeń energetycznych, dlatego jego stężenie w wodzie nie powinno przekraczać więcej niż 0.05 mgO2/dm3. Taką zawartość rozpuszczonego tlenu w

wodzie uzyskuje się poprzez odgazowywanie termiczne i następnie uzupełnienie tego zabiegu poprzez odtlenianie chemiczne siarczynem sodowym bądź hydrazyną.

• zawartość olei - do wody zasilającej oleje mogą przedostawać się z skraplaczy bądź maszyn parowych. Mogą tworzyć osady typu koksowego na wewnętrznych powierzchniach opłomek, oraz rozkładać się czemu towarzyszy wydzielanie się kwasów organicznych powodujących korozję metali.

• zawartość związków żelaza i miedzi - związki miedzi pochodzą z korozji i erozji mosiężnych rurek skraplaczy i niskoprężnych podgrzewaczy regeneracyjnych. Związki żelaza trafiają do wody z korozji podgrzewaczy wody, rurociągów kondensatu i wody zasilającej. Związki te osadzają się na powierzchniach ogrzewalnych kotła o największym obciążeniu cieplnym i powodują korozję podstawową.

• utlenialność - ma znaczny wpływ na wzrost pienienia się wody co dalej ma istotny wpływ na czystość produkowanej pary wodnej.

(5)

II. Wykonanie ćwiczenia. 1. Cel ćwiczenia.

Celem ćwiczenia jest zapoznanie się z metodami pomiaru zawartości soli w wodzie a także z budową i zasadą działania solomierza.

2. Wstęp.

Wyznaczenie zawartości soli rozpuszczonych w wodzie wykonuje się poprzez pomiar przewodności elektrycznej roztworu.

Przewodność elektryczna właściwa w odniesieniu do cieczy, a w szczególności do wodnych roztworów soli to przewodność 1 cm3 roztworu w postaci sześcianu, przy przepływie prądu elektrycznego między przeciwległymi ściankami.

Przewodność elektryczna Γ[S] (Siemens) wodnego roztworu soli można wyrazić wzorem:

l s R =

χ

=

Γ 1 , (1)

gdzie:χ- przewodność elektrolitu [S],

R - oporność elektryczna elektrolitu [Ω],

1 - grubość warstwy elektrolitu między elektrodami pomiarowymi [cm], s - pole czynnego przekroju elektrolitu [cm2].

Jednostką przewodności właściwej w układzie SI jest S/m. W praktyce podczas pomiarów przeprowadzanych w elektrowniach stosuje się jednostki mniejsze: m S cm S cm S 10 6 10 4 1

μ

==, (2)

Przewodność właściwa wody wzrasta w przybliżeniu proporcjonalnie do ilości rozpuszczonych w niej soli. Woda zawierająca różne sole wykazuje przewodność właściwą równą sumie przewodności właściwych roztworów składowych. Zależność między przewodnością właściwą elektrolitu a zawartością rozmaitych soli, kwasów i zasad przedstawia rysunek 1.

(6)

Rys. 1. Zależność między przewodnością właściwą elektrolitu a zawartością rozmaitych soli, kwasów i zasad

Badana w elektrowniach woda jest mieszaniną rozmaitych soli i wyznaczenie ogólnej zawartości soli w mg/l możliwe jest tylko w sposób przybliżony, ponieważ solomierze skalowane są za pomocą roztworu KC1 i NaCl. Jak wynika z rysunku 1 odchylenie wyniku pomiaru od rzeczywistej zawartości rozpuszczonych soli rośnie wraz ze stężeniem. Znaczny wpływ na dokładność wskazań solomierza ma także obecność w wodzie

(7)

rozpuszczonych gazów np. tlenu czy dwutlenku węgla. Dlatego też istotnym jest odgazowanie wody przed pomiarem.

Przewodność właściwa wodnych roztworów soli, w przeciwieństwie do przewodników metalowych, wzrasta z temperaturą. Wzrost przewodności właściwej następuje bardzo szybko ~2% na 1°C.

Zależność tę można wyrazić wzorem:

(

) (

)

] 1 [ 0 0 2 0 t t t t t =

χ

+

α

− +

β

χ

, (3)

gdzie: χt- przewodność właściwa w temperaturze t, [S/cm],

0

χ - przewodność właściwa w temperaturze t0, [S/cm],

α

- współczynnik cieplny przewodności właściwej elektrolitu pierwszego stopnia, [1/°C],

β

- współczynnik cieplny przewodności właściwej elektrolitu drugiego stopnia, [1/°C].

