• Nie Znaleziono Wyników

Glycoproteins associated with nuclear matrices from hamster, chicken and frog liver cells: detection and characterization

N/A
N/A
Protected

Academic year: 2021

Share "Glycoproteins associated with nuclear matrices from hamster, chicken and frog liver cells: detection and characterization"

Copied!
9
0
0

Pełen tekst

(1)

A C T A U N I V E R S 1 T A T J S L O D Z I E N S I S

F O L IA B IO C H I M IC A E T B IO P H Y S IC A 14, 1999

Anna K rześlak, A nna L ipińska

GLYCOPROTEINS ASSOCIATED WITH NUCLEAR MATRICES FROM HAMSTER, CHICKEN AND FROG LIVER CELLS:

DETECTION AND CHARACTERIZATION

N u clear m atrices glyco p ro tein s from ham ster, chicken an d fro g liver cells were stu d ied . O u r results show the sim ilarity in the profiles o f liver n u c le ar m atrices g lycoproteins recognized by co n can av alin A (C onA ) o f the exam ined an im al species in c o n tra ry to the ones o b tain ed after stain in g w ith G alanthus nivalis a g glutinin (G N A ). It m ay reflect the differences in the stru c tu re o f olig o sacch arid e ch ain s o f som e liver n u c le ar m atrice s g lycoproteins fro m ham ster, chicken and frog.

IN T R O D U C T IO N

G lycosylation is one o f the m ajo r natu rally occurring m od ificatio ns o f nu clear proteins covalent stru ctu re [17, 18, 20, 22, 31, 39], A n u m b er of n u clear p ro teins such as nuclear pore com plex proteins (designated nuc- leoporins) [31], R N A polym erase II [25] and som e tran sc rip tio n facto rs [7, 23] w ere glycosylated in an unconventional way. T hey con tained single A -acetylglucosam ine (G lcA A c) residues attached by 0 -lin k a g e directly to serine and th reo n in e residues at m ultiple sites. T h e specific functio ns o f O -G lcA A cylation have no t been elucidated. O -G lcA A cy lation has been p o stu lated to play a role in m ediating assem bly o f m ultim eric pro tein com plexes, in targ etin g proteins from the cytoplasm into the nucleus, in reversibly blocking sites o f p h o sp h o ry latio n on serine o r th reo n in e residues o f protein, in nucleus-cytoplasm ic exchanges and in tran scrip tio n al regulation [16, 19, 20]. O -G lcA A cylation ap p ears to be highly dynam ic in a m an n er sim ilar to p ro tein p h o sp h o ry latio n [15, 20], T h e GlcTVAc levels are regulated by the interplay o f G lcA A c transferase(s) and specific iV-acetyl-//-L)-gluco- sam inidase(s) [8, 13, 14]. T h e G lcA A c transferase from ra t liver cytosol capable o f ad d in g G lcA A c to serine and th reo n in e residues o f pro tein a n d a n e u tra l so lu b le A,-a c e ty l-/i-D -g lu c o sa m in id a se fro m r a t spleen

(2)

cytosol, which was highly efficient a t rem oving GlciVAc have been purified and characterized [8, 13, 14].

jV-glycosylated p ro tein s, in which o ligo saccharides are a tta c h e d to asp arag in e residues, have been identified as nuclear co m p o n en ts n o t only in the nuclear envelope [3, 12, 40, 41], eu chrom atin fractio n [24] but also in the nuclear m atrix [4, 5, 10, 11, 29, 34], T h e im po rtan ce o f A/-bound oligosaccharide chains o f nuclear m atrix proteins for this stru ctu re was indicated by the results o f the enzym atic deglycosylation experim ents which show ed solubilization o f a significant fraction o f m atrix p rotein s (25% ) on tre a tm e n t o f the m atrix with N -glycosidase F [11]. T h u s, it can be suggested th a t ca rb o h y d ra te -p ro tein in teractio ns are ad d itio n al factors, a p a rt from disulfide cross-linkages, responsible for stabilization o f the native nuclear m a trix structure. T h e glycosylated IIM G 1 4 and 17 proteins belonging to high m o b ility g ro u p o f n o n h isto n e protein s bind preferen tially to th e nuclear p rotein m atrix of m am m alian cells [32], F u rth erm o re , this association appears to be m ediated by the glycosyl chains since enzym atic rem oval o f these m o difications from the lIM G s greatly reduced their binding to the nu clear m atrix. It is tem pting to suggest th a t this ca rb o h y d ra te m od ificatio n o f H M G proteins m ay have functional significance for the arch itectu ral o rg a n iz atio n o f the active dom ains o f ch ro m a tin in cells.

T he m ain aim o f the present study was the detection and ch aracterization o f glycoproteins originating from liver nuclear m atrices o f the th ree anim al species, i.e., ham ster, chicken an d frog.

M A T E R IA L S A N D M E T H O D S

Tissues

Liver o f three anim al species: h am ster (M esocricetus auratus), chicken

(Gallus sp.) and frog (R ana esculenta) were used for experim ents.

Preparation o f liver nuclei

All prep ared solutions were used at 4°C. Liver nuclei from exam ined anim al species were isolated by a m odified sucrose m eth o d [6]. T h e tissue was hom ogenized in the p ro p o rtio n s o f 1 g to 10 m l o f 0.25 M sucrose, 5 m M M g C l2, and 0.8 m M K H 2P 0 4 at pH 6.7, filtered th ro u g h fo u r layers o f gauze and spun dow n at 800xg fo r 7 m in. T h e pellet w as resuspended

(3)

in the above solution and T rito n X-100 was added to a final co n c en tratio n o f 0.5% and th en the suspension was hom ogenized again and centrifuged a t 800xg fo r 7 m in. T h e crude nuclear pellet was suspended in 10 vol 2.2 M sucrose, 5 m M M g C l2 and centrifuged a t 40,000xg for 45 m in. T h e purity and integrity o f the nuclei were checked by light m icroscopy.

Nuclear matrix isolation

C arefully purified nuclei from the above m entioned species (2-2.5 m g D N A /m l) were suspended in 0.25 M sucrose, 5 m M M g C l2, 1 m M P M S F , 5 m M T ris-H C l buffer (pH 7.4) and digested by en do genou s nucleases for 45 m in at 37°C. T h e suspension was spun dow n at 7700xg for 15 m in to sep a rate nuclease-released p ro d u cts (N R P ). T h e pellet was ex tracted three tim es w ith LS buffer: 0.2 m M M g C l2, 1 m M P M S F , 10 m M T ris-H C l (pH 7.4) and three times with IIS buffer: 2 M N aC l, 0.2 m M M g C l2, 1 m M P M S F , 10 m M T ris-H C l (pH 7.4) at 4°C. T h e residual pellet was w ashed twice w ith LS buffer yielding nuclear m atrices. C en trifu g atio n s were a t 2000xg fo r 15 m in d u rin g initial LS buffer extractio ns an d a t 7700xg fo r 15 m in for all subsequent extractions [33, 37],

SD S-PA G E o f proteins

F o r sodium dodecyl sulphate-polyacrylam ide gel electrop ho resis (SDS- -P A G E ), nuclear m atrices sam ples were m ixed with 0.9 vol o f solubilizing buffer (20% glycerol, 4 % sodium dodecyl sulp hate /S D S /, 25 fig pyron i- neY /m l, 0.125 M T ris-H C l buffer, pH 6.8) and 0.1 vol o f 2 -m ercaptoeth an ol, an d th en heated in a boiling w ater b ath fo r 5 m in. O ne-dim ensional electrophoresis was perform ed in slab polyacrylam ide gels co n tain in g 0.1% SD S and 8% acrylam ide (pH 8.8) with 3% stacking gel (pH 6.8) according to L a e m m 1 i [28] at 25 m A /slab gel until the py ronine Y m a rk e r reached th e end o f the stacking gel, and then at 35 m A /slab in th e resolving gel until th e m a rk e r dye reached the b o tto m o f the gel. T h e gel slabs were stained w ith C oom assie brilliant blue R-250 according to F a i r b a n k s et al. [9], Excess o f stain was rem oved w ith 10% acetic acid co n tain in g 5% m eth an o l. M olecular m asses o f protein bands were calculated by com pariso n w ith the stan d ard proteins: m yosin (205 kD a), //-galactosidase (116 kD a), p h o sp h o ry lase b (97 kD a), bovine serum album in (66 k D a ), ovalbu m in (45 k D a ) and ca rb o n ic anhydrase (29 k D a ) (Sigm a, St Louis, M issouri, U .S.A .).