Współczynniki cieplne przewodności właściwej dla NaCl:

C 0 4 1 10 226 − =

α

0C 4 1 10 48 , 8 − =

β

.

Duży wpływ temperatury na przewodność właściwą roztworu wodnego soli zmusza do zachowywania stałej temperatury podczas pomiarów bądź stosowania układów pomiarowych zapewniających samoczynną kompensację zmian temperatury. Przy braku kompensacji należy przeprowadzać jednocześnie pomiar temperatury badanej wody i korygować wyniki pomiarów obliczone na podstawie wzorów podanych powyżej.

3. Budowa i zasada działania solomierzy

Sonda solomierza składa się z dwóch elektrod, które zanurzone w roztworze wytwarzają pole elektryczne o ustalonym rozkładzie. Solomierze przemysłowe używane w elektrowniach zasilane są napięciem przemiennym o częstotliwości 50 Hz, ponieważ przy prądzie stałym na elektrodach występuje zjawisko polaryzacji, które powoduje zmniejszenie natężenia prądu płynącego w obwodzie. Schemat połączeń solomierza przedstawiony jest na rysunku 2.

(8)

Rys. 2. Schemat ideowy solomierza. E - elektrody pomiarowe, K - kompensator, Rz - opornik

zabezpieczający elektrody pomiarowe przed rozwarciem, R1, R2, R3 - oporniki

niezrównoważonego mostka Weatstone'a, mA - miliamperomierz wyskalowany w mg/1 lub

cm S

μ

Pomiar przewodności sprowadza się do pomiaru prądu w przekątnej niezrównoważonego mostka Wheatstone'a. W jedną gałąź mostka włączone są elektrody pomiarowe i opornik do kompensacji temperatury. Przyrządem wskazującym jest miliamperomierz prądu stałego wyskalowany w jednostkach mg/l lub

cm S

μ

, połączony w szereg z prostownikiem. W warunkach

eksploatacyj-nych elektrowni różnica między wartością wskazaną, a rzeczywistą zawartością soli w wodzie nie przekracza ± 15%, co do celów ruchowych jest w zupełności wystarczające.

(9)

4. Program ćwiczenia.

4.1. Stanowisko laboratoryjne

Wszystkie pomiary przeprowadzone zostaną w układzie połączonym jak na rysunku 3. Płytę czołowa stanowiska, wraz z zaznaczonymi elementami przedstawia rysunek 4.

Rys. 3. Schemat połączeń solomierzy. E - elektrody pomiarowe, K - kompensator, P - przełącznik zmiany kompensacja/bez kompensacji. Rp - potencjometr. Rz – Opornik

zabezpieczający elektrody pomiarowe przed rozwarciem, R1, R2, R3 - Oporniki

niezrównoważonego mostka Weatstone'a, mA - miliamperomierz wyskalowany w mg/l lub

cm S

μ

4.2. Pomiar zawartości rozpuszczonych soli w wodzie oraz przewodności właściwej.

Do kuwety pomiarowej należy odmierzyć 6 1 wody destylowanej. Następnie na wadze analitycznej należy odważyć 0,25g soli. Odważoną sól należy rozpuścić w 0,5 1 wody destylowanej w osobnym naczyniu. Tak przygotowany roztwór należy dawkować co 25 ml przy każdej serii pomiarowej. Wyniki pomiarów zgromadzić w tabeli pomiarowej. Należy pamiętać, aby przełączniki kompensacji były w położeniu KOMPENSACJA.