(4)

Transfer o f proteins from SDS gels

P roteins separated in S D S -polyacrylam ide slab gels were tran sferred o n to Im m obilon-P tran sfer m em b ran e (pore size 0.45 /¿m) by electro p h o retic b lo ttin g in 20% m eth an o l, 192 m M glycine, 25 m M T ris (pH 8.3) for 15 h a t 60V and 4°C [36]. P roteins im m obilized o n tran sfer m em b ra n es were stained by a 5 m in incub atio n at room tem p eratu re w ith 0.2% P on ccau S in 3% acetic acid, followed by destaining in H 20 until th e p ro tein b an ds were visible, in o rd e r to co n tro l the efficiency o f b lottin g an d to m ark the location o f stan d ard proteins. T he Ponceau S staining o f the p ro tein b an ds disap p eared d u rin g subsequent incu b atio n o f the m em b ran e in the blocking solution.

Detection o f lectin-binding glycoproteins

T he detection o f lectin-binding glycoproteins im mobilized on Im m obilon-P sheets was accom plished by th e m eth o d o f H a s e l b e c k et al. [21]. T h e m em branes were treated for 30 m in at room tem p eratu re w ith 20 m l 0.5% blocking reagent (w/v) in T ris buffered saline (TBS: 50 m M T ris-H C l, 1 5 0 m M N aC l, pH 7.5), and were w ashed twice w ith TBS and once w ith buffer one consisting o f TBS, 1 m M M n C l2, 1 m M M g C l2, 1 m M C a C l2, a t pH 7.5 (50 ml each). T h e m em branes were incubated fo r 1 h at ro o m te m p e ra tu re w ith the lectin-digoxigenin (D IG ) con ju gate (G N A , Galanthus

nivalis agglutinin, 1 pg/m l; C onA , C oncan avalin A, 10 /¿g/ml) in 20 m l o f

buffer one.

T h en , the m em branes were w ashed three tim es w ith 50 m l TB S, and polyclonal sheep anti-digoxigenin F a b fragm ents conjugated w ith alkaline p h o sp h atase (a n ti-D IG A P , 750 U /m l) were added in a 1:1,000 dilu tio n in 20 m l TB S and incubated for 1 h at room tem p eratu re. T h e m em branes were again washed three times with 50 m l TBS and th e alkaline p h o sp h atase re actio n was carried ou t by incub atin g the m em b ran e w ith o u t shak in g in 20 ml o f the follow ing freshly prep ared solution: 75 ¡A 5-brom o-4-chloro-3- -indolyl p h o sp h ate 4-toluidine salt (B C IP 50 m g/m l, in dim ethylfo rm am id e) an d 100 /¿I 4-nitro blue tetrazolium chloride (N B T 75 m g/m l, in 70% dim ethylform am ide) in 20 ml o f buffer tw o (100 m M T ris-H C l, 50 m M M g C l2, 100 m M N aC l at pH 9.5). T he reactio n was com pleted w ithin a few m inutes. T h e m em branes were raised w ith H 20 to stop the re actio n and

(5)

Analytical procedures

P rotein was estim ated using bovine serum album in as a stan d ard by the m eth o d o f L o w r y et al. [30]. D N A c o n c en tratio n was determ ined from the ab so rb an ce at 260 nm (1 m g D N A /m l co rresp o n d s to 20 O .D . units) o f sam ples dissolved in 5 M u ltra-p u re urea.

Reagents

D igoxigenin-labelled lectins, blocking reagent and polyclonal sheep an ti- -digoxigenin F a b fragm ents conjugated w ith alkaline p h o sp h atase , used for the detection and characterization o f glycoproteins, were o b tained from B oehringer M an n h eim , G erm any. F o r b lottin g the Im m o b ilo n -P tran sfer m e m b ra n e (p o re size 0.45 /im ) o b ta in e d from M illip o re C o rp o ra tio n , B edford, M assachusetts, U .S.A ., was used. O th er chem icals were o f the highest available purity and were from Sigm a, St Louis, M issouri, U .S.A .

R E S U L T S A N D D IS C U S S IO N

T h e nuclear m atrix is o p eration ally defined as th e residual nuclear stru ctu re th a t is yielded by sequential trea tm e n t o f isolated nuclei with d eterg ents, nucleases and buffers o f high ionic stren gth (for reviews see [1, 2, 26, 27]). T h e isolated nuclear m atrix is com posed o f th ree m a jo r electron m icroscopically identifiable stru ctu ral dom ains, nam ely: th e su rro u n d in g p o re com plex-lam ina, residual nucleoli and an internal fib ro g ra n u la r m atrix. T h e nuclear m atrix represents the three-dim ensional fibrillar p ro tein stru ctu re c o n stitu tin g the fram ew ork o f the in terphase nucleus. In a d d itio n to its role in m ain tain in g th e nuclear architectu re and the higher o rd e r stru ctu re o f ch ro m a tin , the nuclear m atrix has been rep o rted as being involved in vario u s n uclear activities such as D N A replication, D N A tran sc rip tio n , R N A processing and stero id -h o rm o n e action [1, 26, 38], It was stated th a t som e n uclear m a trix proteins are cell-, tissue-, d ifferen tiatio n- and tu m o r- specific [2, 35], M oreover, evidence was d em o n strated fo r the presence o f a com m o n set o f polypeptides in the nuclear m atrices o f various cell types [1, 2]. A lth o u g h the presence o f glycoproteins associated w ith the nuclear m a trix was described by m an y au th o rs [4, 5, 10, 11, 29, 34], until now th eir ch aracterizatio n from nuclear m atrices o f different anim al species h as been very lim ited.

(6)

T h e present study concerns the JV-glycosylated pro teins recognized by C o n A and G N A from liver nuclear m atrices o f three anim al species, i.e., ham ster, chicken and frog. Nuclei from liver cells o f these v erteb rates were carefully isolated and checked fo r integrity and purity by o b serv atio n with light m icroscopy. Liver nuclear m atrices from the purified nuclei o f the exam ined species were obtained by the technique developed in B crezney’s laboratory [33, 37], N uclear m atrix proteins were separated by one-dim ensional electrophoresis perform ed in .slab polyacrylam ide gels co n tain in g 0.1% SDS and 8% acrylam ide (pH 8.8) with 3% stacking gel (pH 6.8) accordin g to L a e m m l i [28], T ypical polypeptide profiles o f liver n u clear m atrices o f the exam ined anim al species o btained by staining w ith C oom assie brilliant blue R-250 are show n in Fig. 1. T he proteins o f w hole nu clear m atrices separated by S D S -polyacrylam ide slab gel electrophoresis (Fig. 1) were tran sferred o n to Im m obilon-P m em b ran e and tested for D IG -C o n A and D IG -G N A binding (see M aterials and M ethods). T h e effects o f these experim ents are d em onstrated in Fig. 2. T he resulting p attern s show n in Fig. 2A allow to com pare the nuclear m atrices glycoproteins recognized by C on A from liver o f ham ster, chicken and frog. T h e detailed analysis o f all sep aratio n s indicated the sim ilarity in the profiles o f the m ain glycoprotcins. H ow ever, the lim itation which was given by used system o f electrophoresis m akes im possible the com parison o f glycoproteins existing as m in o r co m ­ ponents.