(10)

4.3. Wpływ temperatury na dokładność pomiaru.

Do kuwety pomiarowej należy odmierzyć 6 1 wody destylowanej. Roztworem przygotowanym jak w poprzednim punkcie należy zasolić wodę do 30

cm S

μ

(wg N 570). Pomiary należy przeprowadzić z kompensacją temperatury i bez kompensacji przełączając przełącznik 4. W przypadku pomiaru bez kompensacji w układ włączony jest potencjometr Rp. Przy jego

pomocy należy skorygować pierwszy pomiar w temperaturze 20°C tak, aby wskazania solomierza z kompensacją i bez były takie same. Grzałkę elektryczną należy włączyć dopiero po jej zanurzeniu. Pomiary

rzeprowadzać co 5°C. Wyniki pomiarów zebrać w tabeli. p Siemens N 570 CX - 502 CX-502 Termometr mg/l cm S μ mg/l cm S μ Kompensacja Bez kompensacji Kompensacja Bez kompensacji Kompensacja 0C 0C 20 25 ... 60 Siemens N 570 CX - 502 CX - 502 Roztwór mg/l cm S

μ

mg/l cm S

μ

%

(11)

Rys. 4. Płyta czołowa stanowiska laboratoryjnego 1 – głowica solomierza N – 570,

2 – sonda pomiarowa głowicy typu N 582, 3 – kompensator temperatury N 5811,

4 – przełącznik zmiany kompensacja/bez kompensacji, 5 – lampka sygnalizacyjna przekroczenia pomiaru zasolenia, 6 – potencjometr Rp,

7 – głowica solomierza Siemens,

8 – sonda pomiarowa głowicy Siemens, 9 – kompensator temperatury Siemens,

10 – czujnik termometryczny Ni (termometr), 11 – grzałka,

12 – czujnik termometryczny Pt 1000 (solomierz CX – 502), 13 – sonda pomiarowa CD – 201 (solomierz CX – 502), 14 – pojemnik z badaną wodą,

15 – przełącznik uruchamiania grzałki, 16 – przełącznik uruchamiania stanowiska, 17 – przełącznik uruchamiania termometru,

(12)

4.4. Opracowanie wyników pomiarów.

a) Należy wykreślić charakterystyki wskazań solomierzy w funkcji stężenia roztworu.

Przyjmując za wzorcowe stężenie roztworu obliczone na podstawie odważonych ilości soli i wody, określić błędy pomiarowe badanych solomierzy.

b) Należy wykreślić charakterystyki wpływu temperatury na pomiar stężenia soli w wodzie. Na podstawie charakterystyk odczytać ΔSK i ΔSS (rysunek) należy

określić względny błąd pomiaru spowodowany wpływem temperatury. - pomiar z kompensacją:

[ ]

% % 100 S SK SK Δ =

δ

- pomiar bez kompensacji:

[ ]

% % 100 S SS SS Δ =

δ

a - pomiar z kompensacją, b - pomiar bez kompensacji,

S - stężenie roztworu zmierzone w temperaturze 20°C,

ΔSK - uchyb pomiaru przy podgrzaniu roztworu do temperatury 50°C z

kompensacją,

ΔSS - uchyb pomiaru przy podgrzaniu roztworu do temperatury 50°C bez

kompensacji. d) Wnioski i uwagi.

Cytaty

Powiązane dokumenty

Łatwe w obsłudze rozwiązania Valtra w zakresie inteligentnego rolnictwa dostępne są w modelach Versu i Active.. ZINTEGROWANA INTELIGENTNA

Dla stanów manewrów, postoju na kotwicy i cumowania w porcie znaki współczynników korelacji są zgodne z oczekiwaniem, zaś odwrotne znaki pojawiają się dla

ZANIM WYBIERZESZ SIĘ NA ROZMOWĘ KWALIFIKACYJNĄ, SPRAWDŹ SWÓJ ANGIELSKI. ROZWIĄŻ

Na przykład, jeśli starasz się o pracę jako pielęgniarka, podziel się informacją o hobby, które pokazuje zarówno twoje umiejętności organizacyjne, jak i

A potem jeszcze poizau- rzyłam sobie w Niemczech, bo trzeba było pozbyć się długów, których nazbierało się trochę przez ten remont, no i jeszcze za- robić coś niecoś na

Jednak oprócz tych zanieczyszczeń barwniki handlowe zawiera-ją, jako zan:eczyszcze nia, również inne barwniki ni-2 dopuszcz-one do barwienia.. artykułów żywności,

Liczba podziału n w ym iennika zależy od w artości współczynnika nagrzew ania i zastosowanego sposobu aproksymacji tran sm itancji wym iennika.. Otrzym uje się układ

Opróżnianie, czyszczenie i dezynfekcja pojemnika na odpady medyczne zakaźne oraz wymiana worka.