It is rem arkable, th a t the p attern s o f liver nuclear m atrices glycoproteins recognized by C onA o f exam ined species differed significantly from those o b tain ed after staining w ith G N A - a lectin specific fo r term in al b ound m an n o ses (a l-2 , 1-3, 1-6 to m an n o se) (Fig. 2B). A t least six glycoproteins o f nuclear m atrix o f h am ster liver stained by C onA were recognized also by G N A . It was observed th a t G N A reacts strongly with glycoproteins w ith m o lecu lar m ass to a b o u t 180 and 46 k D a. In th e case on nu clear m atrix glycoproteins o f chicken liver seven o f them occurring betw een 46 and 158 k D a were stained w ith G N A as well as w ith C onA . F ro m six glycoproteins o f nuclear m atrix from frog liver the m ajo r G N A bin ding p ro tein h as an ap p ro x im ate m olecular m ass o f 60/62 k D a .

T h e results presented in this study indicate th a t the differences betw een glycoproteins associated with nuclear m atrices o f the three anim al species m ay be attrib u ted to a different level o f their glycosylation. It is possible th a t the differences in the stru ctu re o f oligosaccharide chains o f nuclear m atrices glycoproteins from different anim al species m ay affect diversity of th eir function.

(7)

M M

1 2 3

Fig. 1. S D S -P A G E o f iiver n u c le ar m atrice s p ro te in s fro m h a m ste (1), chicken (2) an d fro g (3) o n 8% acry lam id e slab gel. A rro w s in d icate th e p o sitio n s o f m a rk e r p ro te in s o f 205, 116, 97, 66, 45 an d 29 k D a fro m to p to b o tto m . G el w as stain ed w ith C o o m assie b rillia n t blue

R -250. A b o u t 50 ¿ig p ro te in s w ere applied p e r gel

1 2 3 1 2 3

F ig. 2. L iver n u c le a r m atrices p ro te in s fro m h a m s te r (1), chicken (2) a n d fro g (3) e le ctro p h o re se d on 8 % a cry lam id e slab gel were tran sfe rre d to Im m o b ilo n -P m em b ran e s a n d tested fo r D IG -C o n A

(8)

ACKNOWLEDGEMENTS

T h e au th o rs wish to express th eir th an k s to J. G ierak , M .Sc. fo r typing the m a n u scrip t, and M . R ad w an fo r p h o to g rap h y . T his w ork w as sup p o rted by g ra n t 505/254 from the U niversity o f Łódź.

R E F E R E N C E S

[1] B e r e z n e y R . (1991), J. Cell. B iochem ., 47, 109-123.

[2] B e r e z n e y R. , M o r t i l l a r o M. J., M a H. , W e i X., S a m a r a b a n d u J. (1995), In t. Rev. C ytol., 162A, 1-65.

[3] B e r r i o s M. , M e l l e r V. H. , M c C o n n e l l M. , F i s c h e r P. A. (1995), E u r. J. Cell Biol., 67, 1-7.

[4] B u r r u s R. G. , S c h m i d t W. N. , B r i g g s J. A. , H n i l i c a L. S., B r i g g s R . C. (1988), C an cer R es. 48, 551-555.

[5] C a r m o - F o n s e c a M. (1988), Cell Biol. In t. R ep., 12, 607-620.

[6] C h a u v e a u J., M o u l e Y. , R o u i l l e r C. (1956), E xpl. Cell R es., 11, 317-321. [7] C h o u T -Y ., D a n g Ch. V., H a r t G . W . (1995), Proc. N a tl. A cad . Sci. U S A , 92,

4417-4421.

[8] D o n g D . L .-Y ., H a r t G . W. (1994), J. Biol. C hem ., 269, 19321-19330.

[9] F a i r b a n k s J., S t e c k T. L., W a l l a c h D . F . H. (1971), B iochem istry, 10, 2606-2617. [10] F e r r a r o A. , G r a n d i P., E u f e m i M. , A l t i e r i F. , C e r v o n i L., T u r a n o C.

(1991), B iochem . B iophys. Res. C o m m u n ., 178, 1365-1370.

[11] F e r r a r o A. , E u f e m i M. , A l t i e r i F. , C e r v o n i L. , T u r a n o C. (1994), Cell Biol. In t., 18, 656-661. [12] G r e b e r U. F. , S e n i o r A. , G e r a c e L. (1990), E M B O J., 9, 1495-1502. [13] H a i t i w a n g e r R. S., H o l t G. D „ H a r t G . W . (1990), J. Biol. C h em ., 265, 2563-2568. [14] H a i t i w a n g e r R. S., B l o m b e r g M. A. , H a r t G . W . (1992), J. Biol. C hem ., 267, 9005-9013. [15] H a l t i w a n g e r R. S., K e l l y W. G. , R o q u e m o r e E . P., B l o m b e r g M. A., D o n g D . L .-Y ., K r e p p e l L., C h o u T .-Y ., H a r t G . W. (1992), B iochem . Soc. T ra n s ., 20, 264-269.

[16] H a l t i w a n g e r R. S., B u s b y S., G r o v e K. , L i S., M a s o n D. , M e d i n a L., M o l o n e y D. , P h i l i p s b e r g G. , S c a r t o z z i R. (1997), B iochem . B iophys. Res. C o m m u n ., 231, 237-242.

[17] H a r t G. W. , H o l t G. D. , H a l t i w a n g e r R. S. (1988), T ren d s B iochem . Sci., 13,

380-384. [18] H a r t G. W. , H a l t i w a n g e r R. S., H o l t G. D. , K e l l y W. G . (1989), A n n u . Rev. B iochem ., 58, 841-874. [19] H a r t G. W. , K r e p p e l L. K „ C o m e r F. I., A r n o l d C. S., S n o w D. M. , Y e Z„ C h e n g X. , D e l l a M a n n a D. , C a i n e D. S., E a r l e s B. J., A k i m o t o Y. , C o l e R. N. , H a y e s B. K . (1996), G ly cobiology, 6, 711-716. [20] H a r t G . W. (1997), A n n u . Rev. B iochem ., 66, 315-335. [21] H a s e l b e c k A. , S c h i c k a n e d e r E., V o n d e r E l t z H. , H o s e l W. (1990), A nal. B iochem ., 191, 25-30.

(9)

[23] J a c k s o n S. P , T j i a n R . (1988), Cell, 55, 125-133. [24] K a n F. W. K „ P i n t o d a S i l v a P. (1986), J. Cell B iol., 102, 576-586. [25] K e l l y W. G „ D a h m u s M. E., H a r t G . W. (1993), J. Biol. C h e m , 268, 10416-10424. [26] K i l i a ń s k a Z. (1989), P ost. Biol. K o m , 16, 61-86. [27] K i l i a ń s k a Z. (1994), P ost. Biol. K o m ., 21, 2 7-42. [28] L a e m m l i U. K. (1970), N a tu re, 227, 680-685. [29] L i p i ń s k a A , W ł o d a r c z y k M. M , G a c z y ń s k i M , K r z e ś l a k A . (1994), C o m p . Biochem . P h y s io l, 108B, 199-207. [30] L o w r y O. H , R o s e b r o u g h N. J , F a r r A. L , R a n d a l l R. J. (1951), J. Biol. C h e m , 193, 265-275.

[31] P a n t e N , A e b i U. (1996), C rit. R ev. Biochem . M ol. B io l, 31, 153-199. [32] R e e v e s R , C h a n g D . (1983), J. Biol. C h e m , 25, 679-687.

[33] S m i t h H. C „ B e r e z n e y R. (1982), B iochem istry, 21, 6751-6761.

[34] S m i t h P. J , S a b b a t i n i G. P , G r a n t K. 1, V o n H o l t C. (1987), Biochim . Biophys. A cta, 904, 365-372.

[35] S z y m c z y k P , K i l i a ń s k a Z. (1994), P o st. Biol. K o m , 21, 133-164.

[36] T o w b i n H , S t a e h e l i n T , G o r d o n J. (1979), Proc. N atl. A cad . Sci. U S A , 76, 4350-4355. [37] T u b o R. A , B e r e z n e y R. (1987), J. Biol. C h e m , 262, 1148-1154. [38] V a n D r i e l R „ W a n s i n k D. G , V a n S t e e n s e l B , G r a n d e M. A , S c h u l W„ d e J o n g L. (1995), In t. Rev. C y to l, 162A, 151-189. [39] W a n g J. L , L a i n g J. G , A n d e r s o n R . L. (1991), G ly cobiology, 1, 243-252. [40] W o ź n i a k R. W., B a r t n i k E , B l o b e l G . (1989), J. Cell B io l, 108, 2083-2092. [41] W o ź n i a k R. W , B l o b e l G . (1992), J. Cell B io l, 119, 1441-1449.

W płynęło d o R ed ak cji D e p a rtm e n t o f C y to b io c h e m istry

F o lia b iochim ica et biop h y sica U niv ersity o f Ł ó d ź

24.04.1998

Anna Krześlak, Anna Lipińska

G L IK O P R O T E IN Y Z A S O C JO W A N E Z M A T R IK S JĄ D R O W Ą K O M Ó R E K W Ą T R O B Y C H O M IK A , K U R Y I ŻA B Y :

ID E N T Y F IK A C JA I C H A R A K T E R Y S T Y K A

B a d an o g lik o p ro tein y m atrik s jąd ro w ej w ątro b y ch o m ik a, k u ry i żaby. N asze w yniki w ykazują p o d o b ień stw o w ykresów g likoprotein rozp o zn aw an y ch przez k o n k a n a w a lin ę A (C o n A ) m a trik s ją d ro w e j w ą tro b y b a d a n y c h g a tu n k ó w zw ierząt w p rzeciw ień stw ie d o w y k resó w g lik o p ro te in o trzy m an y ch po zasto so w an iu lektyny z Galanthus nivalis (G N A ). M o że to o d zw iercied lać ró ż n ic e w s tru k tu rz e ła ń c u ch a o lig o sac h ary d o w eg o p e w n y ch g lik o p ro te in m a trik s jąd ro w ej w ą tro b y c h o m ik a, k u ry i żaby.

Cytaty

Powiązane dokumenty

showed no significant correlation between oral lichen planus and liver disease [21], the present study encountered lichenoid lesions in the oral mucosa of patients with

Increased serum levels of type IV collagen and hyaluronic acid were associated with more advanced liver disease.. There were trends towards a relationship between advanced fibrosis

Also, people with moyamoya dis- ease have been found to have a higher incidence of skin findings like livedo reticularis (Sneddon syndrome)

Prior to flow cytometry analysis, platelet-poor plasma or microvesicles suspen- sion is labeled with fluorescent monoclonal antibodies against speci fic surface antigens of the cell

Diagnosis, treatment, and prognosis in patients with liver metastases from follicular thyroid carcinoma (FTC).. Rak pęcherzykowy tarczycy z przerzutami

Do kategorii chorób wątroby występujących tylko w ciąży należą: wewnątrzwątrobowa samoistna cholestaza ciężarnych, ostre stłuszczenie wątroby ciężarnych,

Ze względu na długotrwałe (3 miesiące) utrzy- mywanie się znacznie podwyższonej aktywności aminotransferaz u opisywanej chorej zdecydowano o modyfikacji leczenia i zastosowaniu

In this section, we investigate some notions of splitting lying between (ordinary) splitting and Kamburelis and W¸ eglorz’ finitely splitting.. We are going to iterate